首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Alzheimer's disease (AD) brain pathology is characterized by extracellular deposits of amyloid-beta (Abeta) peptides and intraneuronal fibrillar structures. These pathological features may be functionally linked, but the mechanism by which Abeta accumulation relates to neuronal degeneration is still poorly understood. Abeta peptides are fragments cleaved from the amyloid precursor protein (APP), a transmembrane protein ubiquitously expressed in the nervous system. Although the proteolytic processing of APP has been implicated in AD, the physiological function of APP and the subcellular site of APP cleavages remain unknown. The overall structure of the protein and its fast anterograde transport along the axon support the idea that APP functions as a vesicular receptor for cytoskeletal motor proteins. In the current study, we test the hypothesis that myosin II, important contributor to the cytoskeleton of neuronal cells, may influence the trafficking and/or the processing of APP. Our results demonstrate that downregulation of myosin II-B, the major myosin isoform in neurons, is able to increase Abeta deposition, concomitantly altering the subcellular localization of APP. These new insights might be important for the understanding of the function of APP and provide a novel conceptual framework in which to analyze its pathological role.  相似文献   

2.
Youm JW  Kim H  Han JH  Jang CH  Ha HJ  Mook-Jung I  Jeon JH  Choi CY  Kim YH  Kim HS  Joung H 《FEBS letters》2005,579(30):6737-6744
Beta amyloid (Abeta) is believed one of the major pathogens of Alzheimer's disease (AD), and the reduction of Abeta is considered a primary therapeutic target. Immunization with Abeta can reduce Abeta burden and pathological features in transgenic AD model mice. Transgenic potato plants were made using genes encoding 5 tandem repeats of Abeta1-42 peptides with an ER retention signal. Amyloid precursor protein transgenic mice (Tg2576) fed with transgenic potato tubers with adjuvant showed a primary immune response and a partial reduction of Abeta burden in the brain. Thus, Abeta tandem repeats can be expressed in transgenic potato plants to form immunologically functional Abeta, and these potatoes has a potential to be used for the prevention and treatment of AD.  相似文献   

3.
Alzheimer's disease (AD) is the major cause of dementia. Amyloid beta peptide (Abeta), generated by proteolytic cleavage of the amyloid precursor protein (APP), is central to AD pathogenesis. APP can function as a metalloprotein and modulate copper (Cu) transport, presumably via its extracellular Cu-binding domain (CuBD). Cu binding to the CuBD reduces Abeta levels, suggesting that a Cu mimetic may have therapeutic potential. We describe here the atomic structures of apo CuBD from three crystal forms and found they have identical Cu-binding sites despite the different crystal lattices. The structure of Cu(2+)-bound CuBD reveals that the metal ligands are His147, His151, Tyr168 and two water molecules, which are arranged in a square pyramidal geometry. The site resembles a Type 2 non-blue Cu center and is supported by electron paramagnetic resonance and extended X-ray absorption fine structure studies. A previous study suggested that Met170 might be a ligand but we suggest that this residue plays a critical role as an electron donor in CuBDs ability to reduce Cu ions. The structure of Cu(+)-bound CuBD is almost identical to the Cu(2+)-bound structure except for the loss of one of the water ligands. The geometry of the site is unfavorable for Cu(+), thus providing a mechanism by which CuBD could readily transfer Cu ions to other proteins.  相似文献   

4.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. The major component of the plaques, amyloid beta peptide (Abeta), is generated from amyloid precursor protein (APP) by beta- and gamma-secretase-mediated cleavage. Because beta-secretase/beta-site APP cleaving enzyme 1 (BACE1) knockout mice produce much less Abeta and grow normally, a beta-secretase inhibitor is thought to be one of the most attractive targets for the development of therapeutic interventions for AD without apparent side-effects. Here, we report the in vivo inhibitory effects of a novel beta-secretase inhibitor, KMI-429, a transition-state mimic, which effectively inhibits beta-secretase activity in cultured cells in a dose-dependent manner. We injected KMI-429 into the hippocampus of APP transgenic mice. KMI-429 significantly reduced Abeta production in vivo in the soluble fraction compared with vehicle, but the level of Abeta in the insoluble fraction was unaffected. In contrast, an intrahippocampal injection of KMI-429 in wild-type mice remarkably reduced Abeta production in both the soluble and insoluble fractions. Our results indicate that the beta-secretase inhibitor KMI-429 is a promising candidate for the treatment of AD.  相似文献   

