首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Pyruvate kinase of Alaskan king-crab leg muscle exists in two kinetically distinct forms, each of which displays a different temperature-dependence in the Km for phosphoenolpyruvate. 2. A `cold' variant of the enzyme has hyperbolic kinetics and exhibits a minimal Km for substrate at 5°. At physiological concentrations of phosphoenolpyruvate the `cold' enzyme is active only below 10°. A `warm' pyruvate kinase has a minimal Km for substrate at about 12°. This enzyme displays sigmoidal kinetics and is likely to be inactive, at physiological substrate concentrations, at temperatures below 9°. 3. The combined activities of these two pyruvate kinases yield highly temperature-independent rates of catalysis, at physiological substrate concentrations, over the range of habitat temperatures encountered by the organism, namely 4–12°. 4. The two variants of pyruvate kinase do not appear to be isoenzymes in the conventional sense. Electrophoretic and electrofocus analyses revealed only single peaks of activity. 5. The results suggest that the `warm' pyruvate kinase and the `cold' pyruvate kinase are formed by a temperature-dependent interconversion of one protein species. This interconversion has major adaptive significance: as the temperature is lowered the `warm' enzyme is converted into the `cold' enzyme; the opposite situation obtains when the temperature is raised. Temperature changes thus mimic the effects noted for fructose 1,6-diphosphate on certain mammalian pyruvate kinases.  相似文献   

2.
The regulatory mechanism of rabbit muscle pyruvate kinase has been studied as a function of temperature in conjunction with phenylalanine, the allosteric inhibitor. The inhibitory effect of phenylalanine is modulated by temperature. At low temperatures, the presence of phenylalanine is almost inconsequential, but as the temperature increases so does the phenylalanine-dependent inhibition of the kinetic activity. In addition, the presence of phenylalanine induces cooperativity in the relation between velocity and substrate concentration. This effect is especially pronounced at elevated temperature. The kinetic data were analyzed using an equation that describes the steady-state kinetic velocity data as a function of five equilibrium constants and two rate constants. Van't Hoff analysis of the temperature dependence of the equilibrium constants determined by nonlinear curve fitting revealed that the interaction of pyruvate kinase with its substrate, phosphoenolpyruvate, is an enthalpy-driven process. This is consistent with an interaction that involves electrostatic forces, and indeed, phosphoenolpyruvate is a negatively charged substrate. In contrast, the interaction of pyruvate kinase with phenylalanine is strongly entropy driven. These results imply that the binding of phenylalanine involves hydrophobic interaction and are consistent with the basic concepts of strengthening of the hydrophobic effect with an increase in temperature. The effect of phenylalanine at high temperatures is the net consequence of weakening of substrate-enzyme interaction and significant strengthening of inhibitor binding to the inactive state of pyruvate kinase. The effects of salts were also studies. The results show that salts also exert a differential effect on the binding of substrate and inhibitor to the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The regulation of ATP-sensitive potassium (K(ATP)) channel activity is complex and a multitude of factors determine their open probability. Physiologically and pathophysiologically, the most important of these are intracellular nucleotides, with a long-recognized role for glycolytically derived ATP in regulating channel activity. To identify novel regulatory subunits of the K(ATP) channel complex, we performed a two-hybrid protein-protein interaction screen, using as bait the mouse Kir6.2 C terminus. Screening a rat heart cDNA library, we identified two potential interacting proteins to be the glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and triose-phosphate isomerase. The veracity of interaction was verified by co-immunoprecipitation techniques in transfected mammalian cells. We additionally demonstrated that pyruvate kinase also interacts with Kir6.2 subunits. The physiological relevance of these interactions is illustrated by the demonstration that native Kir6.2 protein similarly interact with GAPDH and pyruvate kinase in rat heart membrane fractions and that Kir6.2 protein co-localize with these glycolytic enzymes in rat ventricular myocytes. The functional relevance of our findings is demonstrated by the ability of GAPDH or pyruvate kinase substrates to directly block the K(ATP) channel under patch clamp recording conditions. Taken together, our data provide direct evidence for the concept that key enzymes involved in glycolytic ATP production are part of a multisubunit K(ATP) channel protein complex. Our data are consistent with the concept that the activity of these enzymes (possibly by ATP formation in the immediate intracellular microenvironment of this macromolecular K(ATP) channel complex) causes channel closure.  相似文献   

