首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Postirradiation incubation of V79 Chinese hamster cells with inhibitors of poly(ADP-ribose) synthesis was found to potentiate the killing of cells by X rays. Potentiation increased with incubation time and with concentration of the inhibitor. Preirradiation incubation had only a small effect. The enhanced response correlated well with the known extent of the inhibition of poly(ADP-ribose) synthesis. A radiation-sensitive line, V79- AL162 /S-10, was affected to a lesser extent than the normal cells. Cells repaired the radiation damage with which the inhibitors interacted within 1 hr, a process that has similar kinetics to what is observed when a postirradiation treatment with hypertonic buffer is used [H. Utsumi and M. M. Elkind , Radiat . Res. 77, 346-360 (1979)]. However, the sectors of damage affected by inhibitors of poly(ADP-ribose) synthesis and hypertonic buffer do not entirely overlap. The inhibitor nicotinamide enhanced the killing mainly of late S-phase cells and did not affect cells at the G1/S border. It is concluded that the repair process(es) involving poly(ADP-ribose) synthesis is important for cell survival in repair-competent cells and that the radiation-sensitive cells that were examined are partially deficient in a repair pathway in which poly(ADP-ribose) participates.  相似文献   

2.
The purpose of this study was to investigate possible involvement of poly(ADP-ribosyl)ation reactions in X-ray-induced cell killing, repair of potentially lethal damage (PLD), and formation and repair of radiation-induced DNA damage. As tools we used the inhibitors of poly(ADP-ribose)polymerase, 3-aminobenzamide (3AB), and 4-aminobenzamide (4AB). Both drugs inhibited PLD repair equally well but did not increase radiation-induced cell killing when cells were plated immediately after irradiation. 3AB affected repair of radiation-induced DNA damage, while 4AB had no effect. When 3AB was combined with aphidicolin (APC), it was found that the amount of DNA damage increased during the postirradiation incubation period. This means that the presence of 3AB stimulates the formation of DNA damage after X-irradiation. It is concluded that 3AB and 4AB sensitize HeLaS3 cells for radiation-induced cell killing by inhibiting repair of PLD. Because of the different effects of both inhibitors on repair of PLD and repair of radiation-induced DNA damage (a process known to be affected by inhibition of poly(ADP-ribosyl)ation), it is concluded that the observed inhibition of PLD repair is not caused by inhibition of poly(ADP-ribose)polymerase, and that the inhibitors affect repair of PLD and repair of DNA damage through independent mechanisms.  相似文献   

3.
The evidence implicating poly (ADP-ribose) in the radiation response of mammalian cells is reviewed. It is concluded that the apparently conflicting results using inhibitors of ADP-ribosyl transferase (ADPRT) can be explained by a working hypothesis. This hypothesis maintains that poly (ADP-ribose) is required for repair of radiation damage (presumably to facilitate ligation). In most cells the synthesis of poly (ADP-ribose) is not rate limiting for repair and therefore, an almost complete inhibition of ADPRT activity is required to potentiate the radiation response. In radiation-sensitive cells (e.g. resting lymphocytes, L5178Y-S cells) with a deficient poly (ADP-ribose) metabolism, its synthesis can become rate limiting for repair. In such cells even a partial inhibition of ADPRT activity may enhance radiation-induced cell killing. It is suggested that if such differences exist between normal and cancer cells, they can be utilized to improve the therapeutic ratio of radiotherapy.  相似文献   

4.
The aim of the present study was to investigate the effect of two inhibitors (3-aminobenzamide and nicotinamide) of poly (ADP-ribose) synthetase on the production of the inflammatory mediator prostaglandins in a model of acute inflammation, carrageenan-induced pleurisy, where prostaglandins are known to play a crucial role. The results show that the poly (ADP-ribose) synthetase inhibitors, 3-aminobenzamide (2.5, 5 and 10 mg/kg) and nicotinamide (12.5, 25 and 50 mg/kg), inhibit the inflammatory response (pleural exudate formation, polymorphonuclear cell infiltration and prostaglandin production). The present results demonstrate that inhibition of poly (ADP-ribose) synthetase exerts potent anti-inflammatory effects. Part of these anti-inflammatory effects may be related to a reduction of prostaglandin production during the inflammatory process.  相似文献   

