首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The activity of thylakoid protein kinase and the regulation of excitation energy distribution between photosystems I and II was examined during chloroplast biogenesis in light-grown Triticum aestivum (wheat) leaves. The specific activity of the thylakoid protein kinase decreased some six-fold during development from the young plastids at the base of the 7-d-old leaf to the mature chloroplasts at the leaf tip. Appreciable activity was also detected in plastids isolated from etiolated leaves. In mature chloroplasts the majority of phosphate was incorporated into the Mr=26,000 apo-proteins of the light-harvesting chlorophyll a/b-protein complex (LHCP). However, at early stages of chloroplast development and in the etioplast, the phosphate was predominantly incorporated into a polypeptide of Mr=9,000 dalton. Immature thylakoids, isolated from the base of the leaf, had relatively low concentrations of LHCP and could perform a State 1-State 2 transition, as demonstrated by ATP-induced quenching of photosystem II fluorescence. Analyses of photosystem I and photosystem II fluorescence-induction curves from intact leaf tissue demonstrated that this transition occurs in vivo at early stages of leaf development and, therefore, may play an important role in regulating energy transduction during chloroplast biogenesis.  相似文献   

2.
Cyanobacteria are oxygenic phototrophic prokaryotes and are considered to be the ancestors of chloroplasts. Their photosynthetic machinery is functionally equivalent in terms of primary photochemistry and photosynthetic electron transport. Fluorescence measurements and other techniques indicate that cyanobacteria, like plants, are capable of redirecting pathways of excitation energy transfer from light harvesting antennae to both photosystems. Cyanobacterial cells can reach two energetically different states, which are defined as “State 1” (obtained after preferential excitation of photosystem I) and “State 2” (preferential excitation of photosystem II). These states can be distinguished by static and time resolved fluorescence techniques. One of the most important conclusions reached so far is that the presence of both photosystems, as well as certain antenna components, are necessary for state transitions to occur. Spectroscopic evidence suggests that changes in the coupling state of the light harvesting antenna complexes (the phycobilisomes) to both photosystems occur during state transitions. The finding that the phycobilisome complexes are highly mobile on the surface of the thylakoid membrane (the mode of interaction with the thylakoid membrane is essentially unknown), has led to the proposal that they are in dynamic equilibrium with both photosystems and regulation of energy transfer is mediated by changes in affinity for either photosystem.  相似文献   

3.
In photosynthesis in chloroplasts, control of thylakoid protein phosphorylation by redox state of inter-photosystem electron carriers makes distribution of absorbed excitation energy between the two photosystems self-regulating. During operation of this regulatory mechanism, reduction of plastoquinone activates a thylakoid protein kinase which phosphorylates the light-harvesting complex LHC II, causing a change in protein recognition that results in redistribution of energy to photosystem I at the expense of photosystem II, thus tending to oxidise the reduced plastoquinone pool. These events correspond to the transition from light-state 1 to light-state 2. The reverse transition (to light-state 1) is initiated by transient oxidation of plastoquinone, inactivation of the LHC II kinase, and return of dephosphorylated LHC II from photosystem I to photosystem II, supplying excitation energy to photosystem II and thereby reducing plastoquinone. State 1-state 2 transitions therefore operate by means of redox control of reversible, post-translational modification of pre-existing proteins. A balance in the rates of light utilization by photosystem I and photosystem II can also be achieved, on longer time-scales and between wider limits, by adjustment of the relative quantities, or stoichiometry, of photosystem I and photosystem II. Recent evidence suggests that adjustment of photosystem stoichiometry is also a response to perturbation of the redox state of inter-photosystem electron carriers, and involves specific redox control of de novo protein synthesis, assembly, and breakdown. It is therefore suggested that the same redox sensor initiates these different adaptations by control of gene expression at different levels, according to the time-scale and amplitude of the response. This integrated feedback control may serve to maintain redox homeostasis, and, as a result, quantum yield. Evidence for the components required by such systems is discussed.  相似文献   