4.
Thermodynamic parameters describing the phage 434 Cro protein have been determined by calorimetry and, independently, by far-UV circular dichroism (CD) measurements of isothermal urea denaturations and thermal denaturations at fixed urea concentrations. These equilibrium unfolding transitions are adequately described by the two-state model. The far-UV CD denaturation data yield average temperature-independent values of 0.99 +/- 0.10 kcal mol(-)(1) M(-)(1) for m and 0.98 +/- 0.05 kcal mol(-)(1) K(-)(1) for DeltaC(p)()(,U), the heat capacity change accompanying unfolding. Calorimetric data yield a temperature-independent DeltaC(p)()(,U) of 0.95 +/- 0.30 kcal mol(-)(1) K(-)(1) or a temperature-dependent value of 1.00 +/- 0.10 kcal mol(-)(1) K(-)(1) at 25 degrees C. DeltaC(p)()(,U) and m determined for 434 Cro are in accord with values predicted using known empirical correlations with structure. The free energy of unfolding is pH-dependent, and the protein is completely unfolded at pH 2.0 and 25 degrees C as judged by calorimetry or CD. The stability of 434 Cro is lower than those observed for the structurally similar N-terminal domain of the repressor of phage 434 (R1-69) or of phage lambda (lambda(6)(-)(85)), but is close to the value reported for the putative monomeric lambda Cro. Since a protein's structural stability is important in determining its intracellular stability and turnover, the stability of Cro relative to the repressor could be a key component of the regulatory circuit controlling the levels and, consequently, the functions of the two proteins in vivo.  相似文献   

5.
1. Extracts of Acetobacter xylinum were found to contain the glycolytic enzymes involved in the conversion of triose phosphate into pyruvate. Pyruvate kinase had the lowest relative activity. Phosphofructokinase activity was not detected in the extracts. 2. Only slight differences in the activity of pyruvate kinase were observed between cells grown on glucose and those grown on intermediates of the tricarboxylic acid cycle. 3. Pyruvate kinase, partially purified from ultrasonic extracts by ammonium sulphate fractionation, required Mg(2+) ions for activity. It was not activated by K(+) or NH(4) (+) ions. 4. The plots representing the relationship between initial velocity and phosphoenolpyruvate concentration were sigmoidal, suggesting a co-operative effect for phosphoenolpyruvate. The Hill coefficient (n) for phosphoenolpyruvate was 2. The rate of the reaction changed with increasing ADP concentrations according to normal Michaelis-Menten kinetics. 5. The enzyme was inhibited by ATP (K(i)0.9x10(-3)m). The inhibition was competitive with regard to ADP but not with regard to phosphoenolpyruvate. It was not relieved by excess of Mg(2+) ions. 6. The possible relationship of the properties of pyruvate kinase to regulatory mechanisms for controlling gluconeogenesis and carbohydrate oxidation in A. xylinum is discussed.  相似文献   

6.
Kuczek M 《Bio Systems》2002,66(1-2):11-20
Potassium pyrophosphate was used instead of ATP as a model ligand for magnesium cation for the study of effector influence on the kinetics of pyruvate kinase muscle isozyme M(1). The pyruvate kinase activation by low concentration of pyrophosphate and inhibition by high concentration of pyrophosphate was considered to be the result of reversible reactions of magnesium cation with pyrophosphate, ADP, ATP, and PEP. The apparent K(m) and V(m) or in some cases the pseudo-first order reaction rate constant (instead of K(m) and V(m)) of pyruvate kinase at any given pyrophosphate concentration were analysed as a function of concentration of free magnesium cation and its complexes with all ligands present in an assay mixture. The functions of reaction parameters with respect to concentration of magnesium complexes indicate the coexistence in the reaction mixture of simple and mixed complexes of magnesium cation with substrates, pyrophosphate, and an enzyme-substrate complex. The parameters of the simulated reaction for the proposed interactions fit the measured experimental data. A simple model with nonallosteric feedback has been proposed. According to this model, mutual and simultaneous interactions of reaction products with substrates and with an enzyme result in the coexistence of simple and mixed, labile and inert complexes.  相似文献   

