首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To emerge from the egg case, Argiope aurantia spiderlings must penetrate a tightly woven outer cover composed primarily of large-diameter cylindrical gland fibers and small-diameter fibers, likely of aciniform gland origin. They accomplish this using enzymatic digestion and mastication to form a communal hole in the outer cover. The involvement of proteolytic enzymes in this process was demonstrated by zymography of spiderling homogenates and washes made from the edges of holes. The specific source(s) of the proteases is unknown, but histological examination of spiderling sections indicates that the digestive tract, venom glands, and gnathocoxal glands are all functioning at the time of emergence from the egg case. Observations on edges of holes indicate that spiderlings are able to solubilize the small-diameter fibers completely, but cylindrical gland fibers only partially. In the outer cover, cylindrical fibers are composed of numerous fibrils embedded within a matrix. Spiderlings appear to be unable to solubilize the fibrils, but digestion of the matrix allows the spiderlings to push the fibrils aside to create the opening.  相似文献   

3.
We present a new phylogeny of the spider family Araneidae based on five genes (28S, 18S, COI, H3 and 16S) for 158 taxa, identified and mainly sequenced by us. This includes 25 outgroups and 133 araneid ingroups representing the subfamilies Zygiellinae Simon, 1929, Nephilinae Simon, 1894, and the typical araneids, here informally named the “ARA Clade”. The araneid genera analysed here include roughly 90% of all currently named araneid species. The ARA Clade is the primary focus of this analysis. In taxonomic terms, outgroups comprise 22 genera and 11 families, and the ingroup comprises three Zygiellinae and four Nephilinae genera, and 85 ARA Clade genera (ten new). Within the ARA Clade, we recognize ten informal groups that contain at least three genera each and are supported under Bayesian posterior probabilities (≥ 0.95): “Caerostrines” (Caerostris, Gnolus and Testudinaria), “Micrathenines” (Acacesia, Micrathena, Ocrepeira, Scoloderus and Verrucosa), “Eriophorines” (Acanthepeira, Alpaida, Eriophora, Parawixia and Wagneriana), “Backobourkiines” (Acroaspis, Backobourkia, Carepalxis, Novakiella, Parawixia, Plebs, Singa and three new genera), “Argiopines” (Arachnura, Acusilas, Argiope, Cyrtophora, Gea, Lariniaria and Mecynogea), “Cyrtarachnines” (Aranoethra, Cyrtarachne, Paraplectana, Pasilobus and Poecilopachys), “Mastophorines” (Celaenia, Exechocentrus and Mastophora,), “Nuctenines” (Larinia, Larinioides and Nuctenea), “Zealaraneines” (Colaranea, Cryptaranea, Paralarinia, Zealaranea and two new genera) and “Gasteracanthines” (Augusta, Acrosomoides, Austracantha, Gasteracantha, Isoxya, Macracantha, Madacantha, Parmatergus and Thelacantha). Few of these groups are currently corroborated by morphology, behaviour, natural history or biogeography. We also include the large genus Araneus, along with Aculepeira, Agalenatea, Anepsion, Araniella, Cercidia, Chorizopes, Cyclosa, Dolophones, Eriovixia, Eustala, Gibbaranea, Hingstepeira, Hypognatha, Kaira, Larinia, Mangora, Metazygia, Metepeira, Neoscona, Paraplectanoides, Perilla, Poltys, Pycnacantha, Spilasma and Telaprocera, but the placement of these genera was generally ambiguous, except for Paraplectanoides, which is strongly supported as sister to traditional Nephilinae. Araneus, Argiope, Eriophora and Larinia are polyphyletic, Araneus implying nine new taxa of genus rank, and Eriophora and Larinia two each. In Araneus and Eriophora, polyphyly was usually due to north temperate generic concepts being used as dumping grounds for species from southern hemisphere regions, e.g. South-East Asia, Australia or New Zealand. Although Araneidae is one of the better studied spider families, too little natural history and/or morphological data are available across these terminals to draw any strong evolutionary conclusions. However, the classical orb web is reconstructed as plesiomorphic for Araneidae, with a single loss in “cyrtarachnines”–“mastophorines”. Web decorations (collectively known as stabilimenta) evolved perhaps five times. Sexual dimorphism generally results from female body size increase with few exceptions; dimorphic taxa are not monophyletic and revert to monomorphism in a few cases.  相似文献   

