首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adenylate kinase (AK)-catalyzed phosphotransfer is essential in the maintenance of cellular energetic economy in cells of fully differentiated tissues with highly variable energy demand, such as muscle and brain. To investigate if AK isoenzymes have a comparable function in the energy-demand management of proliferating cells, AK1 and AK1beta were expressed in mouse neuroblastoma N2a cells and in human colon carcinoma SW480 cells. Glucose deprivation, galactose feeding, and metabolic inhibitor tests revealed a differential energy dependency for these two cell lines. N2a cells showed a faster proliferation rate and strongest coupling to mitochondrial activity, SW480 proliferation was more dependent on glycolysis. Despite these differences, ectopic expression of AK1 or AK1beta did not affect their growth characteristics under normal conditions. Also, no differential effects were seen under metabolic stress upon treatment with mitochondrial and glycolytic inhibitors in in vitro culture or in solid tumors grown in vivo. Although many intimate connections have been revealed between cell death and metabolism, our results suggest that AK1- or AK1beta-mediated high-energy phosphoryl transfer is not a modulating factor in the survival of tumor cells during episodes of metabolic crisis.  相似文献   

2.
Adenylate kinase (AK) is a ubiquitous enzyme that regulates the homeostasis of adenine nucleotides in the cell. AK1beta (long form) from murine cells shares the same protein sequence as AK1 (short form) except for the addition of 18 amino acid residues at its N-terminus. It is hypothesized that these residues serve as a signal for protein lipid modification and targeting of the protein to the plasma membrane. To better understand the cellular function of these AK isoforms, we have used several modern fluorescence techniques to characterize these two isoforms of AK enzyme. We fused cytosolic adenylate kinase (AK1) and its isoform (AK1beta) with enhanced green fluorescence protein (EGFP) and expressed the chimera proteins in HeLa cells. Using two-photon excitation scanning fluorescence imaging, we were able to directly visualize the localization of AK1-EGFP and AK1beta-EGFP in live cells. AK1beta-EGFP mainly localized on the plasma membrane, whereas AK1-EGFP distributed throughout the cell except for trace amounts in the nuclear membrane and some vesicles. We performed fluorescence correlation spectroscopy measurements and photon-counting histogram analysis in specific domains of live cells. For AK1-EGFP, we observed only one diffusion component in the cytoplasm. For AK1beta-EGFP, we observed two distinct diffusion components on the plasma membrane. One corresponded to the free diffusing protein, whereas the other represented the membrane-bound AK1beta-EGFP. The diffusion rate of AK1-EGFP was slowed by a factor of 1.8 with respect to that of EGFP, which was 50% more than what we would expect for a free diffusing AK1-EGFP. To rule out the possibility of oligomer formation, we performed photon-counting histogram analysis to direct analyze the brightness difference between AK1-EGFP and EGFP. From our analysis, we concluded that cytoplasmic AK1-EGFP is monomeric. fluorescence correlation spectroscopy proved to be a powerful technique for quantitatively studying the mobility of the target protein in live cells. This technology offers advantages in studying protein interactions and function in the cell.  相似文献   

3.
The regulation of adenosine kinase (AK) activity has the potential to control intracellular and interstitial adenosine (Ado) concentrations. In an effort to study the role of AK in Ado homeostasis in the central nervous system, two isoforms of the enzyme were cloned from a mouse brain cDNA library. Following overexpression in bacterial cells, the corresponding proteins were purified to homogeneity. Both isoforms were enzymatically active and found to possess K(m) and V(max) values in agreement with kinetic parameters described for other forms of AK. The distribution of AK in discrete brain regions and various peripheral tissues was defined. To investigate the possibility that AK activity is regulated by protein phosphorylation, a panel of protein kinases was screened for ability to phosphorylate recombinant mouse AK. Data from these in vitro phosphorylation studies suggest that AK is most likely not an efficient substrate for PKA, PKG, CaMKII, CK1, CK2, MAPK, Cdk1, or Cdk5. PKC was found to phosphorylate recombinant AK efficiently in vitro. Further analysis revealed, however, that this PKC-dependent phosphorylation occurred at one or more serine residues associated with the N-terminal affinity tag used for protein purification.  相似文献   