7.
Summary The skipjack tuna maintains its red skeletal musculature well above ambient temperatures while the temperature of the heart is within 1°C of that of the water. These two tissues exhibit tissue specific forms of pyruvate kinase. The red muscle has one form while the heart has two.TheK m(PEP) of the red muscle enzymes rises with temperature, within the normal temperature range of the tissue. The affinity of the major form of the heart enzyme for phosphoenolpyruvate is relatively independent of temperature over the physiological temperature range.K m(ADP) values are temperature independent for both enzymes.Inhibition by alanine of both enzymes is temperature dependent and rises with temperature. The same is true of ATP inhibition of the heart enzyme, but ATP inhibition of the red muscle enzyme is temperature independent. Fructose diphosphate reverses alanine and ATP inhibition at all temperatures.With both enzymes, temperature affects substrate affinities and the sensitivity of the enzyme to metabolite effectors. These effects can be rationalized in terms of physiological significance only in the case of the red muscle enzyme.List of abbreviations ADP adenosine diphosphate - ATP adenosine triphosphate - EDTA ethylene diamine tetra acetic acid - FDP fructose 1,6 diphosphate - LDH lactate dehydrogenase - NADH nicotinamide adenine dinucleotide (reduced) - NAD nicotinamide adenine dinucleotide (oxidized) - PEP phosphoenol pyruvate  相似文献   

8.
Bao H  Kasten SA  Yan X  Roche TE 《Biochemistry》2004,43(42):13432-13441
Pyruvate dehydrogenase kinase 2 (PDK2) activity is enhanced by the dihydrolipoyl acetyltransferase core (E2 60mer) that binds PDK2 and a large number of its pyruvate dehydrogenase (E1) substrate. With E2-activated PDK2, K(+) at approximately 90 mM and Cl(-) at approximately 60 mM decreased the K(m) of PDK2 for ATP and competitive K(i) for ADP by approximately 3-fold and enhanced pyruvate inhibition. Comparing PDK2 catalysis +/- E2, E2 increased the K(m) of PDK2 for ATP by nearly 8-fold (from 5 to 39 microM), increased k(cat) by approximately 4-fold, and decreased the requirement for E1 by at least 400-fold. ATP binding, measured by a cold-trapping technique, occurred at two active sites with a K(d) of 5 microM, which equals the K(m) and K(d) of PDK2 for ATP measured in the absence of E2. During E2-aided catalysis, PDK2 had approximately 3 times more ADP than ATP bound at its active site, and the pyruvate analogue, dichloroacetate, led to 16-fold more ADP than ATP being bound (no added ADP). Pyruvate functioned as an uncompetitive inhibitor versus ATP, and inclusion of ADP transformed pyruvate inhibition to noncompetitive. At high pyruvate levels, pyruvate was a partial inhibitor but also induced substrate inhibition at high ATP levels. Our results indicate that, at physiological salt levels, ADP dissociation is a limiting step in E2-activated PDK2 catalysis, that PDK2.[ADP or ATP].pyruvate complexes form, and that PDK2.ATP.pyruvate.E1 reacts with PDK2.ADP.pyruvate accumulating.  相似文献   

9.
1. Preincubation of partially purified rat liver L-type pyruvate kinase at 25 degrees for 10min. causes a marked increase in co-operativity with respect to both the substrate, phosphoenolpyruvate, and the allosteric activator, fructose 1,6-diphosphate. 2. The results are consistent with the existence of two forms of liver L-type pyruvate kinase, designated forms L(A) and L(B). It is postulated that form L(A) has a low K(m) for phosphoenolpyruvate (about 0.1mm) and is not allosterically activated, whereas form L(B) is allosterically activated by fructose 1,6-diphosphate, exhibiting in the absence of the activator sigmoidal kinetics with half-maximal activity at about 1mm-phosphoenolpyruvate. In the presence of fructose 1,6-diphosphate, form L(B) gives Michaelis-Menten kinetics with K(m) less than 0.1mm. It is further postulated that preincubation converts form L(A) into form L(B). 3. The influence of pH on the preincubation effect was studied. 4. The inhibition of pyruvate kinase by Cu(2+) was studied in detail. Though phosphoenolpyruvate and fructose 1,6-diphosphate readily protect the enzyme against Cu(2+) inhibition, little evidence of significant reversal of the inhibition by these compounds could be found. 5. The effects of starvation, fructose feeding and preincubation on the pyruvate kinase activity of crude homogenates of various tissues of the rat were also studied.  相似文献   

