首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carnitine palmitoyltransferase I (CPT-I) and II (CPT-II) enzymes are components of the carnitine palmitoyltransferase shuttle system which allows entry of long-chain fatty acids into the mitochondrial matrix for subsequent oxidation. This system is tightly regulated by malonyl-CoA levels since this metabolite is a strong reversible inhibitor of the CPT-I enzyme. There are two distinct CPT-I isotypes (CPT-Ialpha and CPT-Ibeta), that exhibit different sensitivity to malonyl-CoA inhibition. Because of its ability to inhibit fatty acid synthase, C75 is able to increase malonyl-CoA intracellular levels. Paradoxically it also activates long-chain fatty acid oxidation. To identify the exact target of C75 within the CPT system, we expressed individually the different components of the system in the yeast Pichia pastoris. We show here that C75 acts on recombinant CPT-Ialpha, but also on the other CPT-I isotype (CPT-Ibeta) and the malonyl-CoA insensitive component of the CPT system, CPT-II.  相似文献   

2.
Carnitine palmitoyltransferase I (CPT I), which is expressed as two distinct isoforms in liver (alpha) and muscle (beta), catalyzes the rate-limiting step in the transport of fatty acid into the mitochondria. Malonyl-CoA, a potent inhibitor of CPT I, is considered a key regulator of fatty acid oxidation in both tissues. Still unanswered is how muscle beta-oxidation proceeds despite malonyl-CoA concentrations that exceed the IC(50) for CPT Ibeta. We evaluated malonyl-CoA-suppressible [(14)C]palmitate oxidation and CPT I activity in homogenates of red (RG) and white (WG) gastrocnemius, soleus (SOL), and extensor digitorum longus (EDL) muscles. Adding 10 microM malonyl-CoA inhibited palmitate oxidation by 29, 39, 60, and 89% in RG, SOL, EDL, and WG, respectively. Thus malonyl-CoA resistance, which correlated strongly (0.678) with absolute oxidation rates (RG > SOL > EDL > WG), was greater in red than in white muscles. Similarly, malonyl-CoA-resistant palmitate oxidation and CPT I activity were greater in mitochondria from RG compared with WG. Ribonuclease protection assays were performed to evaluate whether our data might be explained by differential expression of CPT I splice variants. We detected the presence of two CPT Ibeta splice variants that were more abundant in red compared with white muscle, but the relative expression of the two mRNA species was unrelated to malonyl-CoA resistance. These results provide evidence of a malonyl-CoA-insensitive CPT I activity in red muscle, suggesting fiber type-specific expression of distinct CPT I isoforms and/or posttranslational modulations that have yet to be elucidated.  相似文献   

3.
Periods of fasting, in most animals, are fueled principally by fatty acids, and changes in the regulation of fatty acid oxidation must exist to meet this change in metabolic substrate use. We examined the regulation of carnitine palmitoyltransferase (CPT) I, to help explain changes in mitochondrial fatty acid oxidation with fasting. After fasting rainbow trout (Oncorhynchus mykiss) for 5 wk, the mitochondria were isolated from red muscle and liver to determine (1) mitochondrial fatty acid oxidation rate, (2) CPT I activity and the concentration of malonyl-CoA needed to inhibit this activity by 50% (IC(50)), (3) mitochondrial membrane fluidity, and (4) CPT I (all five known isoforms) and peroxisome proliferator-activated receptor (PPARα and PPARβ) mRNA levels. Fatty acid oxidation in isolated mitochondria increased during fasting by 2.5- and 1.75-fold in liver and red muscle, respectively. Fasting also decreased sensitivity of CPT I to malonyl-CoA (increased IC(50)), by two and eight times in red muscle and liver, respectively, suggesting it facilitates the rate of fatty acid oxidation. In the liver, there was also a significant increase CPT I activity per milligram mitochondrial protein and in whole-tissue PPARα and PPARβ mRNA levels. However, there were no changes in mitochondrial membrane fluidity in either tissue, indicating that the decrease in CPT I sensitivity to malonyl-CoA is not due to bulk fluidity changes in the membrane. However, there were significant differences in CPT I mRNA levels during fasting. Overall, these data indicate some important changes in the regulation of CPT I that promote the increased mitochondrial fatty acid oxidation that occurs during fasting in trout.  相似文献   

