首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Yang H  Zheng G  Peng X  Qiang B  Yuan J 《FEBS letters》2003,552(2-3):95-98
Until 30 years ago, it had been considered that D-amino acids were excluded from living systems except for D-amino acids in the cell wall of microorganisms. However, D-amino acids, in the form of free amino acids, peptides and proteins, were recently detected in various living organisms from bacteria to mammals. The extensive distribution of bio-functional D-amino acids challenges the current concept of protein synthesis: more attention should be paid to the stereospecificity of the translation machine. Besides aminoacyl-tRNA synthetases, elongation factor Tu and some other mechanisms, D-Tyr-tRNA(Tyr) deacylases provide a novel checkpoint since they specifically recycle misaminoacylated D-Tyr-tRNA(Tyr) and some other D-aminoacyl-tRNAs. Their unique structure represents a new class of tRNA-dependent hydrolase. These unexpected findings have far-reaching implications for our understanding of protein synthesis and its origin.  相似文献   

2.
Trevor Robinson 《Life sciences》1976,19(8):1097-1102
Although there appear to be no exceptions to the rule that proteins are composed solely of the L-isomers of amino acids, D-amino acids and derivatives of them do occur rather widely in living organisms. In some cases they have well-understood functions, but in other cases their occurrence raises interesting questions. Several peptide antibiotics contain D-amino acids (1). The peptido-glycans of Gram-positive bacterial cell walls contain D-glutamic acid, D-alanine, and D-asparagine (2). D-amino acids are also found in animals, chiefly annelids and insects (3). In this paper some aspects of D-amino acids in higher plants will be reviewed.  相似文献   

3.
Homochirality is essential for life. L-Amino acids are exclusively used as substrates for the polymerization and formation of peptides and proteins in living systems. However, d-amino acids, which are enantiomers of L-amino acids, were recently detected in various living organisms in the form of free D-amino acids and D-amino acid residues in peptides and proteins. In particular, D-aspartyl (Asp) residues have been detected in various proteins from diverse tissues of elderly individuals. Here, we describe three important aspects of our research: (i) a method for detecting D-β-Asp at specific sites in particular proteins, (ii) a likely spontaneous mechanism by which Asp residues in proteins invert and isomerize to the D-β-form with age under physiological conditions, (iii) a discussion of factors that favor such a reaction.  相似文献   

4.
Antimicrobial peptides contribute to innate host defense against a number of bacteria and fungal pathogens. Some of antimicrobial synthetic peptides were systemically administered in vivo; however, effective protection has so far not been obtained because the effective dose of peptides in vivo seems to be very high, often close to the toxic level against the host. Alternatively, peptides administered in vivo may be degraded by certain proteases present in serum. In this study, D-amino acids were substituted for the L-amino acids of antimicrobial peptides to circumvent these problems. Initially a peptide (L-peptide) rich in five arginine residues and consisting of an 11-amino acid peptide (residues 32-42) of human granulysin was synthesized. Subsequently, the L-amino acids of the 11-amino acid peptide were replaced partially (D-peptide) or wholly (AD-peptide) with D-amino acids. Activity and stability to proteolysis, in particular, in the serum of antimicrobial peptides with D-amino acid substitutions were examined. Peptides with D-amino acid substitutions were found to lyse bacteria as efficiently as their all-L-amino acid parent, L-peptide. In addition, the peptide composed of L-amino acids was susceptible to trypsin, whereas peptides containing D-amino acid substitutions were highly stable to trypsin treatment. Similarly, the peptide consisting of L-amino acids alone was also susceptible to fetal calf serum (FCS), however, protease inhibitors restored the lowered antimicrobial activity of the FCS-incubated peptide. Thus, D-amino acid substitutions can make antimicrobial peptides resistant to proteolysis, suggesting that the antimicrobial peptides consisting of D-amino acids are potential candidates for clinical therapeutic use.  相似文献   