10.
The effects of pH, season, environmental and experimental temperatures on the activities and kinetic parameters of D-lactate dehydrogenase, pyruvate kinase and arginine kinase from the foot of the pulmonate snail Helix pomatia were analyzed. Both in phosphate and Tris buffers D-lactate dehydrogenase was the enzyme with the most acid maximum, arginine kinase that with the most alkaline, whilst pyruvate kinase occupied an intermediate position. Pyruvate kinase activity, measured at 20 degrees C, was positively correlated with the environmental temperature at the moment of collecting the animal, whereas neither arginine kinase nor D-lactate dehydrogenase showed such a relationship. A seasonal study based on approximately 100 specimens established that arginine kinase activity remained the same throughout the year. Pyruvate kinase activity was slightly lower, and D-lactate dehydrogenase activity significantly higher, in winter than in summer animals. Snails subjected in spring to a short warm-up period before enzyme extraction showed extreme variability and some extraordinarily high values of pyruvate kinase activity, suggesting that either season or elevated temperature may have an immediate effect on the activity of this enzyme. Individual variability of all three enzymes ranges from 300 to 400%. The activities of pyruvate kinase and D-lactate dehydrogenase are strongly correlated in summer, forming a "constant-proportion-group", whereas in winter, with D-lactate dehydrogenase activity increasing and pyruvate kinase activity decreasing these two enzymes become "uncoupled". The Km value of pyruvate kinase is independent of experimental temperature between 10 and 25 degrees C, whereas that of D-lactate dehydrogenase and arginine kinase increases about three-fold within this range. Thus the temperature relationship of a single enzymic reaction cannot be used as an arguemnt for or against the occurrence of temperature compensation of whole animal metabolism. The possibility of modulation of enzyme activity by environmental temperature is discussed.  相似文献   

11.
Pyruvate kinase (ATP: pyruvate phosphotransferase, EC 2.7.1.40) was partially purified from cotton seeds. The enzyme shows normal kinetics toward phosphoenol-pyruvate, ADP, and magnesium or manganese. Of nearly 50 metabolites tested, the enzyme is inhibited only by ATP, UTP, citrate, and malate, and activated by AMP, GMP, and fumarate. The inhibition by citrate and ATP is not due to metal chelation; both compounds appear to directly affect the enzyme. The kinetics of the activations by AMP and by fumarate suggest the existence of separate activator sites for the two compounds.It is suggested that cotton seed pyruvate kinase is a regulatory enzyme, although it differs markedly from the regulatory pyruvate kinases which have been described in animals and in microorganisms. This is the first instance in which regulatory properties have been reported for a pyruvate kinase from a higher plant.  相似文献   

12.
Temperature is a strong selective force on the evolution of proteins due to its effects on higher orders of protein structure and, thereby, on critical protein functions like ligand binding and catalysis. Comparisons among orthologous proteins from differently thermally adapted species show consistent patterns of adaptive variation in function, but few studies have examined functional adaptation among multiple structural families of proteins. Thus, with our present state of knowledge, it is difficult to predict what fraction of the proteome will exhibit adaptive variation in the face of temperature increases of a few to several degrees Celsius, that is, temperature increases of the magnitude predicted by models of global warming. Here, we compared orthologous enzymes of the warm-adapted Mediterranean mussel Mytilus galloprovincialis and the cold-adapted Mytilus trossulus, a native of the North Pacific Ocean, species whose physiologies exhibit significantly different responses to temperature. We measured the effects of temperature on the kinetics (Michaelis-Menten constant-K(m)) of five enzymes that are important for ATP generation and that represent distinct protein structural families. Among phosphoglucomutase (PGM), phosphoglucose isomerase (PGI), pyruvate kinase (PK), phosphoenolpyruvate carboxykinase (GTP) (PEPCK), and isocitrate dehydrogenase (NADP) (IDH), only IDH orthologs showed significantly different thermal responses of K(m) between the two species. The K(m) of isocitrate of M. galloprovincialis-IDH was intrinsically lower and more thermally stable than that of M. trossulus-IDH and thus had higher substrate affinity at high temperatures. Two amino acid substitutions account for the functional differences between IDH orthologs, one of which allows for more hydrogen bonds to form near the mobile region of the active site in M. galloprovincialis-IDH. Taken together, our findings cast light on the targets of adaptive evolution in the context of climate change; only a minority of proteins might adapt to small changes in temperature, and these adaptations may involve only small changes in sequence.  相似文献   