5.
beta-Amyloid peptides (Abeta40 and Abeta42) are the major constituents of amyloid plaques, which are one of the hallmarks of Alzheimer's disease (AD). The Abeta is derived from sequential cleavages of amyloid precursor protein (APP) by beta- and gamma-secretases. gamma-Secretase consists of at least four proteins where presenilins (PS1 and PS2 or PS) are the catalytic subunit involved in the gamma-site cleavage of APP. Secretion of both Abeta40 and Abeta42 is significantly reduced in PS1 knock-out cells and completely abolished in cells deficient for both PS1 and PS2. Consequently, both the PS proteins play essential roles in the production of the secretory of Abeta from cells. Recent studies in primary neurons, however, suggest that PSs are not required for intracellular Abeta42 accumulation; thus the intracellular Abeta42 appears to be generated in a PS-independent manner. Here we present the first biochemical evidence indicating that Abeta, especially Abeta42, can be generated in the absence of PS based on an in vitrogamma-secretase assay employing membranes prepared from PS-deficient Blastocyst-derived (BD) cells. This PS-independent gamma-secretase (PSIG) activity is sensitive to the changes in pH and displays an optimal activity at pH 6.0. Pepstatin A is a potent inhibitor for this proteolytic activity with IC50 of 1.2 nm and 0.4 nm for Abeta40 and Abeta42 generation, respectively. These results indicate that these PS-independent gamma-site cleavages are mediated by an aspartyl protease. More importantly, the PSIG activity displays a distinct preference in mediating the 42-site cleavage over the 40-site cleavage, thereby generating Abeta42 as the predominant product.  相似文献   

6.
Accumulation in brain of the beta-amyloid peptide (Abeta) is considered as crucial pathogenic event causing Alzheimer's disease (AD). Anti-Abeta immune therapy is a powerful means for Abeta clearance from the brain. We recently showed that intravenous injections of anti-Abeta antibodies led to reduction, elevation or no change in brain Abeta42 concentrations of an AD mouse model. We report here, in a second passive immunization protocol, a different bioactivity of same antibodies to alter brain Abeta42 concentrations. Comparing the bioactivity of anti-Abeta antibodies in these two passive immunization paradigms underscores the potential of immune therapy for AD treatment and suggests that both the epitope recognized by the antibody and the mode of antibody administration are crucial for its biological activity.  相似文献   

7.
gamma-Secretase is a key enzyme involved in the processing of the beta-amyloid precursor protein into amyloid beta-peptides (Abeta). Abeta accumulates and forms plaques in Alzheimer's disease (AD) brains. A progressive neurodegeneration and cognitive decline occurs during the course of the disease, and Abeta is believed to be central for the molecular pathogenesis of AD. Apoptosis has been implicated as one of the mechanisms behind the neuronal cell loss seen in AD. We have studied preservation and activity of the gamma-secretase complex during apoptosis in neuroblastoma cells (SH-SY5Y) exposed to staurosporine (STS). We report that the known components (presenilin, Nicastrin, Aph-1 and Pen-2) interact and form active gamma-secretase complexes in apoptotic cells. In addition, the fragments corresponding to the PS1 N-terminal fragment and the caspase-cleaved PS1 C-terminal fragment (PS1-caspCTF) were found to form active gamma-secretase complexes when co-expressed in presenilin (PS) knockout cells. Interestingly, PS1-caspCTF replaced the normal PS1 C-terminal fragment and was co-immunoprecipitated with the gamma-secretase complex in SH-SY5Y cells exposed to STS. In addition, Abeta was detected in medium from apoptotic HEK APP(swe) cells. Together, the data show that gamma-secretase complexes containing PS1-caspCTF are active, and suggest that this proteolytic activity is also important in dying cells and may affect the progression of AD.  相似文献   

8.
To examine how gamma- and epsilon-cleavages of beta-amyloid precursor protein (APP) are related, each cleavage site was replaced with a stretch of Trp that cannot be cleaved by gamma-secretase. Replacement of the gamma- or epsilon-site significantly suppressed secretion of amyloid beta-protein (Abeta), and produced longer Abeta or longer APP intracellular domain, respectively. This cleavage at the midportion between gamma- and epsilon-sites was also gamma-secretase-dependent. Blocking this cleavage with a Trp stretch remarkably suppressed Abeta generation, indicating that the midportion cleavage is required for the generation of Abeta.  相似文献   