5.
A major barrier to the use of antimicrobial peptides as antibiotics is the toxicity or ability to lyse eukaryotic cells. In this study, a 26-residue amphipathic α-helical antimicrobial peptide A12L/A20L (Ac-KWKSFLKTFKSLK KTVLHTLLKAISS-amide) was used as the framework to design a series of D- and L-diastereomeric peptides and study the relationships of helicity and biological activities of α-helical antimicrobial peptides. Peptide helicity was measured by circular dichroism spectroscopy and demonstrated to correlate with the hydrophobicity of peptides and the numbers of D-amino acid substitutions. Therapeutic index was used to evaluate the selectivity of peptides against prokaryotic cells. By introducing D-amino acids to replace the original L-amino acids on the non-polar face or the polar face of the helix, the hemolytic activity of peptide analogs have been significantly reduced. Compared to the parent peptide, the therapeutic indices were improved of 44-fold and 22-fold against Gram-negative and Grampositive bacteria, respectively. In addition, D- and L-diastereomeric peptides exhibited lower interaction with zwitterionic eukaryotic membrane and showed the significant membrane damaging effect to bacterial cells. Helicity was proved to play a crucial role on peptide specificity and biological activities. By simply replacing the hydrophobic or the hydrophilic amino acid residues on the non-polar or the polar face of these amphipathic derivatives of the parent peptide with D-amino acids, we demonstrated that this method could have excellent potential for the rational design of antimicrobial peptides with enhanced specificity.  相似文献   

6.
A new method has been devised for the complete hydrolysis of proteins with an extremely low level of racemization of amino acids. Proteins are incubated in 10 M HCl at a low temperature to obtain partial hydrolysis. They are then incubated with pronase and finally with leucine aminopeptidase and peptidyl-D-amino-acid hydrolase from Loligo vulgaris. The proposed method ensures the total hydrolysis of either purified proteins or proteins contained in a crude homogenate of animal or vegetable tissue. In both cases, the racemization of amino acids (expressed as rate of D form/D + L form X 100) was lower than 0.015% for aspartic acid and lower than 0.01% for other amino acids. D-Amino acids released from peptides or proteins were estimated with enzymatic methods based on the use of octopus D-aspartate oxidase or hog kidney D-amino acid oxidase; with these enzymes, 0.05 nmol of a D-amino acid was determined in the presence of up to 20 mumols of a mixture of L-amino acids (ratio %D/D + L = 0.00025). The method allows the determination of D-amino acids either in tissues in which they are present in high concentrations (as human cataract lenses, tooth enamel, etc.) or in those with low enantiomer content (as brain, erythrocytes, etc.). Using the method described, we hydrolyzed several synthetic peptides consisting of D- and L-amino acids and determined the amount of D-amino acids. In addition, we totally hydrolyzed all the nuclear proteins of human cataractous lenses. The amount of D-aspartic acid was 0.026 mumols/mg in lenses of women aged between 71 and 76 years and 0.0256 mumols/mg in lenses of men aged between 55 and 72 years. The D-aspartic acid measured corresponds to about 12% with respect to total aspartic acid.  相似文献   

7.
Recent investigations have shown that a variety of D-amino acids are present in living organisms and that they possibly play important roles in physiological functions in the body. D-Amino acid oxidase (DAO) and D-aspartate oxidase (DDO) are degradative enzymes stereospecific for D-amino acids. They have been identified in various organisms, including mammals and the nematode Caenorhabditis elegans, although the significance of these enzymes and the relevant functions of D-amino acids remain to be elucidated. In this study, we investigated the spatiotemporal localization of C. elegans DAO and DDOs (DDO-1, DDO-2, and DDO-3) and measured the levels of several D- and L-amino acids in wild-type C. elegans and four mutants in which each gene for DAO and the DDOs was partially deleted and thereby inactivated. Furthermore, several phenotypes of these mutant strains were characterized. The results reported in this study indicate that C. elegans DAO and DDOs are involved in egg-laying events and the early development of C. elegans. In particular, DDOs appear to play important roles in the development and maturation of germ cells. This work provides novel and useful insights into the physiological functions of these enzymes and D-amino acids in multicellular organisms.  相似文献   