13.
1. Extraction of rat epididymal adipose tissue with buffer containing EDTA yields a pyruvate kinase, provisionally called PyK-A, the properties of which resemble in several respects those of the allosteric pyruvate kinase of liver. These properties include co-operative interactions with phosphoenolpyruvate, Mg(2+), K(+), NH(4) (+) and ATP, and sensitivity to activation by fructose 1,6-diphosphate. 2. Extraction in the absence of EDTA yields predominantly a form, PyK-B, that shows both normal Michaelis-Menten kinetics with phosphoenolpyruvate, Mg(2+) and ATP, and co-operative interactions with K(+) and NH(4) (+); this form is insensitive towards fructose 1,6-diphosphate. 3. Both forms yield simple kinetics with ADP, though K(m) values differ in the two systems. In all cases where co-operativity has been demonstrated, Hill-plot n values are between 1.4 and 2.0. 4. The conversion of PyK-A into PyK-B is mediated specifically by fructose 1,6-diphosphate; the reverse reaction is occasioned by EDTA, ATP or citrate. It is thought that a bivalent cation may be involved in this interconversion. 5. Attempts at partial purification have revealed that the enzyme resembles the pyruvate kinase of skeletal muscle, rather than that of liver, in its solubility in ammonium sulphate and elution from DEAE-cellulose. 6. The relevance of these properties in the regulation of pyruvate kinase activity in vivo in adipose tissue is discussed.  相似文献   

14.
Pyruvate kinase is the final regulatory point in the catabolic Embden-Meyerhoff-Parnas pathway, which controls the carbon flux of glycolytic intermediates and regulates the level of ATP in the cell. In a previous study, we identified, cloned and sequenced pyruvate kinase from the obligate intracellular bacterium Chlamydia trachomatis and demonstrated that the enzyme was active in crude extract. Here, we report the kinetic properties of highly purified C. trachomatis pyruvate kinase. The results indicate that C. trachomatis pyruvate kinase is 53.5 kDa with a pH optima of 7.3. Kinetic studies show that C. trachomatis pyruvate kinase requires both K+ and Mg2+ ions for activity, exhibits sigmoidal kinetics with respect to phosphoenolpyruvate and Michaelis-Menten kinetics with respect to ADP. In addition, C. trachomatis pyruvate kinase is able to use alternative nucleoside diphosphates as phosphate acceptors, although it shows the greatest activity with ADP. In contrast to other bacterial pyruvate kinases that are activated by AMP, our data show that AMP, in addition to ATP and GTP, inhibits C. trachomatis pyruvate kinase. Surprisingly, unlike any other known bacterial pyruvate kinase, C. trachomatis pyruvate kinase was allosterically activated by fructose-2,6-bisphosphate, an important regulatory metabolite that has only been reported in eukaryotes.  相似文献   

15.
When cod fish muscle oxalacetate decarboxylase catalyzes the decarboxylation of oxalacetate in the presence of NaBH4, L-lactate results from the reduction of enzyme-bound pyruvate. However, D-lactate results when borohydride reduces the binary enzyme-pyruvate complex formed by adding pyruvate from solution, as reported by others. This observation suggests that there are alternate mechanisms for reduction that are either kinetically or sterically determined for the E-pyruvate forms produced in the two directions. In the process of investigating the mechanism of reduction, the cod fish muscle decarboxylase was discovered to be identical with pyruvate kinase. Decarboxylase activity appears to take place at a site which overlaps the phosphoenolpyruvate binding site on this enzyme, as discussed in the following paper. Crystalline rabbit muscle pyruvate kinase also contains significant decarboxylase activity indicating that the two reactions may be structurally related functions. In the presence of K+, orthophosphate, or ATP the rabbit muscle enzyme catalyzes the detritiation of enzyme-bound pyruvate formed during decarboxylation before release of pyruvate from the enzyme, in analogy with the detritiation of pyruvate formed from P-[3-3/]enolpyruvate in the kinase reaction. This observation is consistent with the formation of an enolpyruvate intermediate common to the kinetic pathways of both reactions. Since the decarboxylase reac.tion is completely stereospecific, within the limits of detection, going with retention of configuration, the protonation of the enolpyruvate intermediate is completely determined by the enzyme as is the case with the enolpyruvate intermediate generated from P-enolpyruvate in the kinase reaction.  相似文献   