9.
The synapse loss and neuronal cell death characteristic of Alzheimer's disease (AD) are believed to result in large part from the neurotoxic effects of beta-amyloid peptide (Abeta), a 40-42 amino acid peptide(s) derived proteolytically from beta-amyloid precursor protein (APP). However, APP is also cleaved intracellularly to generate a second cytotoxic peptide, C31, and this cleavage event occurs in vivo as well as in vitro and preferentially in the brains of AD patients (Lu et al. 2000). Here we show that APPC31 is toxic to neurons in primary culture, and that like APP, the APP family members APLP1 and possibly APLP2 are cleaved by caspases at their C-termini. The carboxy-terminal peptide derived from caspase cleavage of APLP1 shows a degree of neurotoxicity comparable to APPC31. Our results suggest that even though APLP1 and APLP2 cannot generate Abeta, they may potentially contribute to the pathology of AD by generating peptide fragments whose toxicity is comparable to that of APPC31.  相似文献   

10.
Immunotherapy against beta-amyloid peptide (Abeta) is a leading therapeutic direction for Alzheimer disease (AD). Experimental studies in transgenic mouse models of AD have demonstrated that Abeta immunization reduces Abeta plaque pathology and improves cognitive function. However, the biological mechanisms by which Abeta antibodies reduce amyloid accumulation in the brain remain unclear. We provide evidence that treatment of AD mutant neuroblastoma cells or primary neurons with Abeta antibodies decreases levels of intracellular Abeta. Antibody-mediated reduction in cellular Abeta appears to require that the antibody binds to the extracellular Abeta domain of the amyloid precursor protein (APP) and be internalized. In addition, treatment with Abeta antibodies protects against synaptic alterations that occur in APP mutant neurons.  相似文献   

11.
Alzheimer's disease (AD) is a common neurodegenerative disease that affects cognitive function in the elderly. Large extracellular beta-amyloid (Abeta) plaques and tau-containing intraneuronal neurofibrillary tangles characterize AD from a histopathologic perspective. However, the severity of dementia in AD is more closely related to the degree of the associated neuronal and synaptic loss. It is not known how neurons die and synapses are lost in AD; the current review summarizes what is known about this issue. Most evidence indicates that amyloid precursor protein (APP) processing is central to the AD process. The Abeta in plaques is a metabolite of the APP that forms when an alternative (beta-secretase and then gamma-secretase) enzymatic pathway is utilized for processing. Mutations of the APP gene lead to AD by influencing APP metabolism. One leading theory is that the Abeta in plaques leads to AD because Abeta is directly toxic to the adjacent neurons. Other theories advance the notion that neuronal death is triggered by intracellular events that occur during APP processing or by extraneuronal preplaque Abeta oligomers. Some investigators speculate that in many cases there is a more general disorder of protein processing in neurons that leads to cell death. In the later models, Abeta plaques are a byproduct of the disease process, rather than the direct cause of neuronal death. A direct correlation between Abeta plaque burden and neuronal (or synaptic) loss should occur in AD if Abeta plaques cause AD through a direct toxic effect. However, histopathologic studies indicate that the correlation between Abeta plaque burden and neuronal (or synaptic) loss is poor. We conclude that APP processing and Abeta formation is important to the AD process, but that neuronal alterations that underlie symptoms of AD are not due exclusively to a direct toxic effect of the Abeta deposits that occur in plaques. A more general problem with protein processing, damage due to the neuron from accumulation of intraneuronal Abeta or extracellular, preplaque Abeta may also be important as underlying factors in the dementia of AD.  相似文献   

12.
Alzheimer's disease is characterized by the deposition of amyloid beta-peptide (Abeta) plaques in the brain. Full-length amyloid-beta precursor protein (APP) is processed by alpha- and beta-secretases to yield soluble APP derivatives and membrane-bound C-terminal fragments, which are further processed by gamma-secretase to a non-amyloidogenic 3 kDa product or to Abeta fragments. As different Abeta fragments contain different parts of the APP transmembrane helix, one may speculate that they are retained more or less efficiently in the membrane. Here, we use the translocon-mediated insertion of different APP-derived polypeptide segments into the endoplasmic reticulum membrane to assess the propensities for membrane retention of Abeta fragments. Our results show a strong correlation between the length of an Abeta-derived segment and its ability to integrate into the microsomal membrane.  相似文献   