8.
Dedkova LM  Fahmi NE  Golovine SY  Hecht SM 《Biochemistry》2006,45(51):15541-15551
While numerous biologically active peptides contain D-amino acids, the elaboration of such species is not carried out by ribosomal synthesis. In fact, the bacterial ribosome discriminates strongly against the incorporation of D-amino acids from D-aminoacyl-tRNAs. To permit the incorporation of D-amino acids into proteins using in vitro protein-synthesizing systems, a strategy has been developed to prepare modified ribosomes containing alterations within the peptidyltransferase center and helix 89 of 23S rRNA. S-30 preparations derived from colonies shown to contain ribosomes with altered 23S rRNAs were found to exhibit enhanced tolerance for D-amino acids and to permit the elaboration of proteins containing D-amino acids at predetermined sites. Five specific amino acids in Escherichia coli dihydrofolate reductase and Photinus pyralis luciferase were replaced with D-phenylalanine and D-methionine, and the specific activities of the resulting enzymes were determined.  相似文献   

9.
The understanding of D-amino acid metabolism in higher plants lags far behind that in mammals, for which the biological functions of these unique amino acids have already been elucidated. In this article, we report on the biochemical behavior of D-amino acids (particularly D-Asp) and relevant metabolic enzymes in Arabidopsis thaliana. During germination and growth of the plant, a transient increase in D-Asp levels was observed, suggesting that D-Asp is synthesized in the plant. Administration of D-Asp suppressed growth, although the inhibitory mechanism responsible for this remains to be clarified. Exogenous D-Asp was efficiently incorporated and metabolized, and was converted to other D-amino acids (D-Glu and D-Ala). We then studied the related metabolic enzymes, and consequently cloned and characterized A. thaliana D-amino acid aminotransferase, which is presumably involved in the metabolism of D-Asp in the plant by catalyzing transamination between D-amino acids. This is the first report of cDNA cloning and functional characterization of a D-amino acid aminotransferase in eukaryotes. The results presented here provide important information for understanding the significance of D-amino acids in the metabolism of higher plants.  相似文献   

10.
Summary The amino acid sequence of D-amino acid oxidase from Rhodotorula gracilis was determined by automated Edman degradation of peptides generated by enzymatic and chemical cleavage. The enzyme monomer contains 368 amino acid residues and its sequence is homologous to that of other known D-amino acid oxidases. Six highly conserved regions appear to have a specific role in binding of coenzyme FAD, in active site topology and in peroxisomal targeting. Moreover, Rhodotorula gracilis D-amino acid oxidase contains a region with a cluster of basic amino acids, probably exposed to solvent, which is absent in other D-amino acid oxidases.  相似文献   

11.
Zaia DA 《Amino acids》2004,27(1):113-118
Minerals more readily adsorb amino acids with charged R groups than uncharged R groups, so that the incorporation of amino acids with charged R groups into peptides would be more frequent than for amino acids with uncharged R groups. However, 74% of the amino acids in the proteins of modern organisms contain uncharged R groups. Thus, what could have been the mechanisms that produced peptides/proteins with more amino acids with uncharged R groups than precursors with charged R groups? Should we expect the composition of amino acids adsorbed on minerals to be similar to those of present proteins? Was the adsorption of amino acids on minerals important for the origin of life? The lipid world offers an alternative view of origin of life. Liposomes contributed to elongation of peptides as well as select hydrophobic amino acids and peptides. These experiments could be showing the mechanism, which hydrophobic amino acids have been selected. However, liposomes have no influence on the stereoselectivity in the oligomerization of amino acids. In the present paper, several other mechanisms are also discussed that could produce peptides with a greater proportion of amino acids with uncharged R groups.  相似文献   