4.
The flexible association of the light harvesting complex II (LHCII) to photosystem (PS) I and PSII to balance their excitation is a major short-term acclimation process of the thylakoid membrane, together with the thermal dissipation of excess absorbed energy, reflected in non-photochemical quenching of chlorophyll fluorescence (NPQ). In Pisum sativum, the leaf includes two main photosynthetic parts, the basal stipules and the leaflets. Since the stipules are less efficient in carbon fixation than leaflets, the adjustments of the thylakoid system, which safeguard the photosynthetic membrane against photodamage, were analysed. As compared to leaflets, the stipules experienced a decay in PSII photochemical activity. The supramolecular organization of photosystems in stipules showed a more conspicuous accumulation of large PSII-LHCII supercomplexes in the grana, but also a tendency to retain the PSI-LHCI-LHCII state transition complex and the PSI-LHCI-PSII-LHCII megacomplexes probably located at the interface between appressed and stroma-exposed membranes. As a consequence, stipules had a lower capacity to perform state transitions and the overall thylakoid architecture was less structurally flexible and ordered than in leaflets. Yet, stipules proved to be quite efficient in regulating the redox state of the electron transport chain and more capable of inducing NPQ than leaflets. It is proposed that, in spite of a relatively static thylakoid arrangement, LHCII interaction with both photosystems in megacomplexes can contribute to a regulated electron flow.  相似文献   

5.
W.S. Chow  A. Telfer  D.J. Chapman  J. Barber 《BBA》1981,638(1):60-68
By using chlorophyll fluorescence, a study has been made of changes in spillover of excitation energy from Photosystem (PS) II to PS I associated with the State 1–State 2 transition in intact pea and barley leaves and in isolated envelope-free chloroplasts treated with ATP. (1) In pea leaves, illumination with light preferentially absorbed by PS II (Light 2) led to a condition of maximum spillover (state 2) while light preferentially absorbed by PS I induced minimum spillover condition (State 1) as judged from the redox state of Q and low-temperature emission spectra. The State 1–State 2 transitions took several minutes to occur, with the time increasing when the temperature was lowered from 19 to 6°C. (2) In contrast to the wild type, leaves of a chlorophyll b-less mutant barley did not exhibit a State 1–State 2 transition, suggesting the involvement of the light-harvesting chlorophyll ab-protein complex in spillover changes in higher plants. (3) Spillover in isolated pea chloroplasts was increased by treatment with ATP either (a) in Light 2 in the absence of an electron acceptor or (b) in the dark in the presence of NADPH and ferredoxin. These observations can be interpreted in terms of the model that a more reduced state of plastoquinone activates the protein kinase which catalyzes phosphorylation of the light-harvesting chlorophyll ab-protein complex (Allen, J.F., Bennett, J., Steinback, K.E. and Arntzen, C.J. (1981). Nature 291, 25–29). This process was found to be very temperature sensitive. (4) Pea chloroplasts illuminated in the presence of ATP seemed to exhibit a slight decrease in the degree of thylakoid stacking, and an increased intermixing of the two photosystems. (5) The possible mechanism by which protein phosphorylation regulates the State 1–State 2 changes in intact leaves is presented in terms of changes in the spatial relationship of two photosystems resulting from alteration in membrane organization.  相似文献   

6.
植物光合机构的状态转换   总被引:9,自引:0,他引:9  
植物光合机构的状态转换是一种通过光系统Ⅱ的捕光天线色素蛋白复合体(LHCⅡ)的可逆磷酸化调节激发能在两个光系统间的分配来适应环境中光质等短期变化的机制.一般植物光合机构的LHCⅡ磷酸化主要受电子递体质醌和细胞色素b6f复合体氧化还原状态的调节,从而影响其在两种光系统间的移动。植物光合机构的状态转换也可以通过两种光系统相互接近导致激发能满溢来平衡两个光系统的激发能分配。外界离子浓度骤变可以引起盐藻LHCⅡ磷酸化,其调节过程与电子递体的氧化还原状态无关。绿藻的状态转换可以调节细胞内的ATP供求关系。  相似文献   

