首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expressions for temperature-dependent magnetic circular dichroism (MCD) of the ferryl heme (Fe(4+)Por, S=1), which is a model of an intermediate product of the catalytic cycle of heme enzymes (compound II), have been derived in the framework of a two-term model. Theoretical predictions for the temperature and magnetic field dependence of MCD intensity of the ferryl heme are compared with those of the high-spin and low-spin ferric heme. Analysis of reported MCD spectra of myoglobin peroxide [Foot et al., Biochem. J. 2651 (1989) 515-522] and compound II of horseradish peroxidase [Browett et al., J. Am. Chem. Soc. 110 (1987) 3633-3640] has shown the presence in the samples of approximately 1% of a low-spin ferric component, which, however, should be taken into account in simulating observed temperature dependences of MCD intensity. The values of two adjustable parameters are estimated from the fit of the observed and simulated plots of MCD intensity against the reciprocal of the absolute temperature. One of them, the energy gap between the ground and excited terms, predetermines the axial zero-field splitting. The other parameter is correlated with the energy of splitting of excited quartets arising from either the porphyrin pi-->pi* transition or the spin-allowed charge-transfer transition.  相似文献   

2.
Studies that elucidate the behavior of the hemoglobins (Hbs) and myoglobins upon reaction with hydrogen peroxide are essential to the development of oxygen carrier substitutes. Stopped-flow kinetics and resonance Raman data show that the reaction between hydrogen peroxide and oxygenated and deoxygenated ferric Hb I (oxy- and deoxy-HbI) from Lucina pectinata produce compound I and compound II ferryl species. The rate constants ratio (k23/k41) between the formation of compound II from compound I (k23) and the oxidation of the ferrous HbI (k41, i.e., 25 M(-1) s(-1)) of 12 x 10(-4) M suggests that HbI has a peroxidative capacity for removing H2O2 from solution. Resonance Raman presents the formation of both, met-aquo-HbI and compound II ferryl species in the cyclic reaction of HbI with H2O2. The ferric HbI species is maintained by the presence of H2O2; it can produce HbI compound I, or it can be reduced to a deoxy-HbI derivative to form HbI compound II upon reaction with H2O2. The compound II ferryl vibration frequency appears at 805 and 769 cm(-1) for HbIFe(IV)=(16)O and HbIFe(IV)=(18)O species, respectively. This ferryl mode indicates the absence of hydrogen bonding between the carbonyl group of the distal Q64 and the HbIFe(IV)=O ferryl moiety. The observation suggests that both the trans-ligand effect and the polarizabilty of the HbI heme pocket are responsible for the observed ferryl oxo vibrational energy. The vibrational mode also suggests that the carbonyl group of the distal Q64 is oriented toward the iron of the heme group, increasing the distal pocket electron density.  相似文献   

3.
The formation of ferryl heme (Fe(IV) = O) species, i.e., compound I and compound II, has been identified as the main intermediates in heme protein peroxidative reactions. We report stopped-flow kinetic measurements which illustrate that the reaction of hemoglobin I (HbI) from Lucina pectinata with hydrogen peroxide produce ferryl intermediates compound I and compound II. Compound I appears relatively stable displaying an absorption at 648 nm. The rate constant value (k'(2)) for the conversion of compound I to compound II is 3.0 x 10(-2) s(-1), more than 100 times smaller than that reported for myoglobin. The rate constant value for the oxidation of the ferric heme (k'(12) + k'(13)) is 2.0 x 10(2) M(-1) s(-1). These values suggest an alternate route for the formation of compound II (by k'(13)) avoiding the step from compound I to compound II (k'(2)). In HbI from L. pectinata the stabilization of compound I is attribute to the unusual collection of amino acids residues (Q64, F29, F43, F68) in the heme pocket active site of the protein.  相似文献   

4.
Fe(IV)=O resonance Raman stretching vibrations were recently identified by this laboratory for horseradish peroxidase compound II and ferryl myoglobin. In the present report it is shown that Fe(IV)=O stretching frequency for horseradish peroxidase compound II will switch between two values depending on pH, with pKa values corresponding to the previously reported compound II heme-linked ionizations of pKa = 6.9 for isoenzyme A-2 and pKa = 8.5 for isoenzyme C. Similar pH-dependent shifts of the Fe(IV)=O frequency of ferryl myoglobin were not detected above pH 6. The Fe(IV)=O stretching frequencies of compound II of the horseradish peroxidase isoenzymes at pH values above the transition points were at a high value approaching the Fe(IV)=O stretching frequency of ferryl myoglobin. Below the transition points the horseradish peroxidase frequencies were found to be 10 cm-1 lower. Frequencies of the Fe(IV)=O stretching vibrations of horseradish peroxidase compound II for one set of isoenzymes were found to be sensitive to deuterium exchange below the transition point but not above. These results were interpreted to be indicative of an alkaline deprotonation of a distal amino acid group, probably histidine, which is hydrogen bonded to the oxyferryl group below the transition point. Deprotonation of this group at pH values above the pKa disrupts hydrogen bonding, raising the Fe(IV)=O stretching frequency, and is proposed to account for the lowering of compound II reactivity at alkaline pH. The high value of the Fe(IV)=O vibration of compound II above the transition point appears to be identical in frequency to what is believed to be the Fe(IV)=O vibration of compound X.  相似文献   