12.
The present paper describes an updated knowledge and status on Marfey's reagent (MR), 1-fluoro-2,4-dinitrophenyl-5-L-alanine amide (FDNP-L-Ala-NH(2)). The reagent is used for pre-column derivatization of amino acids followed by HPLC separation of the diastereomers so formed. Emphasis is put on the design and application of structural variants which are synthesized by introducing different (other than L-Ala-NH(2)) L- and D-amino acid amides and amino acids in the 1,5-difluoro-2,4-dinitro benzene (DFDNB) moiety, as the chiral auxiliary. Advantages, disadvantages, the required precautions and suitability of the approach for the separation of multi component mixtures of DL-amino acids are assessed. Use of two dimensional (2D) techniques, in particular online HPLC in combination with various mass spectrometry techniques is discussed as well as methods designated 'advanced Marfey's method' and 'C(3) Marfey's method'. Application of MR and its variants for the determination of the stereochemistry of protein and non-protein amino acids in bioactive natural products isolated from living organisms (bacteria including blue-green algae, filamentous fungi, plants, marine sponges, invertebrates and vertebrates), in physiological samples including human beings, and in biologically relevant synthetic peptides are presented. In an outlook future applications are envisaged.  相似文献   

13.
D-Amino acids in mammals and their diagnostic value   总被引:4,自引:0,他引:4  
Substantial amounts of D-amino acids are present in mammalian tissues; their function, origin and relationship between pathophysiological processes have been of great interest over the last two decades. In the present article, analytical methods including chromatographic, electrophoretic and enzymatic methods to determine D-amino acids in mammalian tissues are reviewed, and the distribution of these D-amino acids in mammals is discussed. An overview of the function, origin and relationship between the amino acids and pathophysiological processes is also given.  相似文献   

14.
The post-translational modification of an L- to a D-amino acid has been documented in relatively few gene products, mostly in small peptides under 10 amino acids in length. In this report, we demonstrate that a 46-amino acid polypeptide toxin has one D-phenylalanine at position 44, and that the epimerization from an L-Phe to a D-Phe has a dramatic effect on the excitatory effects of the peptide. In one electrophysiological assay carried out, the D-Phe-containing peptide was extremely potent, whereas the unmodified polypeptide had no biological activity, demonstrating that the chirality of the post-translationally modified amino acid is functionally significant. The peptide toxin analyzed, r11a, belongs to the I-gene superfamily of conotoxins that has four disulfide cross-links. The D-Phe in r11a is at the third amino acid from the C terminus, the same relative position from the C-terminal end as the d-amino acid in omega-agatoxin TK from a spider, an unrelated peptide. Thus, although post-translational amino acid isomerization appears to have no strong specificity for the chemical nature of the amino acid side chain, the few peptides where this modification has been established suggest that there may be favored positions near the N or C terminus that are preferential sites for isomerization to a D-amino acid.  相似文献   

15.
Macroalgae are a diverse group of marine organisms that have developed complex and unique metabolic pathways to ensure survival in highly competitive marine environments. As a result, these organisms have been targeted for mining of natural biologically active components. The exploration of marine organisms has revealed numerous bioactive compounds that are proteinaceous in nature. These include proteins, linear peptides, cyclic peptides and depsipeptides, peptide derivatives, amino acids, and amino acid–like components. Furthermore, some species of macroalgae have been shown to contain significant levels of protein. While some protein‐derived bioactive peptides have been characterized from macroalgae, macroalgal proteins currently still represent good candidate raw materials for biofunctional peptide mining. This review will provide an overview of the important bioactive amino‐acid‐containing compounds that have been identified in macroalgae. Moreover, the potential of macroalgal proteins as substrates for the generation of biofunctional peptides for utilization as functional foods to provide specific health benefits will be discussed.  相似文献   

16.
The aim of our present research is to produce mutant forms of D-amino acid oxidase from Rhodotorula gracilis in order to determine D-amino acid content in different biological samples. During the past few years, our group has produced yeast D-amino acid oxidase variants with altered substrate specificity (e.g., active on acidic, or hydrophobic, or on all D-amino acids) both by rational design and directed evolution methods. Now, the kinetic constants for a number of amino acids (even for unnatural ones) of the most relevant D-amino acid oxidase variants have been investigated. This information constitutes the basis for considering potential analytical applications in this important field.  相似文献   

17.
Detection of D-amino acids in natural peptides has been, and remains a challenging task, as peptidyl isomerization is a peculiar and subtle posttranslational modification that does not induce any change in primary sequence or in physicochemical properties of the molecule such as molecular mass or pI. Therefore, the presence of a D-amino acid residue in a peptide chain is generally transparent to classical methods of peptide analysis (electrophoresis, chromatography, mass spectrometry, molecular biology). In this article, we will review the various experimental strategies and analytical techniques, which have been used to characterize and to study D-amino acid containing peptides in crustaceans.  相似文献   