5.
Poly(ADP-ribose) and the response of cells to ionizing radiation   总被引:1,自引:0,他引:1  
The activity of poly(ADP-ribose) polymerase is stimulated by DNA damage resulting from treatment of cells with ionizing radiation, as well as with DNA-damaging chemicals. The elevated polymerase activity can be observed at doses lower than those necessary for measurable reduction in cellular NAD concentration (less than 20 Gy). Several nuclear proteins, including the polymerase itself, are poly(ADP-ribosylated) at elevated levels in irradiated Chinese hamster cells. The addition of inhibitors of poly(ADP-ribose) polymerase to irradiated cells has been found to sensitize the cells to the lethal effects of the radiation, to inhibit the repair of potentially lethal damage, and to delay DNA strand break rejoining. Because of the nonspecificity of the inhibitors, however, it is as yet unknown whether their effects are directly related to the inhibition of poly(ADP-ribose) polymerase, to interference with the poly(ADP-ribosylation) of one or more chromosomal proteins, or to effects unrelated to the poly(ADP-ribosylation) process. The data are consistent with the involvement of poly(ADP-ribose) in the repair of radiation damage, but the nature of this involvement remains to be elucidated.  相似文献   

6.
The sensitivities (Do-values) of the cytotoxic effect of MNU on four rodent cell lines were: mouse L1210, 0.07 mM; rat Yoshida sarcoma, 0.52 mM; Chinese hamster V79A, 0.70 mM and the UV sensitive, X-ray sensitive V79/79, 0.35 mM. The abilities of maximum non-toxic doses of the poly-(ADP-ribose) polymerase inhibitors, 5-methyl nicotinamide (5MeN), 3-methoxybenzamide (3MBA) and caffeine to potentiate this cytotoxicity and that of UV light in V79A and V79/79 was measured. The degree of potentiation (ratio Do without inhibitor/Do with inhibitor) was both agent and cell line dependent. In general the lymphoid cell lines L1210 and YS showed greater potentiation, up to 4-fold, than did the fibroblast lines V79A and V79/79. The use of inhibitors in pairs suggested that 5MeN and 3MBA affect one process whereas caffeine affects additional processes. The data provide further support for a role for poly(ADP-ribose) in DNA repair, but indicate that metabolic factors may modify the effectiveness of individual inhibitors of poly(ADP-ribose) polymerase in different cell lines.  相似文献   

7.
J L Sims  S J Berger  N A Berger 《Biochemistry》1983,22(22):5188-5194
Inhibitors of poly(ADP-ribose) polymerase stimulated the level of DNA, RNA, and protein synthesis in DNA-damaged L1210 cells but had negligible effects in undamaged L1210 cells. The poly(ADP-ribose) polymerase inhibitors stimulated DNA repair synthesis after cells were exposed to high concentrations of N-methyl-N'-nitro-N-nitrosoguanidine (68 and 136 microM) but not after exposure to low concentrations (13.6 and 34 microM). When the L1210 cells were exposed to 136 microM N-methyl-N'-nitro-N-nitrosoguanidine, the activation of poly(ADP-ribose) polymerase resulted in the rapid depletion of oxidized nicotinamide adenine dinucleotide (NAD+) levels and subsequent depletion of adenosine 5'-triphosphate (ATP) pools. After low doses of N-methyl-N'-nitro-N-nitrosoguanidine (13.6 microM), there were only small decreases in NAD+ and ATP. Poly(ADP-ribose) polymerase inhibitors prevented the rapid fall in NAD+ and ATP pools. This preservation of the ATP pool has a permissive effect on energy-dependent functions and accounts for the apparent stimulation of DNA, RNA, and protein synthesis. Thus, the mechanism by which poly(ADP-ribose) polymerase inhibitors stimulate DNA, RNA, and protein synthesis in DNA-damaged cells appears to be mediated by their ability to prevent the drastic depletion of NAD+ pools that occurs in heavily damaged cells, thereby preserving the cells' ability to generate ATP and maintain energy-dependent processes.  相似文献   

8.
We have studied the role of poly(ADP-ribose) polymerase in the repair of DNA damage induced by x-ray and N-methyl N-nitro-N-nitrosoguanidine (MNNG) by using V79 chinese hamster cells, and two derivative mutant cell lines, ADPRT54 and ADPRT351, that are deficient in poly(ADP-ribose) polymerase activity. Under exponentially growing conditions these mutant cell lines are hypersensitive to x-irradiation and MNNG compared to their parental V79 cells which could be interpreted to suggest that poly(ADP-ribose) polymerase is involved in the repair of DNA damage. However, the level of DNA strand breaks induced by x-irradiation and MNNG and their rates of repair are similar in all the cell lines, thus suggesting that it may not be the difference in strand break formation or in its rate of repair that is contributing to the enhanced cell killing in exponentially growing poly(ADP-ribose) polymerase deficient cell lines. In contrast, under growth-arrested conditions, all three cell lines become similarly sensitive to both x-irradiation and MNNG, thus suggesting that poly(ADP-ribose) polymerase may not be involved in the repair of DNA damage in growth-arrested cells. These paradoxical results could be interpreted to suggest that poly(ADP-ribose) polymerase is involved in DNA repair in a cell-cycle-dependent fashion, however, it is functionally active throughout the cell cycle. To resolve this dilemma and explain these results and those obtained by many others, we propose that the normal function of poly(ADP-ribose) polymerase is to prevent DNA recombination processes and facilitate DNA ligation.  相似文献   