4.
Fbxw7 is the F-box protein component of an SCF-type ubiquitin ligase that contributes to the ubiquitin-dependent degradation of cell cycle activators and oncoproteins. Three isoforms (alpha, beta, and gamma) of Fbxw7 are produced from mRNAs with distinct 5' exons. We have now investigated regulation of Fbxw7 expression in mouse tissues. Fbxw7alpha mRNA was present in all tissues examined, whereas Fbxw7beta mRNA was detected only in brain and testis, and Fbxw7gamma mRNA in heart and skeletal muscle. The amount of Fbxw7alpha mRNA was high during quiescence (G0 phase) in mouse embryonic fibroblasts (MEFs) and T cells, but it decreased markedly as these cells entered the cell cycle. The abundance of Fbxw7alpha mRNA was unaffected by cell irradiation or p53 status. In contrast, X-irradiation increased the amount of Fbxw7beta mRNA in wild-type MEFs but not in those from p53-deficient mice, suggesting that radiation-induced up-regulation of p53 leads to production of Fbxw7beta mRNA. Our results thus indicate that expression of Fbxw7 isoforms is differentially regulated in a cell cycle- or p53-dependent manner.  相似文献   

5.
Rapid exchange of high energy carrying molecules between intracellular compartments is essential in sustaining cellular energetic homeostasis. Adenylate kinase (AK)-catalyzed transfer of adenine nucleotide beta- and gamma-phosphoryls has been implicated in intracellular energy communication and nucleotide metabolism. To demonstrate the significance of this reaction in cardiac energetics, phosphotransfer dynamics were determined by [(18)O]phosphoryl oxygen analysis using( 31)P NMR and mass spectrometry. In hearts with a null mutation of the AK1 gene, which encodes the major AK isoform, total AK activity and beta-phosphoryl transfer was reduced by 94% and 36%, respectively. This was associated with up-regulation of phosphoryl flux through remaining minor AK isoforms and the glycolytic phosphotransfer enzyme, 3-phosphoglycerate kinase. In the absence of metabolic stress, deletion of AK1 did not translate into gross abnormalities in nucleotide levels, gamma-ATP turnover rate or creatine kinase-catalyzed phosphotransfer. However, under hypoxia AK1-deficient hearts, compared with the wild type, had a blunted AK-catalyzed phosphotransfer response, lowered intracellular ATP levels, increased P(i)/ATP ratio, and suppressed generation of adenosine. Thus, although lack of AK1 phosphotransfer can be compensated in the absence of metabolic challenge, under hypoxia AK1-knockout hearts display compromised energetics and impaired cardioprotective signaling. This study, therefore, provides first direct evidence that AK1 is essential in maintaining myocardial energetic homeostasis, in particular under metabolic stress.  相似文献   

6.
7.
腺苷酸激酶(AK)是催化各种腺嘌呤核苷酸相互转化的一种磷酸转移酶,其在维持细胞能量平衡中起着重要的作用。AK有七种亚型,在线粒体、胞浆、细胞核之间的能量转移和分布中起着至关重要的作用。细胞内、细胞外和血液中的AMP水平是机体能量感知、睡眠、冬眠和食物摄取的代谢信号。高于或低于正常水平的AMP信号与人类疾病相关。AK及其下游的AMP信号组成了一个完整的代谢监测系统,通过检测细胞能量状态变化,从而调整对代谢感受器传递的信号。详细阐述了AK和AMP在感知及维持机体能量中的作用。  相似文献   