4.
During observations in soybean fields, 136Neoscona arabesca (Walckenaer) and 46Tetragnatha laboriosa Hentz were collected with prey. Significantly different prey compositions were recorded, withN. arabesca utilizing a large number ofColeoptera whileT. laboriosa captured primarilyHemiptera-Homoptera. Neoscona arabesca was observed to feed primarily in the evening following web construction, whileT. laboriosa fed predominantly in the morning. Although both of these species captured relatively large numbers of homopterans, most of their prey were species which are not considered to be pests in soybean.
Résumé Lors d'observations dans des champs de soja, 136Neoscona arabesca (Walckenauer) et 46Tetragnatha laboriosa Hentz furent recueillies avec leurs proies. Des différences significatives furent notées dans la composition des différents groupes de proies,N. arabesca capturant un grand nombre de Coléoptères tandis queT. laboriosa capture en premier lieu des Hémiptères (Hemiptera-Homoptera). Il fut observé queNeoscona arabesca se nourrit surtout dans la soirée qui suit la construction de la toile, alors queT. laboriosa se nourrit le plus souvent le matin. Bien que ces deux espèces aient capturé un nombre relativement important d'homoptères, la plupart de leurs proies étaient des espèces qui ne sont pas considérées comme nuisibles au soja.


This paper (82-7-20) is in connection with a project of the Kentucky Agricultural Experiment Station and is published with the approval of the Director.  相似文献   

5.
6.
We present the first cladistic analysis focused at the tribal and subfamily level of the orb-weaving spider family Araneidae. The data matrix of 82 characters scored for 57 arancid genera of 6 subfamilies and 19 tribes (and 13 genera from 8 outgroup families) resulted in 16 slightly different, most parsimonious trees. Successive weighting corroborated 62 of the 66 informative nodes on these cladograms; one is recommended as the 'working' araneid phylogcny. The sister group of Araneidae is all other Araneoidea. Araneidae comprises two major clades: the subfamily Araneinae, and the 'argiopoid' clade, which includes all other subfamilies and most tribes (((Gasteracanthinae, Caerostreae), (((Micratheninae, Xylcthreae), Eruyosaccus ), (Eurycorminae, Arciinae)), Cyrlarachninae), ((Argiopinae, Cyrtophorinae), Arachnureae)). Cyrtarachneae and Mastophoreae are united in a new subfamily, Cyr-tarachninae. The spiny orb-weavers alone (Gasteracanthinae and Micratheninae) are not monophyletic. The mimetid subfamily Arciinae and the 'tetragnathid' genus Zygiella are araneids, but .Nephila (and other tetragnathids) are not. On the preferred tree, web decorations (stabilimenta) evolved 9 times within 15 genera, and were lost once. The use of silk to subdue prey evolved once in cribellate and four times in ecribillate orb weavers. Sexual size dimorphism evolved once in nephilines, twice in araneids, and reverted to monomorphism five times. Evolution in other genitalic and somatic characters is also assessed; behavioral and spinneret features arc most consistent (male genitalia, leg and prosomal features least consistent) on the phylogeny.  相似文献   

7.
Although the basic taxonomic characteristics usually remain unchanged, some spinning apparatuses undergo consistent adaptive variations. As the presence of additional protuberances known as nubbins and tartipores have caused disagreements regarding some Araneidae spiders, more detailed definitions on the cuticular structures have recently been proposed. Reflecting this definition, microstructural organization of silk spinning apparatuses in the orb web spider Argiope bruennichi were reconsidered using field emission scanning electron microscopy. Among the seven kinds of functional spigots in females, it was revealed that two types (major ampullates and pyrifoms) are located on anterior spinnerets and another five types are distributed on median (minor ampullates, tubuliforms and aciniforms) or posterior (tubuliforms, flagelliforms, aggregates and aciniforms) spinnerets, respectively. In addition to functional spigots, cuticular remnants of the nubbins and the tartipores were found on the spinning fields, but the number of tartipores on each spinneret varied among individuals based on maturity. Nevertheless, three kinds of cuticular protuberances of ampullate silk glands were clearly visible at both the anterior and median spinnerets.  相似文献   