9.
Targeting poly(ADP-ribosyl)ation: a promising approach in cancer therapy   总被引:5,自引:0,他引:5  
Recent progress in the field of DNA repair has demonstrated that transient inhibition of DNA damage detection or repair using potent poly(ADP-ribose) polymerase (PARP) inhibitors could improve the efficacy of cancer treatments. Although more study is needed, recent publications lead to optimism that the inhibition of poly(ADP-ribose) synthesis could selectively kill cancer cells when used to treat tumours with defective BRCA proteins. These reports and others shed some light on the DNA damage signalling and repair processes involving PARPs. However, a better understanding of the molecular mechanisms regulated by poly(ADP-ribose) metabolism will be essential before optimism can be replaced by clinical realization.  相似文献   

10.
We used two different approaches to develop cell lines deficient in poly(ADP-ribose) synthesis to help determine the role of this reaction in cellular functions. One approach to this problem was to develop cell lines deficient in enzyme activity; the other approach was to develop cell lines capable of growing with such low nicotinamide adenine dinucleotide (NAD) levels so as to effectively limit substrate availability for poly(ADP-ribose) synthesis. The selection strategy for obtaining cells deficient in activity of poly(ADP-ribose) polymerase was based on the ability of this enzyme to deplete cellular NAD in response to high levels of DNA damage. Using this approach, we first obtained cell lines having 37-82% enzyme activity compared to their parental cells. We now report the development and characterization of two cell lines which were obtained from cells having 37% enzyme activity by two additional rounds of further mutagenization and selection procedures. These new cell lines contain 5-11% enzyme activity compared to the parental V79 cells. In pursuit of the second strategy, to obtain cells which limit poly(ADP-ribose) synthesis by substrate restriction, we have now isolated spontaneous mutants from V79 cells which can grow stably in the absence of free nicotinamide or any of its analogs. These cell lines maintain NAD levels in the range of 1.5-3% of that found in their parental V79 cells grown in complete medium. The pathway of NAD biosynthesis in these NAD-deficient cells is not yet known. Further characterization of these lines showed that under conditions that restricted poly(ADP-ribose) synthesis, they all had prolonged doubling times and increased frequencies of sister chromatid exchanges.  相似文献   

11.
Inhibitors of poly(ADP-ribose) synthetase, namely nicotinamide, benzamide, m-methoxybenzamide and 3-aminobenzamide, augmented chondrocytic differentiation chick embryo limb bud mesenchymal cells, in culture. These inhibitors stimulated early appearance and massive formation of cartilage nodules in micromass cultures stage 23-24 chick embryos. They also induced nodule formation in micromass and cartilage colonies at micromass plating densities from stage 18-19 embryo Benzamide, however, did not prevent differentiated chondrocytes from undergoing a pleiotypic change in cell type. These results are compatible with the putative regulatory function of poly(ADP-ribose) on cell differentiation.  相似文献   

12.
Vascular smooth muscle cells (VSMCs) undergo death during atherosclerosis, a widespread cardiovascular disease. Recent studies suggest that oxidative damage occurs in VSMCs and induces atherosclerosis. Here, we analyzed oxidative damage repair in VSMCs and found that VSMCs are hypersensitive to oxidative damage. Further analysis showed that oxidative damage repair in VSMCs is suppressed by a low level of poly (ADP-ribosyl)ation (PARylation), a key post-translational modification in oxidative damage repair. The low level of PARylation is not caused by the lack of PARP-1, the major poly(ADP-ribose) polymerase activated by oxidative damage. Instead, the expression of poly(ADP-ribose) glycohydrolase, PARG, the enzyme hydrolyzing poly(ADP-ribose), is significantly higher in VSMCs than that in the control cells. Using PARG inhibitor to suppress PARG activity facilitates oxidative damage-induced PARylation as well as DNA damage repair. Thus, our study demonstrates a novel molecular mechanism for oxidative damage-induced VSMCs death. This study also identifies the use of PARG inhibitors as a potential treatment for atherosclerosis. [BMB Reports 2015; 48(6): 354-359]  相似文献   