8.
Abstract: Adenylate kinase (AK), which catalyzes the equilibrium reaction among AMP, ADP, and ATP, is considered to participate in the homeostasis of energy metabolism in cells. Among three vertebrate isozymes, AK isozyme 1 (AK1) is present prominently in the cytosol of skeletal muscle and brain. When mouse embryonal carcinoma P19 cells were differentiated by retinoic acid into neural cells, the amount of AK1 protein and enzyme activity increased about fivefold concomitantly with neurofilament (NF). Double-immunofluorescence staining showed that both AK1 and NF were located in neuronal processes as well as the perinuclear regions in neuron-like cells, but not in glia-like cells. The amount of brain-type creatine kinase increased only twofold during P19 differentiation. The AK isozyme 2, which was not detected in adult mouse brain, was found in P19 cells and did not increase during the differentiation. Mitochondrial AK isozyme 3, which uses GTP instead of ATP as a phosphate donor, was increased significantly. Immunohistochemical analysis with the primary cultured cells from rat cerebral cortex showed similar cellular localization of AK1 to those observed with differentiated P19 cells. These results suggest an important role of this enzyme in neuronal functions and in neuronal differentiation.  相似文献   

9.
A novel alpha subunit in rat brain GABAA receptors   总被引:16,自引:0,他引:16  
Two cDNAs (alpha 1 and alpha 4) from rat brain cDNA libraries encode isoforms of the alpha subunit of the GABA/benzodiazepine receptor, which differ at 30% of their amino acid residues. Northern blot analysis and in situ hybridization histochemistry show that alpha 1 and alpha 4 mRNAs have distinct sizes and distinct regional and cellular distributions in rat brain: both mRNAs are found in the cortex and hippocampus; however, only the alpha 1 mRNA is detected in the cerebellum. We injected RNA transcribed from alpha 1 and alpha 4 cDNAs into Xenopus oocytes, together with an RNA for a rat beta subunit. We obtained GABA-dependent inward currents that were reversibly blocked by picrotoxin. Picrotoxin alone, applied to oocytes producing the alpha and beta polypeptides, elicited an outward current. We suggest that these polypeptides together produce GABA-gated ion channels that can also open spontaneously.  相似文献   

10.
Capping protein nucleates the assembly of actin filaments and stabilizes actin filaments by binding to their barbed ends. We describe here a novel isoform of the beta subunit of chicken capping protein, the beta 2 isoform, which arises by alternative splicing. The chicken beta 1 isoform and the beta 2 isoform are identical in their amino acid sequence except for a short region at the COOH terminus; this region of the beta subunit has been implicated in binding actin. Human and mouse cDNAs of the beta 1 and beta 2 isoforms also were isolated and among these vertebrates, the COOH-terminal region of each isoform is highly conserved. In contrast, comparison of the sequences of the vertebrate beta subunit COOH-termini to those of lower eukaryotes shows no similarities. The beta 2 isoform is the predominant isoform of nonmuscle tissues and the beta 1 isoform, which was first characterized in studies of capping protein from chicken muscle, is the predominant isoform of muscle tissues, as shown by immunoblots probed with isoform- specific antibodies and by RNAse protection analysis of mRNAs. The beta 2 isoform also is a component of dynactin complex from brain, which contains the actin-related protein Arp1. Both beta-subunit isoforms are expressed in cardiac muscle but they have non-overlapping subcellular distributions. The beta 1 isoform is at Z-discs of myofibrils, and the beta 2 isoform is enriched at intercalated discs; in cardiac myocytes grown in culture, the beta 2 isoform also is a component of cell-cell junctions and at sites where myofibrils contact the sarcolemma. The biochemical basis for the differential distribution of capping protein isoforms is likely due to interaction with specific proteins at Z-discs and cell-cell junctions, or to preferential association with different actin isoforms. Thus, vertebrates have developed isoforms of capping protein that associate with distinct actin-filament arrays.  相似文献   