8.
There are two major competing explanations for the counter-intuitive presence of bright coloration in certain orb-web spiders. Bright coloration could lure insect prey to the web vicinity, increasing the spider's foraging success. Alternatively, the markings could function as disruptive camouflage, making it difficult for the insect prey to distinguish spiders from background colour variation. We measured the prey capture rates of wasp spiders, Argiope bruennichi, that were blacked out, shielded from view using a leaf fragment, or left naturally coloured. Naturally coloured spiders caught over twice the number of prey as did either blacked-out or leaf-shielded spiders, and almost three times as many orthopteran prey. Spectrophotometer measurements suggest that the bright yellow bands on the spider's abdomen are visible to insect prey, but not the banding on the legs, which could disguise the spider's outline. Thus, our results provide strong support for the hypothesis that bright coloration in the wasp spider acts as a visual lure for insect prey and weak support for the hypothesis that the arrangement of the banding pattern across the spider's body disguises the presence of the spider on the web.  相似文献   

9.
A total of 36 spider species of the families Theridiidae, Tetragnathidae and Araneidae are recorded from Aldabra atoll. Of these, 26 are described as new, together with one new subspecies. The taxonomy of the new species is discussed and, for comparative purposes, five other species not from Aldabra are illustrated. One new synonymy is established. Records for each species are given with, in some cases, notes on biology. The possible biological significance of the egg sac strings found in some species is considered. Finally, the biogeographical affinities of the Aldabra species are briefly discussed.  相似文献   

10.
Hypotheses for the adaptive significance of extreme female-biased sexual size dimorphism (SSD) generally assume that in dimorphic species males rarely interfere with each other. Here we provide the first multivariate examination of sexual selection because of male-male competition over access to females in a species with 'dwarf' males, the orb-weaving spider Argiope aurantia. Male A. aurantia typically try to mate opportunistically during the female's final moult when she is defenceless. We show that, contrary to previous hypotheses, the local operational sex ratio (males per female on the web) is male-biased most of the season. Both interference and scramble competition occur during opportunistic mating, the former leading to significant selection for large male body size. Male condition and leg length had no effect on mating success independent of size. We discuss these findings in the context of the evolution of extreme female-biased SSD in this clade.  相似文献   

11.
Summary While a number of advantages may result from group living, it may also lead to increased levels of attack by parasites because groups may be easier to find. This leads to the prediction that levels of parasitism should increase with colony size. We test this prediction by comparing colony size and parasitoid load for two species of colonial orb-weaving spiders from Mexico, Metepeira (undesc. sp., tentatively named atascadero) and Metepeira incrassata, which exhibit contrasting levels of social organization and utilize different habitats. For M. atascadero, which occurs solitarily or in small groups in desert/mesquite grassland habitat, rates of egg-sac parasitism fluctuate widely from year to year, and are closely tied to spider egg output. There is no relationship between colony size and rate of parasitism. For colonial M. incrassata, which occur in tropical rain forest/agricultural habitat, rates of parasitism are relatively constant from year to year. However, there is a positive relationship between colony size and rate of parasitism in this species. These differences are discussed with regard to the stability of the two habitats, prey availability, and the foraging behavior of the respective parasitoids.  相似文献   

12.
Wolfgang Nentwig 《Oecologia》1985,66(4):580-594
Summary The actual prey in the orb webs of four araneid spiders (Nephila clavipes, Eriophora fuliginea, Argiope argentata, and A. savignyi) and the relative abundance of their potential prey (pitfall traps, yellow traps, and sweep-netting) was investigated over 1 year at different locations in Panama. The relative abundance of insects and spiders depends on seasonal fluctuations (Fig. 2) which are reflected by corresponding variations in the effectiveness of the webs. The main prey groups are Nematocera (50%–68%), winged Formicoidea (6%–15%) and Hymenoptera, Coleoptera, and Brachycera (4%–10% each) (Fig. 4-6). The remaining 10%–17% of the prey comes from up to 26 other groups (Table 2). Differences in prey size and prey composition between the spider species are small (Fig. 7). Most prey items are 1–2 mm long: only a few insects exceed 30 mm body length (Figs. 9–12). Relative to the available prey, some groups (e.g. Nematocera, Aphidoidea, Psocoptera) are caught selectively, while other groups (e.g. Heteroptera, Coleoptera, Brachycera, Orthoptera) are underrepresented in the prey spectrum and obviously avoid orb webs (Table 7). The differences in prey composition between araneids of the tropics and of the temperate zone are discussed (Table 8) and compared to those recorded in other studies (Table 9, 10). Most of these report large numbers of big prey items (Odonata, Lepidoptera, wasps/bees). It is pointed out that those studies do not take into account the total available prey in a spider's web but only that part which the spider selects from the web (mainly according to size). The importance of small prey items even for large spiders is explained and an obvious lack of niche partitioning among coexisting araneids is discussed (Table 11).  相似文献   