7.
Li D  Xie J  Zhao J  Xia A  Li D  Gong Y 《Biochimica et biophysica acta》2004,1608(2-3):114-121
State transitions induced by light and redox were investigated by observing the 77 K fluorescence spectra for the intact cells of Spirulina platensis. To clarify if phycobilisomes (PBSs) take part in the state transition, the contributions of PBSs to light-induced state transition were studied in untreated cells and the cells treated by betaine which fixed PBSs firmly on the thylakoid membranes. It was observed that the betaine-treated cells did not show any light-induced state transition. This result definitely confirmed that the light-induced excitation energy regulation between the two photosystems is mainly dependent on a spatial movement of PBSs on the thylakoid membranes, which makes PBS cores partially decoupled from photosystem II (PSII) while PBS rods more strongly coupled with photosystem I (PSI) during the transition from state 1 to state 2. On the other hand, an energy exchange between the two photosystems was observed in both untreated and betaine-treated cells during redox-induced state transition. These observations suggested that two different mechanisms were involved in the light-induced state transition and the redox-induced one. The former involves only a physical movement of PBSs, while the latter involves not only the movement of PBS but also energy spillover from PSII to PSI. A model for light-induced state transition was proposed based on the current results as well as well known knowledge.  相似文献   

8.
The reversibility of nitrite-induced inhibition in relation to energy distribution between the two photosystems was studied in spinach thylakoid membranes. Measurements of electron transfer rate catalyzed by photosystem I (PS I) and photosystem II (PS II), chlorophyll a (Chl a ) fluorescence induction kinetics, S2 state multiline spectra, and room temperature electron paramagnetic resonance (EPR) signals indicated that nitrite anions bind PS II in two ways: dissociable (loose) and non-dissociable (tight). The inhibition caused by the dissociable binding was reversible in washed (nitrite-treated samples washed with nitrite-free medium) samples, while the inhibition caused by the non-dissociable binding was irreversible. At 77 K, an increase in absorption cross section of PS I (as inferred from the excitation spectra of Chl a fluorescence) and a decrease in absorption cross section of PS II in nitrite-treated sample when compared with sample washed with nitrite-free medium and control sample suggested that nitrite plays a role in regulating the distribution of absorbed excitation energy between the two photosystems. We propose, for the first time, that the removal of loosely bound nitrite leads to migration of light-harvesting complex II back to the PS II, and thus the mode of binding of nitrite regulates the extent of migration of antenna molecules between the two photosystems.  相似文献   

9.
Weak red light-induced changes in chlorophyll fluorescence parameters and in the distribution of PS I and PS II in thylakoid membranes were measured in wheat leaves to investigate effective ways to alter the excitation energy distribution between the two photosystems during state transition in vivo. Both the chlorophyll fluorescence parameter Fm/Fo and F685/F735, the ratio of fluorescence yields of the two photosystems at low temperature (77 K), decreased when wheat leaves were illuminated by weak red light of 640 nm, however, Fm/Fo decreased to its minimum in a shorter time than F685/F735. When Photosystem (PS II) thylakoid (BBY) membranes from adequately dark-adapted leaves (control) and from red light-illuminated leaves were subjected to SDS-polyacrylamide gel electrophoresis under mildly denaturing conditions, PS I was almost absent in the control, but was present in the membranes from the leaves preilluminated with the weak red light. In consonance with this result, the content of Cu, measured by means of the energy dispersive X-ray microanalysis (EDX), increased in the central region, but decreased in the margin of the grana stacks from the leaves preilluminated by the red light as compared with the control. It is therefore suggested that: (i) both spillover and absorption cross-section changes are effective ways to alter the excitation energy distribution between the two photosystems during state transitions in vivo, and the change in spillover has a quicker response to the unbalanced light absorption of the two photosystems than the change in light absorption cross-section, and (ii) the migration of PS I towards the central region of grana stack during the transition to state 2 leads to the enhancement of excitation energy spillover from PS II to PS I.  相似文献   