11.
The mammalian AMP-activated protein kinase is a heterotrimeric serine/threonine protein kinase with multiple isoforms for each subunit (alpha, beta, and gamma) and is activated under conditions of metabolic stress. It is widely expressed in many tissues, including the brain, although its expression pattern throughout the CNS is unknown. We show that brain mRNA levels for the alpha2 and beta2 subunits were increased between embryonic days 10 and 14, whereas expression of alpha1, beta1, and gamma1 subunits was consistent at all ages examined. Immunostaining revealed a mainly neuronal distribution of all isoforms. The alpha2 catalytic subunit was highly expressed in neurons and activated astrocytes, whereas the alpha1 catalytic subunit showed low expression in neuropil. The gamma1 noncatalytic subunit was highly expressed by neurons, but not by astrocytes. Expression of the beta1 and beta2 noncatalytic subunits varied, but some neurons, such as granule cells of olfactory bulb, did not express detectable levels of either beta isoform. Preferential nuclear localization of the alpha2, beta1, and gamma1 subunits suggests new functions of the AMP-activated protein kinase, and the different expression patterns and cellular localization between the two catalytic subunits alpha1 and alpha2 point to different physiological roles.  相似文献   

12.
Liss B  Bruns R  Roeper J 《The EMBO journal》1999,18(4):833-846
ATP-sensitive potassium (K-ATP) channels couple the metabolic state to cellular excitability in various tissues. Several isoforms of the K-ATP channel subunits, the sulfonylurea receptor (SUR) and inwardly rectifying K channel (Kir6.X), have been cloned, but the molecular composition and functional diversity of native neuronal K-ATP channels remain unresolved. We combined functional analysis of K-ATP channels with expression profiling of K-ATP subunits at the level of single substantia nigra (SN) neurons in mouse brain slices using an RT-multiplex PCR protocol. In contrast to GABAergic neurons, single dopaminergic SN neurons displayed alternative co-expression of either SUR1, SUR2B or both SUR isoforms with Kir6.2. Dopaminergic SN neurons expressed alternative K-ATP channel species distinguished by significant differences in sulfonylurea affinity and metabolic sensitivity. In single dopaminergic SN neurons, co-expression of SUR1 + Kir6.2, but not of SUR2B + Kir6.2, correlated with functional K-ATP channels highly sensitive to metabolic inhibition. In contrast to wild-type, surviving dopaminergic SN neurons of homozygous weaver mouse exclusively expressed SUR1 + Kir6.2 during the active period of dopaminergic neurodegeneration. Therefore, alternative expression of K-ATP channel subunits defines the differential response to metabolic stress and constitutes a novel candidate mechanism for the differential vulnerability of dopaminergic neurons in response to respiratory chain dysfunction in Parkinson's disease.  相似文献   

13.
14.
Creatine kinase (CK, EC 2.7.3.2) isoforms play important role in energy homeostasis and together with easily diffusible compounds like creatine and phosphocreatine maintain a cellular energy buffer and intracellular energy transport system. The CK activity in spermatozoa is the highest from all studied tissues in herring. It was detected that the two CK isoforms, CK1 and CK2, are characteristic only for spermatozoa and are not expressed in other herring tissues. Isolation and purification procedures allowed obtaining purified enzymes with specific activity of the 345 micromol/min/mg for CK1 and 511 micromol/min/mg for CK2. Native Mr's of the CK1 and CK2 determined by gel permeation chromatography were about 330,000 and 90,000, respectively. These results indicate that CK1 form has octameric structure and CK2 is a dimer mostly characteristic for cytosolic CK enzymes. In immunoblotting studies with antisera against CK2, the response was observed for CK2 and there was no response for CK1 and two other isoforms from herring skeletal muscle. These findings make the herring isoforms an interesting model for studies on the fish CK biochemical properties.  相似文献   