13.
Cyrtarachne is an orb-weaving spider of the sub-family Cyrtarachninae (Araneidae), which includes the triangle-web-building Pasilobus and the bolas spiders. We found that web and thread characteristics of Cyrtarachne differed greatly from those of typical orb-webs. Web diameter, sticky spiral spacing, breaking strength and stickiness of thread, thread diameter and droplet diameter were significantly different from those of other members of Araneidae. It is especially worth noting that the diameter was approximately four times, and the breaking strength seven to ten times larger in Cyrtarachne viscid threads than in those of other araneids. Kinetic energy-absorbing ability of Cyrtarachne threads was much greater than in that of other species, and close to the amount of kinetic energy generated by flying moths. Viscid material of threads was peculiar because its adhesiveness decreased to zero in a few hours. Moreover, SEM photos revealed them to be covered with thin scales of material, while threads of other araneids were smooth. These two facts suggest that the viscid material of Cyrtarachne threads may be different from those of other orb-weavers. As web-building, hunting behaviour and prey composition of different species of Cyrtarachninae arc quite similar to each other, we hypothesize that these extraordinary web and thread characteristics of Cyrtarachne are shared by the other members of this sub-family. Because these characteristics differ in many ways from those of typical araneid orb-webs, there appears to have been a great leap in evolution between Cyrtarachne and the other Araneidae.  相似文献   

14.
The terrestrial carnivorous bladderwort, Utricularia uliginosa Vahl. (Lentibulariaceae) was studied to determine the species assemblage present in traps of these plants in situ across four sites over 15 months. The immediate soil environment was also sampled to determine the fauna present, and to compare the fauna present in traps with the fauna in the environment. The soil fauna consisted of 10 taxon types, which occupied either pelagic, epibenthic or interstitial microhabitats. All were found in traps of U. uliginosa, with the main prey being interstitial taxa followed by epibenthic and occasionally pelagic taxa. Numbers of individuals of the two most abundant soil taxa (nematodes, Elaphoidella) varied independently across the four sites over the 15 months of the study, as did numbers of Elaphoidella in the traps of U. uliginosa. Numbers of nematodes in the traps of U. uliginosa showed significant differences among sites, but not differences among times. Comparison of the trap fauna with the soil fauna revealed differences in relative abundance between soil samples and trap samples for two of the three taxa examined. There was an under‐representation of nematodes in the traps relative to numbers in surrounding soil. There was an over‐representation of the copepod Elaphoidella in the traps of U. uliginosa relative to numbers in soil at some of the times of sampling. Acarina were equally abundant in soil and trap samples. The patterns observed for Elaphoidella and nematodes may be due to selectivity in trapping by U. uliginosa, and/or differences in digestibility of the prey. Elaphoidella individuals were found to be attracted to U. uliginosa in a behavioural experiment. This may contribute to the over‐representation of Elaphoidella in the traps of U. uliginosa in the field.  相似文献   

15.
David H. Wise 《Oecologia》1979,41(3):289-300
Summary A field experiment was performed to determine if food is a limited resource for adult females of two species of orb-weaving spiders, Mecynogea lemniscata and Metepeira labyrinthea. Spiders built webs after being added to open experimental units located in a mixed deciduous-pine forest in Maryland, USA. Each unit was a frame supporting dead branches of the type used by both species for anchoring webs. Spiders on half the units were exposed to natural prey densities only, while each spider on the other units was given laboratory-reared flies in order to increase prey availability above natural levels. Supplemental feeding continued for 2.5 months. At the end of the experiment all egg sacs were removed from the units.Providing additional prey did not increase the survival rate on the units (net effect of mortality, emigration and immigration). However, both species responded to additional prey by significantly increasing the number of eggs produced per female, indicating that food was a limited resource for these species. Median egg production per female increased from 34 to 62 for Mecynogea lemniscata and from 65 to 145 for Metepeira labyrinthea. Egg weight was not affected.Feeding rates and nearest neighbor distances were determined for spiders in non-experimental populations, which permitted evaluation of the experiment's naturalness. The effects of food supply upon the reproductive rates of the two species are discussed in relation to their numerical response and population dynamics.  相似文献   