16.
Rat liver L-type pyruvate kinase was phosphorylated in vitro by a Ca2+/calmodulin-dependent protein kinase purified from rabbit liver. The calmodulin (CaM)-dependent kinase catalyzed incorporation of up to 1.7 mol of 32P/mol of pyruvate kinase subunit; maximum phosphorylation was associated with a 3.0-fold increase in the K0.5 for P-enolpyruvate. This compares to incorporation of 0.7 to 1.0 mol of 32P/mol catalyzed by the cAMP-dependent protein kinase with a 2-fold increase in K0.5 for P-enolpyruvate. When [32P]pyruvate kinase, phosphorylated by the CaM-dependent protein kinase, was subsequently incubated with 5 mM ADP and cAMP-dependent protein kinase (kinase reversal conditions), 50-60% of the 32PO4 was removed from pyruvate kinase, but the K0.5 for P-enolpyruvate decreased only 20-30%. Identification of 32P-amino acids after partial acid hydrolysis showed that the CaM-dependent protein kinase phosphorylated both threonyl and seryl residues (ratio of 1:2, respectively) whereas the cAMP-dependent protein kinase phosphorylated only seryl groups. The two phosphorylation sites were present in the same 3-4-kDa CNBr fragment located near the amino terminus of the enzyme subunit. These results indicate that the CaM-dependent protein kinase catalyzed phosphorylation of L-type pyruvate kinase at two discrete sites. One site is apparently the same serine which is phosphorylated by the cAMP-dependent protein kinase. The second site is a unique threonine residue whose phosphorylation also inactivates pyruvate kinase by elevating the K0.5 for P-enolpyruvate. These results may account for the Ca2+-dependent phosphorylation of pyruvate kinase observed in isolated hepatocytes.  相似文献   

17.
Four pyruvate dehydrogenase kinase and two pyruvate dehydrogenase phosphatase isoforms function in adjusting the activation state of the pyruvate dehydrogenase complex (PDC) through determining the fraction of active (nonphosphorylated) pyruvate dehydrogenase component. Necessary adaptations of PDC activity with varying metabolic requirements in different tissues and cell types are met by the selective expression and pronounced variation in the inherent functional properties and effector sensitivities of these regulatory enzymes. This review emphasizes how the foremost changes in the kinase and phosphatase activities issue from the dynamic, effector-modified interactions of these regulatory enzymes with the flexibly held outer domains of the core-forming dihydrolipoyl acetyl transferase component.  相似文献   