15.
The adenylate kinase (AK) isoforms network plays an important role in the intracellular energy transfer processes, the maintenance of energy homeostasis, and it is a major player in AMP metabolic signaling circuits in some highly-differentiated cells. For this purpose, a rapid and sensitive method was developed that enables to estimate directly and semi-quantitatively the distribution between cytosolic AK1 and mitochondrial AK2 localized in the intermembrane space, both in isolated cells and tissue samples (biopsy material). Experiments were performed on isolated rat mitochondria or permeabilized material, including undifferentiated and differentiated neuroblastoma Neuro-2a cells, HL-1 cells, isolated rat heart cardiomyocytes as well as on human breast cancer postoperative samples. In these samples, the presence of AK1 and AK2 could be detected by high-resolution respirometry due to the functional coupling of these enzymes with ATP synthesis. By eliminating extra-mitochondrial ADP with an excess of pyruvate kinase and its substrate phosphoenolpyruvate, the coupling of the AK reaction with mitochondrial ATP synthesis could be quantified for total AK and mitochondrial AK2 as a specific AK index. In contrast to the creatine kinase pathway, the AK phosphotransfer pathway is up-regulated in murine neuroblastoma and HL-1 sarcoma cells and in these malignant cells expression of AK2 is higher than AK1. Differentiated Neuro-2a neuroblastoma cells exhibited considerably higher OXPHOS capacity than undifferentiated cells, and this was associated with a remarkable decrease in their AK activity. The respirometric method also revealed a considerable difference in mitochondrial affinity for AMP between non-transformed cells and tumor cells.  相似文献   

16.
17.
Tissue-specific expression of sialyltransferases   总被引:12,自引:0,他引:12  
Three sialyltransferases which attach terminal sialic acids to glycoprotein sugar chains are shown to exhibit striking differential expression in seven tissues of the rat. Using cDNA probes for the Gal beta 1,4GlcNAc alpha-2,6-sialytransferase which forms a NeuAc alpha 2-6Gal beta 1-4GlcNAc sequence on N-linked sugar chains, three different sized mRNAs are detected, two of which (4.7 and 4.3 kilobases (kb] have high homology along the full length, and a third (3.6 kb, in kidney) which is missing the 5' region corresponding to 45% of the NH2-terminal coding sequence. The 4.7- and 4.3-kb mRNAs exhibit differential expression of over 50-fold with the highest levels in liver and lowest in brain and heart. Assays for enzyme activity in tissue homogenates show high correspondence to the levels of mRNA. Evidence of tissue-specific expression was also obtained for two other sialyltransferases which form the NeuAc alpha 2-3Gal beta 1-4/3GlcNAc and NeuAc alpha 2-3Gal beta 1-3GalNAc sequences on N-linked and O-linked sugar chains, respectively. Comparison of the ratios of the three enzymes in several tissues suggests that they are expressed independently. The results are discussed for their relevance to cellular control of terminal glycosylation sequences on glycoproteins and glycolipids.  相似文献   

18.
19.
The microheterogeneity of the alpha and beta isoforms of tubulin in brain cells in culture was studied. The cells were prepared from two precise regions of the embryonic mouse brain (ED15), the striatum and the mesencephalon. It was possible to maintain virtually pure cultures of neuronal or glial cells up to 1 and 4 weeks in vitro, respectively. The tubulin heterogeneity of striatal and mesencephalic neurons was found to be very similar after a few days in culture. More precise examination of pure neurons from the striatum revealed that their tubulin content after 7 days in vitro exhibited the same degree of complexity as a control extract from a 4 day-old mouse brain. In fact, we could detect the presence of at least six alpha and nine beta tubulin isoforms. Among these isoforms a specific family of beta proteins (beta' tubulin) and the more acidic alpha proteins were present. Since these isoforms have, up to now, been found only in tubulin extracts prepared from the nervous system, our experiments suggest that they belong to the neuronal subpopulation of this tissue. This point is reinforced by their complete absence from the tubulin proteins extracted from pure glial cells even after several weeks in vitro. These results lead us to propose that brain tubulin microheterogeneity is associated with the presence of neurons and not of glia and may, therefore, play a specific role in maintaining neuronal shape and function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号