4.
We have identified a novel omega-hydroxy-alkanedicarboxylic acid, ESP 55016, that favorably alters serum lipid variables in obese female Zucker (fa/fa) rats. ESP 55016 reduced serum non-HDL-cholesterol (non-HDL-C), triglyceride, and nonesterified fatty acid levels while increasing serum HDL-C and beta-hydroxybutyrate levels in a dose-dependent manner. ESP 55016 reduced fasting serum insulin and glucose levels while also suppressing weight gain. In primary rat hepatocytes, ESP 55016 increased the oxidation of [(14)C]palmitate in a dose- and carnitine palmitoyl transferase-I (CPT-I)-dependent manner. Furthermore, in primary rat hepatocytes and in vivo, ESP 55016 inhibited fatty acid and sterol synthesis. The "dual inhibitor" activity of ESP 55016 was unlikely attributable to the activation of the AMP-activated protein kinase (AMPK) pathway because AMPK and acetyl-CoA carboxylase (ACC) phosphorylation states as well as ACC activity were not altered by ESP 55016. Further studies indicated the conversion of ESP 55016 to a CoA derivative in vivo. ESP 55016-CoA markedly inhibited the activity of partially purified ACC. The activity of partially purified HMG-CoA reductase was not altered by the xenobiotic-CoA. These data suggest that ESP 55016-CoA favorably alters lipid metabolism in a model of diabetic dyslipidemia in part by initially inhibiting fatty acid and sterol synthesis plus enhancing the oxidation of fatty acids through the ACC/malonyl-CoA/CPT-I regulatory axis.  相似文献   

5.
A novel brain-expressed protein related to carnitine palmitoyltransferase I   总被引:5,自引:0,他引:5  
Malonyl-CoenzymeA acts as a fuel sensor, being both an intermediate of fatty acid synthesis and an inhibitor of the two known isoforms of carnitine palmitoyltransferase I (CPT I), which control mitochondrial fatty acid oxidation. We describe here a novel CPT1 family member whose mRNA is present predominantly in brain and testis. Chromosomal locations and genome organization are reported for the mouse and human genes. The protein sequence contains all the residues known to be important for both carnitine acyltransferase activity and malonyl-CoA binding in other family members. Yeast expressed protein has no detectable catalytic activity with several different acyl-CoA esters that are good substrates for other carnitine acyltransferases, including the liver isoform of CPT I, which is also expressed in brain; however, it displays high-affinity malonyl-CoA binding. Thus this new CPT I related protein may be specialized for the metabolism of a distinct class of fatty acids involved in brain function.  相似文献   

6.
7.
The active site of the overt activity of carnitine palmitoyltransferase (CPT I) in rat liver mitochondria was blocked by the self-catalysed formation of the S-carboxypalmitoyl-CoA ester of (-)-carnitine, followed by washing of the mitochondria. CPT I activity in treated mitochondria was inhibited by 90-95%. Binding of [14C]malonyl-CoA to these mitochondria was not inhibited as compared with that of control mitochondria. When CPT I activity was inhibited, palmitoyl-CoA could markedly displace [14C]malonyl-CoA binding from the low-affinity site for the inhibitor [Zammit, Corstorphine & Gray (1984) Biochem. J. 222, 335-342], but not from the high-affinity site for malonyl-CoA binding. The saturation characteristics of the malonyl-CoA-binding component lost in the presence of palmitoyl-CoA were sigmoidal, and thus suggestive of co-operative binding at this site. It is suggested that the site hitherto considered to be a low-affinity malonyl-CoA-binding site may be effectively a second, allosteric, acyl-CoA-binding site on CPT I under conditions that prevail in vivo, whereas the high-affinity site for malonyl-CoA may be exclusive to the inhibitor. The possibility that the competitive-type interactions of malonyl-CoA and acyl-CoA on CPT I activity could arise from the effects of separate malonyl-CoA and acyl-CoA allosteric sites is considered. The possible significance of the large difference in the capacity of the two sites and their different saturation kinetics is also discussed.  相似文献   