10.
In photosynthesis in chloroplasts and cyanobacteria, redox control of thylakoid protein phosphorylation regulates distribution of absorbed excitation energy between the two photosystems. When electron transfer through chloroplast photosystem II (PSII) proceeds at a rate higher than that through photosystem I (PSI), chemical reduction of a redox sensor activates a thylakoid protein kinase that catalyses phosphorylation of light-harvesting complex II (LHCII). Phosphorylation of LHCII increases its affinity for PSI and thus redistributes light-harvesting chlorophyll to PSI at the expense of PSII. This short-term redox signalling pathway acts by means of reversible, post-translational modification of pre-existing proteins. A long-term equalisation of the rates of light utilisation by PSI and PSII also occurs: by means of adjustment of the stoichiometry of PSI and PSII. It is likely that the same redox sensor controls both state transitions and photosystem stoichiometry. A specific mechanism for integration of these short- and long-term adaptations is proposed. Recent evidence shows that phosphorylation of LHCII causes a change in its 3-D structure, which implies that the mechanism of state transitions in chloroplasts involves control of recognition of PSI and PSII by LHCII. The distribution of LHCII between PSII and PSI is therefore determined by the higher relative affinity of phospho-LHCII for PSI, with lateral movement of the two forms of the LHCII being simply a result of their diffusion within the membrane plane. Phosphorylation-induced dissociation of LHCII trimers may induce lateral movement of monomeric phospho-LHCII, which binds preferentially to PSI. After dephosphorylation, monomeric, unphosphorylated LHCII may trimerize at the periphery of PSII.  相似文献   

11.
John Biggins 《BBA》1983,724(1):111-117
The kinetics of photooxidation and reduction of cytochrome f were examined spectrophotometrically in the red alga Porphyridium cruentum in light State 1 and light State 2. Experiments were performed on intact cells that had been chemically fixed and stabilized in the light states. The cytochrome f turnover was measured during conditions of linear electron transport driven by both photosystems and during several cyclic reactions mediated by the long-wavelength Photosystem (PS) I. The data show that the rate of photooxidation of cytochrome f increased in State 2 when the cells were activated by subsaturating intensities of green light absorbed primarily by the phycobilisome. No differences in kinetics were found between algae in State 1 or State 2 when they were activated by light absorbed primarily by the chlorophyll of PS I. The results confirm that changes in energy distribution between the two photosystems occur as a result of the light state transition and verify that the redistribution of excitation results in the predicted changes in electron transport.  相似文献   

12.
This article presents an investigation of the energy migration dynamics in intact cells of the unicellular photosynthetic cryptophyte Chroomonas CCMP270 by steady-state and time-resolved fluorescence measurements. By kinetic modeling of the fluorescence data on chlorophyll and phycocyanin 645 excitation (at 400 and 582 nm respectively), it has been possible to show the excited state energy distribution in the photosynthetic antenna of this alga. Excitation energy from phycocyanin 645 is distributed nearly equally between photosystem I and photosystem II with very high efficiency on a 100-ps timescale. The excitation energy trapping times for both photosystem I (∼30 ps) and photosystem I (200 and ∼540 ps) correspond well to those obtained from experiments on isolated photosystems. The results are compared with previous results for another cryptophyte species, Rhodomonas CS24, and suggest a similar membrane organization for the cryptophytes with the phycobiliproteins tightly packed in the thylakoid lumen around the periphery of the photosystems.  相似文献   

13.
用“冀北1号”和“丰收黄”两个品种大豆的叶绿体膜,测定了不同 Mg~(2+)浓度对它们的光诱导 chla 可变荧光及电泳速度的影响。虽然将这两种叶绿体膜悬于相同的低盐介质中,其光诱导可变荧光产率彼此不同,但它们的可变荧光产率与电泳迁移率则是彼此相关的,在这两种大豆的叶绿体膜中,Mg~(2+)诱导荧光产率增加和电泳迁移率下降的浓度曲线均呈现出类似的动力学变化。Mg~(2+)诱导上述两种现象所需要的最适浓度亦大抵相同。这些实验结果说明:Mg~(2+)诱导激发能在两个光系统之间分配的改变与其诱导类囊体膜表面静电性质的变化是密切相关的。文中讨论了膜表面蛋白质的羧基在 Mg~(2+)诱导效应中的可能作用。  相似文献   

14.
Chloroplasts were isolated from spinach cultured in calcium-deficient, cerium-chloride-administered calcium-present Hoagland’s media or that of calcium-deficient Hoagland’s media and demonstrated the effects of cerium on distribution of light energy between photosystems II and I and photochemical activities of spinach chloroplast grown in calcium-deficient media. It was observed that calcium deprivation significantly inhibited light absorption, energy transfer from LHCII to photosystemII, excitation energy distribution from PSI to PSII, and transformation from light energy to electron energy and oxygen evolution of chloroplasts. However, cerium treatment to calcium-deficient chloroplasts could obviously improve light absorption and excitation energy distribution from photosystem I to photosystem II and increase activity of whole chain electron transport, photosystems II and I DCPIP photoreduction, and oxygen evolution of chloroplasts. The results suggested that cerium under calcium deficiency condition could substitute for calcium in chloroplasts, maintain the stability of chloroplast membrane, and improve photosynthesis of spinach chloroplast, but the mechanisms still need further study.  相似文献   