13.
14.
Kienlen-Campard P  Octave JN 《Peptides》2002,23(7):1199-1204
The production of amyloid peptide (Abeta) from its precursor (APP) plays a key role in Alzheimer's disease (AD). However, the link between Abeta production and neuronal death remains elusive. We studied the biological effects associated with human APP expression and metabolism in rat cortical neurons. Human APP expressed in neurons is processed to produce Abeta and soluble APP. Moreover, human APP expression triggers neuronal death. Pepstatin A, an inhibitor of aspartyl proteases that reduces Abeta production, protects neurons from APP-induced neurotoxicity. This suggests that Abeta production is likely to be the critical event in the neurodegenerative process of AD.  相似文献   

15.
Polymorphisms in the apolipoprotein E (APOE) gene affect the risk of Alzheimer disease and the amount of amyloid beta-protein (Abeta) deposited in the brain. The apoE protein reduces Abeta levels in conditioned media from cells in culture, possibly through Abeta clearance mechanisms. To explore this effect, we treated multiple neural and non-neural cell lines for 24 h with apoE at concentrations similar to those found in the cerebrospinal fluid (1-5 microg/mL). The apoE treatment reduced Abeta40 by 60-80% and Abeta42 to a lesser extent (20-30%) in the conditioned media. Surprisingly, apoE treatment resulted in an accumulation of amyloid precursor protein (APP)-C-terminal fragments in cell extracts and a marked reduction of APP intracellular domain-mediated signaling, consistent with diminished gamma-secretase processing of APP. All three isoforms of apoE, E2, E3 and E4, had similar effects on Abeta and APP-C-terminal fragments, and the effects were independent of the low-density lipoprotein receptor family. Apolipoprotein E had minimal effects on Notch cleavage and signaling in cell-based assays. These data suggest that apoE reduces gamma-secretase cleavage of APP, lowering secreted Abeta levels, with stronger effects on Abeta40. The apoE modulation of Abeta production and APP signaling is a potential mechanism affecting Alzheimer disease risk.  相似文献   

16.
Accumulation of amyloid beta peptide (Abeta) in brain is a hallmark of Alzheimer's disease (AD). Inhibition of beta-site amyloid precursor protein (APP)-cleaving enzyme-1 (BACE1), the enzyme that initiates Abeta production, and other Abeta-lowering strategies are commonly tested in transgenic mice overexpressing mutant APP. However, sporadic AD cases, which represent the majority of AD patients, are free from the mutation and do not necessarily have overproduction of APP. In addition, the commonly used Swedish mutant APP alters APP cleavage. Therefore, testing Abeta-lowering strategies in transgenic mice may not be optimal. In this study, we investigated the impact of BACE1 inhibition in non-transgenic mice with physiologically relevant APP expression. Existing Abeta ELISAs are either relatively insensitive to mouse Abeta or not specific to full-length Abeta. A newly developed ELISA detected a significant reduction of full-length soluble Abeta 1-40 in mice with the BACE1 homozygous gene deletion or BACE1 inhibitor treatment, while the level of x-40 Abeta was moderately reduced due to detection of non-full-length Abeta and compensatory activation of alpha-secretase. These results confirmed the feasibility of Abeta reduction through BACE1 inhibition under physiological conditions. Studies using our new ELISA in non-transgenic mice provide more accurate evaluation of Abeta-reducing strategies than was previously feasible.  相似文献   

17.
Limiting beta amyloid (Abeta) production could become an important therapeutic target in Alzheimer's disease (AD). Abeta is derived by the sequential cleavage of amyloid precursor protein (APP) by beta- and gamma-secretases. A double missense mutation in APP found in a Swedish pedigree (APPsw) elevates Abeta40 and Abeta42 production. Abeta production and, therefore, beta-secretase cleavage of APPsw reportedly occur in the endoplasmic reticulum (ER), Golgi and endocytic compartments. However, the relative contribution of beta-secretase cleavage occurring in each compartment has not been determined. Experiments described here use a novel ELISA to measure the beta-cleaved product, APPswbeta. Using this ELISA, we provide new information regarding the relative amount of beta-secretase cleavage of APPsw that occurs in secretory and endocytic pathways. Using a dilysine retrieval motif to retain APPsw in the ER, we discovered that less than 15% of the beta-secretase cleavage was still detected. Experiments utilizing endocytosis-impaired mutants of APPsw revealed that little or no beta-secretase cleavage of APPsw appears to take place through endocytosis. Surprisingly, deletion of the entire cytoplasmic tail increased both APPswbeta and Abeta secretion, suggesting that protein interactions with this region normally impede beta-secretase cleavage. These results suggest that APPsw is cleaved by beta-secretase late in the secretory pathway.  相似文献   