8.
Myocardial fatty acid oxidation is regulated by carnitine palmitoyltransferase I (CPT I), which is inhibited by malonyl-CoA. Increased cardiac power causes a fall in malonyl-CoA content and accelerated fatty acid oxidation; however, the mechanism for the decrease in malonyl-CoA is unclear. Malonyl-CoA is formed by acetyl-CoA carboxylase (ACC) and degraded by malonyl-CoA decarboxylase (MCD); thus a fall in malonyl-CoA could be due to activation of MCD, inhibition of ACC, or both. This study assessed the effects of increased cardiac power on malonyl-CoA content and ACC and MCD activities. Anesthetized pigs were studied under control conditions and during increased cardiac power in response to dobutamine infusion and aortic constriction alone, under hyperglycemic conditions, or with the CPT I inhibitor oxfenicine. An increase in cardiac power was accompanied by increased myocardial O(2) consumption, decreased malonyl-CoA concentration, and increased fatty acid oxidation. There were no differences among groups in activity of ACC or AMP-activated protein kinase (AMPK), which physiologically inhibits ACC. There also were no differences in V(max) or K(m) of MCD. Previous studies have demonstrated that AMPK can be inhibited by protein kinase B (PKB); however, PKB was activated by dobutamine and the elevated insulin that accompanied hyperglycemia, but there was no effect on AMPK activity. In conclusion, the fall in malonyl-CoA and increase in fatty acid oxidation that occur with increased cardiac work were not due to inhibition of ACC or activation of MCD, suggesting alternative regulatory mechanisms for the work-induced decrease in malonyl-CoA concentration.  相似文献   

9.
The temporal changes in oleate oxidation, lipogenesis, malonyl-CoA concentration and sensitivity of carnitine palmitoyltransferase I (CPT 1) to malonyl-CoA inhibition were studied in isolated rabbit hepatocytes and mitochondria as a function of time after birth of the animal or time in culture after exposure to glucagon, cyclic AMP or insulin. (1) Oleate oxidation was very low during the first 6 h after birth, whereas lipogenesis rate and malonyl-CoA concentration decreased rapidly during this period to reach levels as low as those found in 24-h-old newborns that show active oleate oxidation. (2) The changes in the activity of CPT I and the IC50 (concn. causing 50% inhibition) for malonyl-CoA paralleled those of oleate oxidation. (3) In cultured fetal hepatocytes, the addition of glucagon or cyclic AMP reproduced the changes that occur spontaneously after birth. A 12 h exposure to glucagon or cyclic AMP was sufficient to inhibit lipogenesis totally and to cause a decrease in malonyl-CoA concentration, but a 24 h exposure was required to induce oleate oxidation. (4) The induction of oleate oxidation by glucagon or cyclic AMP is triggered by the fall in the malonyl-CoA sensitivity of CPT I. (5) In cultured hepatocytes from 24 h-old newborns, the addition of insulin inhibits no more than 30% of the high oleate oxidation, whereas it stimulates lipogenesis and increases malonyl-CoA concentration by 4-fold more than in fetal cells (no oleate oxidation). This poor effect of insulin on oleate oxidation seems to be due to the inability of the hormone to increase the sensitivity of CPT I sufficiently. Altogether, these results suggest that the malonyl-CoA sensitivity of CPT I is the major site of regulation during the induction of fatty acid oxidation in the fetal rabbit liver.  相似文献   