18.
It was long believed that D-amino acids were either unnatural isomers or laboratorial artifacts and that the important functions of amino acids were exerted only by l-amino acids. However, recent investigations have shown that a variety of D-amino acids are present in mammals and that they play important roles in physiological functions in the body. Among the free d-amino acids that have been identified in mammals, D-aspartate (D-Asp) has been shown to play a crucial role in the neuroendocrine and endocrine systems as well as in the central nervous system. Here, we present an overview of recent studies of free D-Asp, focusing on the analytical methods in real biological matrices, expression and localization in tissues and cells, biological and physiological activities, biosynthesis, degradation, cellular transport, and possible relevance to disease. In addition to frequently used techniques for the enantiomeric determination of amino acids, including high-performance liquid chromatography and enzymatic methods, the recent development of analytical methods is also described.  相似文献   

19.
Retro inverso (RI) analogues of antigenic synthetic peptides, which are made of D-amino acids with a reversed sequence, may mimic the side chain conformation of natural all-L peptides. RI analogues were cross-reactively recognized by antibodies and CD4+ T cells reactive against natural all-L synthetic peptides or native proteins in animal models. Since peptides containing D-amino acids are highly resistant to proteolytic digestion, cross-reactive RI analogues may be ideal for in vivo administration to humans as synthetic peptide vaccines or immunomodulators. B13 is an immunodominant tandemly repetitive protein from Trypanosoma cruzi, a protozoan parasite that is the causative antigen of Chagas' disease. In order to test whether RI peptides can be recognized by human antibody and T cells, we synthesized two all-L peptides containing the immunodominant B (S12) and T (S15.7) cell epitopes of B13 protein from T. cruzi and their retro (R, made of all-L amino acids with reversed sequence), inverso (I, made of all-D amino acids) and RI analogues. Recognition of peptides S12, S12-R, S12-I and S12-RI by anti-B13 antibodies in sera from T. cruzi-infected patients was tested in competitive ELISA assay with recombinant B13 protein as the solid phase antigen. Peptides S15.7 and its topological analogues were tested at the 10-50 microM range in proliferation assays on peripheral blood mononuclear cells (PBMC) from S15.7-responder individuals. The median percentage inhibition of B13 ELISA for peptide S12 was 94%, while those of the RI analogue or the other topological analogues were below 12%. While peptide S15.7 was recognized by PBMC from all subjects tested, none recognized the RI analogue of the S15.7 T cell epitope. Our results indicate that cross-reactivity with natural epitopes is not an universal property of RI analogues. This may limit the general applicability of the use of cross-reactive RI analogues as human vaccines and immunotherapeutic agents.  相似文献   

20.
Summary Unambiguous methodologies were developed for the accurate and reproducible determination of specific D-amino acids in the physiological fluids of common laboratory rodents. Depending on the strain of rodent and the type of amino acid examined, excreted D-amino acids ranged from the low percent levels to over 40 percent of the total specific amino acid level. Relative plasma levels tended to be considerably lower, typically an order of magnitude less. A number of factors were found to alter the relative amounts of excreted D-amino acids. This included: diet, age, pregnancy, advanced cancer, and antibiotics. The two factors that seemed to result in substantially lower levels of excreted D-amino acids were fasting and young age. Pregnancy was the only factor that consistently resulted in higher relative D-amino acid excretion. Much of the observed data are believed to be related to the efficiency with which the kidney reabsorbs L-amino acids. No claims are made as to the meaning and/or importance of free D-amino acids in regards to pathology, age, clinical usefulness and so forth. However, a knowledge of normal D-amino acid levels and dynamics is necessary before it is possible to identify perturbations caused by either natural or pathological conditions. The techniques are now available that should allow these topics to be addressed properly.On leave from Kyungpook National University in Korea.On leave from Institute of Physical Sciences, Polish Academy of Sciences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号