13.
The purpose of this study was to investigate a possible involvement of poly(ADP-ribosyl)ation reactions in hyperthermic cell killing and hyperthermic DNA strand-break induction and repair in HeLa S3 cells. The inhibitors of poly(ADP-ribose) polymerase, 3-aminobenzamide (3AB) and 4-aminobenzamide (4AB), were used as tools in this study. Both inhibitors could sensitize the cells for hyperthermic cell killing equally well, although 3AB is known to be a more effective enzyme inhibitor. The heat sensitization at the level of cell killing could be reversed when the compounds were still present during a 4-h postincubation at 37 degrees C. More heat-induced DNA strand breaks were formed in the presence of 3AB and 4AB. Repair of strand breaks was inhibited during the postincubation at 37 degrees C. Thus the effect of 3AB and 4AB on DNA strand-break repair was different from the cited effect on cell survival. It is concluded that the sensitizing effect of 3AB and 4AB on hyperthermic cell killing is not caused by inhibition of poly(ADP-ribose) polymerase and is also not related to repair of DNA strand breaks.  相似文献   

14.
Poly(ADP-ribose) is a nuclear polymer that is synthesized in response to DNA-strand breaks and covently modifies numerous nuclear proteins. Inhibition of poly(ADP-ribose) polymerase by 3-amino-benzamide in cells exposed to DNA-damaging agents has a variety of cellular effects, including increases in cell killing, frequency of single-strand breaks, reapir replication, and sister-chromatid exchange. These increases have been interpreted as an indication that poly(ADP-ribose) polymerization regulates the rate of ligation. Because of slow ligation, continued repair polymerization should therefore generate longer repair patches. Direct measurement of the rate of ligation of intracellular repair patches and of the size of repair patches indicates that they are unchanged when poly(ADP-ribose) polymerization is inhibited. We therefore conclude that poly(ADP-ribose) does not regulate the ligation stage of repair but instead may regulate the activity of intracellular nucleases and other enzymes that can cause additional DNA damage and changes in chromatin struture.  相似文献   

15.
Poly(ADP-ribosyl)ation is a post-translational modification that is instantly stimulated by DNA strand breaks creating a unique signal for the modulation of protein functions in DNA repair and cell cycle checkpoint pathways. Here we report that lack of poly(ADP-ribose) synthesis leads to a compromised response to DNA damage. Deficiency in poly(ADP-ribosyl)ation metabolism induces profound cellular sensitivity to DNA-damaging agents, particularly in cells deficient for the protein kinase ataxia telangiectasia mutated (ATM). At the biochemical level, we examined the significance of poly(ADP-ribose) synthesis on the regulation of early DNA damage-induced signaling cascade initiated by ATM. Using potent PARP inhibitors and PARP-1 knock-out cells, we demonstrate a functional interplay between ATM and poly(ADP-ribose) that is important for the phosphorylation of p53, SMC1, and H2AX. For the first time, we demonstrate a functional and physical interaction between the major DSB signaling kinase, ATM and poly(ADP-ribosyl)ation by PARP-1, a key enzyme of chromatin remodeling. This study suggests that poly(ADP-ribose) might serve as a DNA damage sensory molecule that is critical for early DNA damage signaling.  相似文献   

16.
Adriamycin caused significant interphase death in HL-60 cells during six hours of incubation, which was abolished by the poly(ADP-ribose) polymerase inhibitors, 3-aminobenzamide or nicotinamide. Neither agent changed adriamycin uptake by HL-60 cells. Although 3-aminobenzamide did not alter the number of DNA strand breaks caused by adriamycin, it prevented adriamycin-induced depletion of intracellular NAD+ and ATP, and maintained energy charge. These findings suggest that the activation of poly(ADP-ribose) synthesis plays an important role in the adriamycin-induced interphase death of proliferating HL-60 cells.  相似文献   

17.
Poly(ADP-ribose) polymerase is a chromatin enzyme which adds long chains of ADP-ribose to various acceptor proteins in response to DNA strand breaks. Its primary function is unknown; however, a role in DNA repair and radiation resistance has been postulated based largely on experiments with enzyme inhibitors. Recent reports of mutant cell lines, deficient in poly(ADP-ribose) polymerase activity, have supported previous studies with inhibitors, which suggests the involvement of poly(ADP-ribose) polymerase in maintaining baseline levels of sister chromatid exchanges. Mutant cells with even slightly depressed enzyme levels show large elevation of baseline sister chromatid exchanges. Since intracellular poly(ADP-ribose) polymerase levels can vary greatly between different nonmutant cell lines, we surveyed levels of baseline sister chromatid exchange in normal and tumor human cell lines and compared them with endogenous levels of poly(ADP-ribose) polymerase. Despite 10-fold differences in poly(ADP-ribose) polymerase, the baseline level of sister chromatid exchanges remained relatively constant in the different cell lines (0.13 +/- 0.03 SCE/chromosome), with no indication of a protective effect for cells with high levels of the enzyme.  相似文献   