10.
11.
Time courses for inhibition of carnitine palmitoyltransferase (CPT) I activity in, and [14C]malonyl-CoA binding to, liver mitochondria from fed or 48 h-starved rats were obtained at 37 degrees C by using identical incubation conditions and a fixed concentration of malonyl-CoA (3.5 microM), which represents the middle of the physiological range observed previously [Zammit (1981) Biochem. J. 198, 75-83] Incubation of mitochondria in the absence of malonyl-CoA resulted in a time-dependent decrease in the ability of the metabolite instantaneously to inhibit CPT I and to bind to the mitochondria. Both degree of inhibition and binding were restored in parallel over a period of 6-8 min on subsequent addition of malonyl-CoA to the incubation medium. However, the increased inhibition of CPT I activity on addition of mitochondria directly to malonyl-CoA-containing medium was not accompanied by an increase in the amount of [14C]malonyl-CoA bound to mitochondria at 37 degrees C. Time courses for binding of [14C]malonyl-CoA performed at 0 degree C were different from those obtained at 37 degrees C. There was little loss of ability of [14C]malonyl-CoA to bind to mitochondria on incubation in the absence of the metabolite, but there was a time-dependent increase in binding on addition of mitochondria to malonyl-CoA-containing medium. It is suggested that these temperature-dependent differences between the time courses obtained may be due to the occurrence of different changes at 37 degrees C and at 0 degree C in the relative contributions of different components (with different affinities) to the binding observed at 3.5 microM-malonyl-CoA. Evidence for multi-component binding was obtained in the form of strongly curvilinear Scatchard plots for instantaneous (5s) binding of malonyl-CoA to mitochondria. Such multi-component binding would be expected from previous results on the different affinities of CPT I for malonyl-CoA with respect to inhibition [Zammit (1984) Biochem. J. 218, 379-386]. Mitochondria obtained from starved rats showed qualitatively the same time courses as those described above, with notable quantitative differences with respect both to the absolute extents of CPT I inhibition and [14C]malonyl-CoA binding achieved as well as to the time taken to attain them.  相似文献   

12.
13.
The aim was to establish whether increased cardiac fatty acid oxidation in hyperthyroidism is due to direct alterations in cardiac metabolism which favour fatty acid oxidation and/or whether normal regulatory links between changes in glucose supply and fatty acid oxidation are dysfunctional. Euthyroid rats were sampled in the absorptive state or after 48 h starvation. Rats were rendered hyperthyroid by injection of tri-iodothyronine (1000 microg/kg body wt. per day; 3 days). We evaluated the regulatory significance of direct effects of hyperthyroidism by measuring rates of palmitate oxidation in the absence or presence of glucose using cardiac myocytes. The results were examined in relation to the activity/regulatory characteristics of cardiac carnitine palmitoyltransferase (CPT) estimated by measuring rates of [3H]palmitoylcarnitine formation from [3H]carnitine and palmitoyl-CoA by isolated mitochondria. To define the involvement of other hormones, we examined whether hyperthyroidism altered basal or agonist-stimulated cardiac cAMP concentrations in cardiac myocytes and whether the effects of hyperthyroidism could be reversed by 24 h exposure to insulin infused subcutaneously (2 i. u. per day; Alzet osmotic pumps). Rates of 14C-palmitate oxidation (to 14CO2) by cardiac myocytes were significantly increased (1.6 fold; P< 0.05) by hyperthyroidism, whereas the percentage suppression of palmitate oxidation by glucose was greatly diminished. Cardiac CPT activities in mitochondria from hyperthyroid rats were 2-fold higher and the susceptibility of cardiac CPT activity to inhibition by malonyl-CoA was decreased. These effects were not mimicked by 48 h starvation. The decreased susceptibility of cardiac CPT activities to malonyl-CoA inhibition in hyperthyroid rats was normalised by 24 h exposure to elevated insulin concentration. Acute insulin addition did not influence the response to glucose in cardiac myocytes from euthyroid or hyperthyroid rats and basal and agonist-stimulated cAMP concentrations were unaffected by hyperthyroidism in vivo. The data provide insight into possible mechanisms by which hyperthyroidism facilitates fatty acid oxidation by the myocardium, identifying changes in cardiac CPT activity and malonyl-CoA sensitivity that would be predicted to render cardiac fatty acid oxidation less sensitive to external factors influencing malonyl-CoA content, and thereby to favour fatty acid oxidation. The increased CPT activity observed in response to hyperthyroidism may be a consequence of an impaired action of insulin but occurs through a cAMP-independent mechanism.  相似文献   