18.
Regulation of heart muscle pyruvate dehydrogenase kinase   总被引:31,自引:25,他引:6       下载免费PDF全文
1. The activity of pig heart pyruvate dehydrogenase kinase was assayed by the incorporation of [(32)P]phosphate from [gamma-(32)P]ATP into the dehydrogenase complex. There was a very close correlation between this incorporation and the loss of pyruvate dehydrogenase activity with all preparations studied. 2. Nucleoside triphosphates other than ATP (at 100mum) and cyclic 3':5'-nucleotides (at 10mum) had no significant effect on kinase activity. 3. The K(m) for thiamin pyrophosphate in the pyruvate dehydrogenase reaction was 0.76mum. Sodium pyrophosphate, adenylyl imidodiphosphate, ADP and GTP were competitive inhibitors against thiamin pyrophosphate in the dehydrogenase reaction. 4. The K(m) for ATP of the intrinsic kinase assayed in three preparations of pig heart pyruvate dehydrogenase was in the range 13.9-25.4mum. Inhibition by ADP and adenylyl imidodiphosphate was predominantly competitive, but there was nevertheless a definite non-competitive element. Thiamin pyrophosphate and sodium pyrophosphate were uncompetitive inhibitors against ATP. It is suggested that ADP and adenylyl imidodiphosphate inhibit the kinase mainly by binding to the ATP site and that the adenosine moiety may be involved in this binding. It is suggested that thiamin pyrophosphate, sodium pyrophosphate, adenylyl imidodiphosphate and ADP may inhibit the kinase by binding through pyrophosphate or imidodiphosphate moieties at some site other than the ATP site. It is not known whether this is the coenzyme-binding site in the pyruvate dehydrogenase reaction. 5. The K(m) for pyruvate in the pyruvate dehydrogenase reaction was 35.5mum. 2-Oxobutyrate and 3-hydroxypyruvate but not glyoxylate were also substrates; all three compounds inhibited pyruvate oxidation. 6. In preparations of pig heart pyruvate dehydrogenase free of thiamin pyrophosphate, pyruvate inhibited the kinase reaction at all concentrations in the range 25-500mum. The inhibition was uncompetitive. In the presence of thiamin pyrophosphate (endogenous or added at 2 or 10mum) the kinase activity was enhanced by low concentrations of pyruvate (25-100mum) and inhibited by a high concentration (500mum). Activation of the kinase reaction was not seen when sodium pyrophosphate was substituted for thiamin pyrophosphate. 7. Under the conditions of the kinase assay, pig heart pyruvate dehydrogenase forms (14)CO(2) from [1-(14)C]pyruvate in the presence of thiamin pyrophosphate. Previous work suggests that the products may include acetoin. Acetoin activated the kinase reaction in the presence of thiamin pyrophosphate but not with sodium pyrophosphate. It is suggested that acetoin formation may contribute to activation of the kinase reaction by low pyruvate concentrations in the presence of thiamin pyrophosphate. 8. Pyruvate effected the conversion of pyruvate dehydrogenase phosphate into pyruvate dehydrogenase in rat heart mitochondria incubated with 5mm-2-oxoglutarate and 0.5mm-l-malate as respiratory substrates. It is suggested that this effect of pyruvate is due to inhibition of the pyruvate dehydrogenase kinase reaction in the mitochondrion. 9. Pyruvate dehydrogenase kinase activity was inhibited by high concentrations of Mg(2+) (15mm) and by Ca(2+) (10nm-10mum) at low Mg(2+) (0.15mm) but not at high Mg(2+) (15mm).  相似文献   

19.
The regulatory effects of alpha-ketoisovalerate on purified bovine heart pyruvate dehydrogenase complex and endogenous pyruvate dehydrogenase kinase were investigated. Incubation of pyruvate dehydrogenase complex with 0.125 to 10 mM alpha-ketoisovalerate caused an initial lag in enzymatic activity, followed by a more linear but inhibited rate of NADH production. Incubation with 0.0125 or 0.05 mM alpha-ketoisovalerate caused pyruvate dehydrogenase inhibition, but did not cause the initial lag in pyruvate dehydrogenase activity. Gel electrophoresis and fluorography demonstrated the incorporation of acyl groups from alpha-keto[2-14C]isovalerate into the dihydrolipoyl transacetylase component of the enzyme complex. Acylation was prevented by pyruvate and by arsenite plus NADH. Endogenous pyruvate dehydrogenase kinase activity was stimulated specifically by K+, in contrast to previous reports, and kinase stimulation by K+ correlated with pyruvate dehydrogenase inactivation. Maximum kinase activity in the presence of K+ was inhibited 62% by 0.1 mM thiamin pyrophosphate, but was inhibited only 27% in the presence of 0.1 mM thiamin pyrophosphate and 0.1 mM alpha-ketoisovalerate. Pyruvate did not affect kinase inhibition by thiamin pyrophosphate at either 0.05 or 2 mM. The present study demonstrates that alpha-ketoisovalerate acylates heart pyruvate dehydrogenase complex and suggests that acylation prevents thiamin pyrophosphate-mediated kinase inhibition.  相似文献   

20.
We determined the annual change in the intermediary metabolism of glucose through the variations of specific activity of fructose 1,6-bisphosphatase (FBPase), alanine aminotransferase (AAT) and pyruvate kinase (PK). Fish (average mass 330 g) were kept in cages under natural conditions of temperature and photoperiod and fed with a commercial diet. FBPase, AAT and PK increased their activity in June in different ways: AAT and PK increased V(max), and FBPase increased the velocity at subsaturating substrate concentrations, changing K(m). The reproduction period modified the annual tendency of changes in the enzyme activities in both parameters, K(m) and V(max), except for K(m) of PK which shows a circa-annual rhythm. No relation between the changes of enzymes activity and photoperiod or temperature has been found in this study, except for K(m) of AAT which presents a positive correlation with photoperiod and a negative correlation with temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号