15.
Chloroplasts are central to the provision of energy for green plants. Their photosynthetic membrane consists of two major complexes converting sunlight: photosystem I (PSI) and photosystem II (PSII). The energy flow toward both photosystems is regulated by light-harvesting complex II (LHCII), which after phosphorylation can move from PSII to PSI in the so-called state 1 to state 2 transition and can move back to PSII after dephosphorylation. To investigate the changes of PSI and PSII during state transitions, we studied the structures and frequencies of all major membrane complexes from Arabidopsis thaliana chloroplasts at conditions favoring either state 1 or state 2. We solubilized thylakoid membranes with digitonin and analyzed the complete set of complexes immediately after solubilization by electron microscopy and image analysis. Classification indicated the presence of a PSI-LHCII supercomplex consisting of one PSI-LHCI complex and one LHCII trimer, which was more abundant in state 2 conditions. The presence of LHCII was confirmed by excitation spectra of the PSI emission of membranes in state 1 or state 2. The PSI-LHCII complex could be averaged with a resolution of 16 A, showing that LHCII has a specific binding site at the PSI-A, -H, -L, and -K subunits.  相似文献   

16.
The functions of the light-harvesting complex of photosystem II (LHC- II) have been studied using thylakoids from intermittent-light-grown (IML) plants, which are deficient in this complex. These chloroplasts have no grana stacks and only limited lamellar appression in situ. In vitro the thylakoids showed limited but significant Mg2+-induced membrane appression and a clear segregation of membrane particles into such regions. This observation, together with the immunological detection of small quantities of LHC-II apoproteins, suggests that the molecular mechanism of appression may be similar to the more extensive thylakoid stacking seen in normal chloroplasts and involve LHC-II polypeptides directly. To study LHC-II function directly, a sonication- freeze-thaw procedure was developed for controlled insertion of purified LHC-II into IML membranes. Incorporation was demonstrated by density gradient centrifugation, antibody agglutination tests, and freeze-fracture electron microscopy. The reconstituted membranes, unlike the parent IML membranes, exhibited both extensive membrane appression and increased room temperature fluorescence in the presence of cations, and a decreased photosystem I activity at low light intensity. These membranes thus mimic normal chloroplasts in this regard, suggesting that the incorporated LHC-II interacts with photosystem II centers in IML membranes and exerts a direct role in the regulation of excitation energy distribution between the two photosystems.  相似文献   

17.
Chloroplasts of the CD3 wheat mutant were deficient primarily in chlorophyll of light harvesting pigment proteins (LHPP) 1 and 2 and CP1a. The reduced level of protein associated with chlorophyll of LHPP1 and LHPP2 and the reduced level of low molecular weight polypeptides between 23 and 29 kilodaltons confirmed that the CD3 mutant was deficient in the LHPP complex. The high fluorescence emission ratio at 740 (F740) to 686 nanometers (F686) observed from chloroplasts of normal wheat following light induced phosphorylation of the LHPP complex was not noted from mutant chloroplasts. The long wavelength peak fluorescence emission (F740) was shifted to a shorter wavelength peak (F725) and was reduced in intensity compared to that of normal wheat thylakoids. The ratio of variable fluorescence to maximum fluorescence, a measure of PSII photochemical efficiency, was the same for the normal wheat and mutant leaves. The ratios of uncoupled photosystem I/photosystem II electron transport rates for mutant and normal wheat chloroplasts were similar at saturating light suggesting that absorbed excitation energy was distributed to the two photosystem reaction centers of the mutant in a similar manner as in the normal wheat. Proteins of the LHPP complex were differentially phosphorylated by action of a membrane protein kinase when both normal wheat and CD3 mutant thylakoids were irradiated without an electron transport chain acceptor. Even though the F740/F686 ratio was low in mutant thylakoids, the phosphorylation of the 27-kilodalton LHPP polypeptide was consistent with the mutant being in a state II condition. The data gave rise to the suggestion that the F740/F686 ratio might not indicate excitation energy distribution to the two photosystems in the mutant.  相似文献   