14.
Palmitate oxidation by liver mitochondria from fed and starved rats exhibited markedly different sensitivities to inhibition by malonyl-CoA. In the mitochondrial system from fed rats, 50% inhibition required 19 muM-malonyl-CoA, whereas the mitochondria from starved rats were by comparison refractory to malonyl-CoA. Inhibition by malonyl-CoA was completely reversed by increasing the molar ratio of fatty acid to albumin. Results indicate that the potential effectiveness of malonyl-CoA as an inhibitor of fatty acid oxidation in the liver is dependent on an unidentified regulatory component of the system. The functional activity of this component is modified by the nutritional state, and its site of action is at the mitochondrial level.  相似文献   

15.
The sensitivity of carnitine palmitoyltransferase I (CPT I; EC 2.3.1.21) to inhibition by malonyl-CoA and related compounds was examined in isolated mitochondria from liver, heart and skeletal muscle of the rat. In all three tissues the same order of inhibitory potency emerged: malonyl-CoA much greater than succinyl-CoA greater than methylmalonyl-CoA much greater than propionyl-CoA greater than acetyl-CoA. For any given agent, suppression of CPT I activity was much greater in skeletal muscle than in liver, with the heart enzyme having intermediate sensitivity. With skeletal-muscle mitochondria a high-affinity binding site for [14C]malonyl-CoA was readily demonstrable (Kd approx. 25 nM). The ability of other CoA esters to compete with [14C]malonyl-CoA for binding to the membrane paralleled their capacity to inhibit CPT I. Palmitoyl-CoA also competitively inhibited [14C]malonyl-CoA binding, in keeping with its known ability to overcome malonyl-CoA suppression of CPT I. For reasons not yet clear, free CoA displayed anomalous behaviour in that its competition for [14C]malonyl-CoA binding was disproportionately greater than its inhibition of CPT I. Three major conclusions are drawn. First, malonyl-CoA is not the only physiological compound capable of suppressing CPT I, since chemically related compounds, known to exist in cells, also share this property, particularly in tissues where the enzyme shows the greatest sensitivity to malonyl-CoA. Second, malonyl-CoA and its analogues appear to interact with the same site on the mitochondrial membrane, as may palmitoyl-CoA. Third, the degree of site occupancy by inhibitors governs the activity of CPT I.  相似文献   

16.
Fatty acid metabolism has been studied in Fao rat hepatoma cells. In basal conditions of culture, [1-14C]oleate is mainly esterified (85% of oleate uptake) in Fao cells, phospholipids being the most important esterified products (60% of oleate esterified). Addition of N6,O2'-dibutyryl-adenosine 3',5'-monophosphate (0.1 mM) in Fao cells does not change the metabolic fate of oleate whereas it induces gluconeogenesis and phosphoenolpyruvate carboxykinase mRNA accumulation. It is shown that the limitation of oleate oxidation is located at the level of the entry into mitochondria since octanoate is actively oxidized in Fao cells. Neither the activities of carnitine palmitoyltransferase (CPT) I and II nor the CPT II protein amount are affected by cAMP addition. The limitation of oleate oxidation in Fao cells results from (a) a high rate of lipogenesis and a high malonyl-CoA concentration, (b) a CPT I very sensitive to malonyl-CoA inhibition. The presence of an active oleate oxidation in mitochondria isolated from Fao cells confirms that CPT I is the limiting step of oleate oxidation. Moreover, Fao cells are unable to perform ketogenesis. This particular feature results from a specific deficiency in mitochondrial hydroxymethylglutaryl-CoA synthase protein, activity and gene expression. The metabolic characteristics observed in Fao cells could be a common feature in hepatoma cell lines with regard to the low capacity for long-chain fatty acid oxidation and ketone body production observed in the rat H4IIE and the human HepG2 cells.  相似文献   