18.
Inhibition of β-secretase (BACE1) is a key therapeutic approach in Alzheimer's disease (AD), as BACE1 initiates amyloid-β (Aβ) cleavage from the β-amyloid precursor protein (APP). As Aβ reductions in mice lacking one BACE1 allele diverged considerably between studies we investigated the effect of BACE1 knock-out in more detail. With both BACE1 alleles the Swedish mutation (APP23 mice) increased APP processing and shifted it towards the β-secretase pathway as compared with non-mutated APP expressed at a similar level (APP51/16 mice). This effect was much smaller then observed in cell culture. An about 50% decrease in BACE1 enzyme activity resulted in a sub-proportional Aβ reduction with the Swedish mutation (-20%) and even less for non-mutated APP (-16%). In wild-type mice, the Aβ reduction may be even further diminished. Other metabolites of the β-secretase pathway decreased accordingly while the alternative α-secretase pathway increased. Complete BACE1 deletion strongly enhanced these changes. The remaining Aβ signal also described by others can be explained by assay cross-reactivity with other APP metabolites supporting BACE1 as the major β-secretase. Our data indicate that BACE1 is in excess over APP at the cleavage site(s). Alterations in APP expression or substrate properties, therefore, quantitatively change its cleavage and Aβ generation.  相似文献   

19.
One of the hallmarks of Alzheimer's disease is the accumulation of senile plaques in brain, extracellular lesions comprised mostly of aggregates of the amyloid beta-peptide (Abeta). Abeta is proteolytically derived from the Alzheimer's amyloid precursor protein (APP). The generation of Abeta and nonamyloidogenic derivatives of APP involves utilization of alternative processing pathways and multiple subcellular compartments. To improve our understanding of the regulation of APP processing, we investigated the effects of wortmannin, a phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, on APP processing. PI3-kinases form a multifaceted family of enzymes that represent converging points for multiple signal transduction pathways and also act as key regulators of vesicular trafficking. In N2a neuroblastoma cells expressing either wild-type APP or the "Swedish" familial Alzheimer's disease-associated mutant variant of APP, wortmannin treatment resulted in decreased release of both Abeta and soluble APPalpha. In parallel, full-length APP and both processed derivatives accumulated inside the cells. These effects were not present at nanomolar concentrations of wortmannin, but only at micromolar concentrations, implying the possible involvement of a recently described trans-Golgi network (TGN)-associated PI3-kinase that is resistant to nanomolar concentrations of the inhibitor, but sensitive to micromolar concentrations. All effects were reversible when the drug was removed from the cell culture medium. Given the suspected site of action of this novel PI3-kinase activity at the TGN, it is tempting to speculate that the unexpected increase in the levels of both intracellular soluble APPalpha and intracellular Abeta might be due to wortmannin-induced covesiculation of APP together with its respective secretase enzymes within the TGN, leading to the execution of alpha-, beta-, and gamma-secretase reactions.  相似文献   

20.
The 37-43 amino acid Abeta peptide is the principal component of beta-amyloid deposits in Alzheimer's disease (AD) brain, and is derived by serial proteolysis of the amyloid precursor protein (APP) by beta- and gamma-secretase. gamma-Secretase also cleaves APP at Val50 in the Abeta numbering (epsilon cleavage), resulting in the release of a fragment called APP intracellular domain (AICD). The aim of this study was to determine whether amino acid substitutions in the APP transmembrane domain differentially affect Abeta and AICD generation. We found that the APPV715F substitution, which has been previously shown to dramatically decrease Abeta40 and Abeta42 while increasing Abeta38 levels, does not affect in vitro generation of AICD. Furthermore, we found that the APPL720P substitution, which has been previously shown to prevent in vitro generation of AICD, completely prevents Abeta generation. Using a fluorescence resonance energy transfer (FRET) method, we next found that both the APPV715F and APPL720P substitutions significantly increase the distance between the N- and C-terminus of presenilin 1 (PS1), which has been proposed to contain the catalytic site of gamma-secretase. In conclusion, both APPV715F and APPL720P change PS1 conformation with differential effects on Abeta and AICD production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号