18.
The mechanism of excitation energy redistribution (state transition) in organisms containing phycobilins is reviewed. Recent measurements using time-resolved fluorescence spectroscopy in the picosecond range confirm that the state transition in cyanobacteria and red algae is controlled by changes in the kinetics of energy transfer from PS 2 to PS 1 (spillover) rather than by physical dislocation of the phycobilisome and reassociation between the two photosystems (mobile antenna model). Contrary to the analogous situation in higher plants, there is no compelling evidence for the involvement of a protein phosphorylation event in the rapid time range of the state transition, but a variety of data indicate that a membrane conformational change occurs that might change the relative distance between, and/or orientation of the two photosystems within the thylakoid. The state transition is most probably initiated by the redox state of the intersystem electron transport chain, and the conversion to state 1 is driven by coupled PS1 cyclic electron transport. The cryptomonads also undergo wavelength dependent changes in excitation energy distribution by a mechanism very similar to that observed in the red algae and cyanobacteria. However, the changes in energy distribution in this group are most likely related to a photoprotection mechanism for PS2 rather than to a state transition.Abbreviations APC allophycocyanin - EF exoplasmic face - PE phycoerythrin - PC phycocyanin - PF protoplasmic face - LHC light harvesting chlorophyll a/b protein - PBS phycobilisome - LD linear dichroism - RC reaction center  相似文献   

19.
The features of the two types of short-term light-adaptations of photosynthetic apparatus, State 1/State 2 transitions, and non-photochemical fluorescence quenching of phycobilisomes (PBS) by orange carotene-protein (OCP) were compared in the cyanobacterium Synechocystis sp. PCC 6803 wild type, CK pigment mutant lacking phycocyanin, and PAL mutant totally devoid of phycobiliproteins. The permanent presence of PBS-specific peaks in the in situ action spectra of photosystem I (PSI) and photosystem II (PSII), as well as in the 77 K fluorescence excitation spectra for chlorophyll emission at 690 nm (PSII) and 725 nm (PSI) showed that PBS are constitutive antenna complexes of both photosystems. The mutant strains compensated the lack of phycobiliproteins by higher PSII content and by intensification of photosynthetic linear electron transfer. The detectable changes of energy migration from PBS to the PSI and PSII in the Synechocystis wild type and the CK mutant in State 1 and State 2 according to the fluorescence excitation spectra measurements were not registered. The constant level of fluorescence emission of PSI during State 1/State 2 transitions and simultaneous increase of chlorophyll fluorescence emission of PSII in State 1 in Synechocystis PAL mutant allowed to propose that spillover is an unlikely mechanism of state transitions. Blue–green light absorbed by OCP diminished the rout of energy from PBS to PSI while energy migration from PBS to PSII was less influenced. Therefore, the main role of OCP-induced quenching of PBS is the limitation of PSI activity and cyclic electron transport under relatively high light conditions.  相似文献   

20.
Jajoo  A.  Bharti  S.  Mohanty  P. 《Photosynthetica》2001,39(3):321-337
Ionic environment is important in regulating photosynthetic reactions. The roles of cations, Mn2+, Mg2+, Ca2+, Na+, and K+ as cofactors in electron transport, energy transfer, phosphorylation, and carbon assimilation are better known than the roles of anions, except for chloride and bicarbonate. Only a limited information exists on the roles and effects of nitri formate, sulphate, and phosphate. In this review, we evaluate and highlight the roles of some specific anions on electron transport as well as on excitation energy transfer processes in photosynthesis. Anions exert significant effects on thyla membrane conformation and membrane fluidity, possibly by redistributing the thylakoid membrane surface charges. The anion/cation induced phase transitions in the hydrophilic domains of the thylakoid membranes are probably responsible for the various structural and co-related functional changes under stress. Anions are also important in regulation of energy distribution between the two photosystems. Anions do not only divert more energy from photosystem (PS) 2 to PS1, but can also reverse the effect of cations on energy distribution in a valence-dependent manner. Anions affect also the structure of the photosynthetic apparatus and excitation energy distribution between the two photosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号