18.
Post-translational poly(ADP-ribosyl)ation has diverse essential functions in the cellular response to DNA damage as it contributes to avid DNA damage detection and assembly of the cellular repair machinery but extensive modification eventually also induces cell death. While there are 17 human poly(ADP-ribose) polymerase (PARP) genes, there is only one poly(ADP-ribose) glycohydrolase (PARG) gene encoding several PARG isoforms located in different subcellular compartments. To investigate the recruitment of PARG isoforms to DNA repair sites we locally introduced DNA damage by laser microirradiation. All PARG isoforms were recruited to DNA damage sites except for a mitochondrial localized PARG fragment. Using PARP knock out cells and PARP inhibitors, we showed that PARG recruitment was only partially dependent on PARP-1 and PAR synthesis, indicating a second, PAR-independent recruitment mechanism. We found that PARG interacts with PCNA, mapped a PCNA binding site and showed that binding to PCNA contributes to PARG recruitment to DNA damage sites. This dual recruitment mode of the only nuclear PARG via the versatile loading platform PCNA and by a PAR dependent mechanism likely contributes to the dynamic regulation of this posttranslational modification and ensures the tight control of the switch between efficient DNA repair and cell death.  相似文献   

19.
ADP-ribose polymers are rapidly synthesized in cell nuclei by the poly(ADP-ribose) polymerases PARP-1 and PARP-2 in response to DNA strand interruptions, using NAD(+) as precursor. The level of induced poly(ADP-ribose) formation is proportional to the level of DNA damage and can be decreased by NAD(+) or PARP deficiency, followed by poor DNA repair and genomic instability. Here we studied the correlation between poly(ADP-ribose) level and DNA strand break repair in lymphoblastoid Raji cells. Poly(ADP-ribose) synthesis was induced by 100 microM H(2)O(2) and intensified by the 1,4-dihydropyridine derivative AV-153. The level of poly(ADP-ribose) in individual cells was analyzed by quantitative in situ immunofluorescence and confirmed in whole-cell extracts by Western blotting, and DNA damage was assessed by alkaline comet assays. Cells showed a approximately 100-fold increase in poly(ADP-ribose) formation during the first 5 min of recovery from H(2)O(2) treatment, followed by a gradual decrease up to 15 min. This synthesis was completely inhibited by the PARP inhibitor NU1025 (100 microM) while the cells treated with AV-153, at non-genotoxic concentrations of 1 nM-10 microM, showed a concentration-dependent increase of poly(ADP-ribose) level up to 130% after the first minute of recovery. The transient increase in poly(ADP-ribose) level was strongly correlated with the speed and efficiency of DNA strand break rejoining (correlation coefficient r > or = 0.92, p<0.05). These results are consistent with the idea that poly(ADP-ribose) formation immediately after genome damage reflects rapid assembly and efficient functioning of repair machinery.  相似文献   

20.
The effect of 3-aminobenzamide (3AB) and benzamide (BZ) (inhibitors of poly(ADP-ribose) synthetase) on radiosensitivity was investigated in normal human fibroblasts and three human cell lines established from tumours with varying degrees of clinical radiocurability. The human tumour cell lines selected were: Ewing's sarcoma, a bone tumour usually considered radiocurable with moderate radiation doses; lung adenocarcinoma, a tumour considered radiocurable with high doses of radiotherapy; and osteosarcoma, a very resistant tumour which is rarely controlled by standard doses of radiotherapy. Poly(ADP-ribose) synthetase inhibitors were added to cultures 2 h prior to irradiation and removed 24 h after. Inhibitors were used at doses producing little or no toxicity in cells. In the presence of these inhibitors, a differential radiosensitization was observed. Ewing's sarcoma cells and normal human fibroblasts were sensitized to an equal extent by either 8 mM 3AB or 4 mM BZ. However, no sensitization was observed at these concentrations in the lung adenocarcinoma cells or osteosarcoma cells. The degree of radiosensitization in vitro by 3AB and BZ correlates well with the clinical radiocurability of these tumours in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号