16.
17.
Studies of food relations are important to our understanding of ecology at the individual, population and community levels. Detailed documentation of the diet of large‐bodied, widespread snakes allows us to assess size‐dependent and geographical variation in feeding preferences of gape‐limited predators. Furthermore, with knowledge of the food habits of sympatric taxa we can explore possible causes of interspecific differences in trophic niches. The feeding ecology of the North American gopher snake, Pituophis catenifer, was studied based on the stomach contents of more than 2600 preserved and free‐ranging specimens, and published and unpublished dietary records. Of 1066 items, mammals (797, 74.8%), birds (86, 8.1%), bird eggs (127, 11.9%), and lizards (35, 3.3%) were the most frequently eaten prey. Gopher snakes fed upon subterranean, nocturnal and diurnal prey. The serpents are primarily diurnal, but can also be active at night. Therefore, gopher snakes captured their victims by actively searching underground tunnel systems, retreat places and perching sites during the day, or by pursuing them or seizing them while they rested at night. Gopher snakes of all sizes preyed on mammals, but only individuals larger than 40 and 42 cm in snout–vent length took bird eggs and birds, respectively, possibly due to gape constraints in smaller serpents. Specimens that ate lizards were smaller than those that consumed mammals or birds. Gopher snakes raided nests regularly, as evidenced by the high frequency of nestling mammals and birds and avian eggs eaten. Most (332) P. catenifer contained single prey, but 95 animals contained 2–35 items. Of the 321 items for which direction of ingestion was determined, 284 (88.5%) were swallowed head‐first, 35 (10.9%) were ingested tail‐first, and two (0.6%) were taken sideways. Heavier gopher snakes took heavier prey, but heavier serpents ingested prey with smaller mass relative to snake mass, evidence that the lower limit of prey mass did not increase with snake mass. Specimens from the California Province and Arid Deserts (i.e. Mojave, Sonoran and Chihuahuan Deserts) took the largest proportion of lizards, whereas individuals from the Great Basin Desert consumed a higher percentage of mammals than serpents from other areas, and P. catenifer from the Great Plains ate a greater proportion of bird eggs. Differences in prey availability among biogeographical regions and unusual circumstances of particular gopher snake populations may account for these patterns. Gopher snakes have proportionally longer heads than broadly sympatric Rhinocheilus lecontei (long‐nosed snake), Charina bottae (rubber boa) and Lampropeltis zonata (California mountain kingsnake), which perhaps explains why, contrary to the case in P. catenifer, the smaller size classes of those three species do not eat mammals. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society, 2002, 77 , 165–183.  相似文献   

18.
The prey capture behaviour of the orb-web spider Argiope keyserlingi Karsch was examined experimentally by subjecting spiders to two different feeding regimes (food deprived and food satiated) and three types of prey: Drosophila, blowflies (Lucilia cuprina) and bees (Apis mellifera). The attack behaviour of the spiders was influenced by both their foraging history and the type of prey. Food deprived spiders attacked Drosophila and bees more frequently than food satiated spiders, and food satiated spiders travelled more slowly to any of the prey types than food deprived spiders. Furthermore, Drosophila were never wrapped in silk but only grasped with the chelicerae, whereas both blowflies and bees were always wrapped. This provides experimental confirmation that feeding history affects the decision of orb-web spiders to accept or reject any given prey.  相似文献   

19.
Insects flying into the web of an orb-weaving spiderAraneus pinguis (Karsch) and their avoidance of (pre-hitting process) and escapes from (post-hitting process) the web were examined by direct observation under natural and semi-natural conditions. In the pre-hitting process, mobile insects such as Brachycera, Lepidoptera and Hymenoptera showed a low hitting ratio (number of insects hitting/number of insects flying within 1 m3 space around the web-site) because of active web avoidance and flying activity in layers lower or higher than those in which the webs are usually laid. In contrast, less mobile insects like Heteroptera, Coleoptera and Homoptera showed a high hitting ratio. In the post-hitting process, Brachycera, Lepidoptera and some Nematocera frequently escaped without being detained by the web. Many Orthoptera and Hymenoptera escaped without any sign of detection by the spider. Coleoptera frequently escaped during the spider's attack. Small insects from the Homoptera, Nematocera and Hymenoptera rarely escaped from the web, but were not immediately attacked. Mean escape time of insects was correlated significantly with capture success of the spider. Overall most of the escapes occurred in the early phases of the predation process. This indicates that escapes are unlikely to result in heavy loss of time and energy expenditure due to unsuccessful predation. Escape patterns of insects seem to be related to their mobility.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号