17.
Carnitine palmitoyltransferase I (CPT I) of rat liver mitochondria is an integral, polytopic protein of the outer membrane that is enriched at contact sites. As CPT I kinetics are highly dependent on its membrane environment, we have measured the kinetic parameters of CPT I present in rat liver submitochondrial membrane fractions enriched in either outer membrane or contact sites. The K(m) for palmitoyl-CoA was 2.4-fold higher for CPT I in outer membranes than that for the enzyme in contact sites. In addition, whereas in contact sites malonyl-CoA behaved as a competitive inhibitor of CPT I with respect to palmitoyl-CoA, in outer membranes malonyl-CoA inhibition was non-competitive. As a result of the combination of these changes, the IC(50) for malonyl-CoA was severalfold higher for CPT I in contact sites than for the enzyme in bulk outer membrane. The K(i) for malonyl-CoA, the K(m) for carnitine, and the catalytic constant of the enzyme were all unaffected. It is concluded that the different membrane environments in outer membranes and contact sites result in an altered conformation of L-CPT I that specifically affects the long-chain acyl-CoA binding site. The accompanying changes in the kinetics of the enzyme provide an additional potent mechanism for the regulation of L-CPT I activity.  相似文献   

18.
19.
The functional molecular sizes of the protein(s) mediating the carnitine palmitoyltransferase I (CPT I) activity and the [14C]malonyl-CoA binding in purified outer-membrane preparations from rat liver mitochondria were determined by radiation-inactivation analysis. In all preparations tested the dose-dependent decay in [14C]malonyl-CoA binding was less steep than that for CPT I activity, suggesting that the protein involved in malonyl-CoA binding may be smaller than that catalysing the CPT I activity. The respective sizes computed from simultaneous analysis for molecular-size standards exposed under identical conditions were 60,000 and 83,000 DA for malonyl-CoA binding and CPT I activity respectively. In irradiated membranes the sensitivity of CPT activity to malonyl-CoA inhibition was increased, as judged by malonyl-CoA inhibition curves for the activity in control and in irradiated membranes that had received 20 Mrad radiation and in which CPT activity had decayed by 60%. Possible correlations between these data and other recent observations on the CPT system are discussed.  相似文献   

20.
Specific binding of [2-14C] malonyl-CoA to rat liver mitochondria was measured at different temperatures and after various periods of time of exposure of the mitochondria to the ligand. Incubation of mitochondria at 37 degrees C in the absence of malonyl-CoA resulted in a decrease in their ability to bind malonyl-CoA at all concentrations tested (up to 55 microM). However, incubation of mitochondria in the presence of malonyl-CoA resulted in the loss of the binding only by a low-affinity component. By contrast, there was an increase in the binding that occurred at low, physiological, concentrations of malonyl-CoA. These differences in the response of the two binding components to incubation conditions were used to obtain quantitative data about their respective saturation kinetics. Evidence was obtained that, whereas the high-affinity component approached saturation hyperbolically with respect to malonyl-CoA concentration, the low-affinity component had sigmoidal characteristics. The concentrations of malonyl-CoA required to half-saturate the two components were 2-3 microM and 30 microM for the high- and low-affinity components respectively. Evidence was also obtained for the involvement of a temperature-dependent transition, that occurred at around 25 degrees C, in the modulation of malonyl-CoA binding to the mitochondria. The possible physiological roles of the two components of malonyl-CoA binding in relation to the regulation of overt carnitine palmitoyltransferase (CPT I) activity in vivo are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号