5.
Reductive titrations of the dissimilatory hexa-haem nitrite reductase, Wolinella succinogenes, with methyl viologen semiquinone (MV) and sodium dithionite, have been followed at room temperature by absorption, natural (CD) and magnetic circular dichroism (MCD) spectroscopies and at liquid helium temperature by electron paramagnetic resonance (EPR) and MCD spectroscopies. The nature of the reduced enzyme depends on the reductant employed. At room temperature a single high-spin ferrous haem, observed by MCD after reduction with MV, is absent from dithionite reduced samples. It is suggested that a product of dithionite oxidation becomes bound with high affinity to the reduced state of the enzyme causing the ferrous haem to become low-spin. The site occupied is likely to be the substrate binding haem. The course of the titration with MV at room temperature shows the reduction of high-spin ferric to high-spin ferrous haem. Since the EPR spectrum reveals the presence of an unusual high-low spin ferric haem pair in the oxidised state we propose that the active site of the enzyme is a novel haem pair consisting of one high (5-coordinate) and one low-spin (6 coordinate) haem, magnetically coupled and possibly bridged by a histidinate ligand.  相似文献   

6.
Resonance Raman spectroscopy has been used to investigate the structure and environment of the heme group in bovine liver catalase compound II. Both Soret- and Q-band excitation have been employed to observe and assign the skeletal stretching frequencies of the porphyrin ring. The oxidation state marker band v4 increases in frequency from 1373 cm-1 in ferricatalase to 1375 cm-1 in compound II, consistent with oxidation of the iron atom to the Fe(IV) state. Oxidation of five-coordinate, high-spin ferricatalase to compound II is accompanied by a marked increase of the porphyrin core marker frequencies that is consistent with a six-coordinate low-spin state with a contracted core. An Fe(IV) = O stretching band is observed at 775 cm-1 for compound II at neutral pH, indicating that there is an oxo ligand at the sixth site. At alkaline pH, the Fe(IV) = O stretching band shifts to 786 cm-1 in response to a heme-linked ionization that is attributed to the distal His-74 residue. Experiments carried out in H218O show that the oxo ligand of compound II exchanges with bulk water at neutral pH, but not at alkaline pH. This is essentially the same behavior exhibited by horseradish peroxidase compound II and the exchange reaction at neutral pH for both enzymes is attributed to acid/base catalysis by a distal His residue that is believed to be hydrogen-bonded to the oxo ligand. Thus, the structure and environment of the heme group of the compound II species of catalase and horseradish peroxidase are very similar. This indicates that the marked differences in their reactivities as oxidants are probably due to the manner in which the protein controls access of substrates to the heme group.  相似文献   

7.
The green primary compound of chloroperoxidase was prepared by freeze-quenching the enzyme after rapid mixing with a 5-fold excess of peracetic acid. The electron paramagnetic resonance (EPR) spectra of these preparations consisted of at least three distinct signals that could be assigned to native enzyme, a free radical, and the green compound I as reported earlier. The absorption spectrum of compound I was obtained through subtraction of EPR signals measured under passage conditions. The signal is well approximated by an effective spin Seff = 1/2 model with g = 1.64, 1.73, 2.00 and a highly anisotropic line width. M?ssbauer difference spectra of compound I samples minus native enzyme showed well-resolved magnetic splitting at 4.2 K, an isomer shift delta Fe = 0.15 mm/s, and quadrupole splitting delta EQ = 1.02 mm/s. All data are consistent with the model of an exchange-coupled spin S = 1 ferryl iron and a spin S' = 1/2 porphyrin radical. As a result of the large zero field splitting, D, of the ferryl iron and of intermediate antiferromagnetic exchange, S.J.S'.J approximately 1.02 D, the system consists of three Kramers doublets that are widely separated in energy. The model relates the EPR and M?ssbauer spectra of the ground doublet to the intrinsic parameters of the ferryl iron, D/k = 52 K, E/D congruent to 0.035, and A perpendicular (gn beta n) = 20 T, and the porphyrin radical.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
《Free radical research》2013,47(4):219-227
The addition of 25μM hydrogen peroxide to 20μM metmyoglobin produces ferryl (FeIV = O) myoglobin. Optical spectroscopy shows that the ferryl species reaches a maximum concentration (60-70% of total haem) after 10 minutes and decays slowly (hours). Low temperature EPR spectroscopy of the high spin metmyoglobin (g = 6) signal is consistent with these findings. At this low peroxide concentration there is no evidence for iron release from the haem. At least two free radicals are detectable by EPR immediately after H2O2 addition, but decay completely after ten minutes. However, a longer-lived radical is observed at lower concentrations that is still present after 90 minutes. The monohydroxamate N-methylbutyro-hydroxamic acid (NMBH) increases the rate of decay of the fenyl species. In the presence of NMBH, none of the protein-bound free radicals are detectable; instead nitroxide radicals produced by oxidation of the hydroxamate group are observed. Similar results are observed with the trihydroxamate, desferoxamine. “Ferryl myoglobin” is still able to initiate lipid peroxidation even after the short-lived protein free radicals are no longer detectable (E.S.R. Newman, C.A. Rice-Evans and M.J. Davies (1991) Biochemical and Biophysical Research Communications 179, 1414-1419). It is suggested that the longer-lived protein radicals described here may be partly responsible for this effect. The mechanism of inhibition of initiation of lipid peroxidation by hydroxamate drugs, such as NMBH, may therefore be due to reduction of the protein-derived radicals, rather than reduction of ferryl haem.  相似文献   

9.
The Proteus mirabilis catalase is one of the most efficient heme-containing catalase and forms a relatively stable compound II. Samples of compound II were prepared from PMC enriched in (57)Fe. For the first time, two different forms of compound II, namely low pH compound II (LpH II) (43%) and high pH compound II (HpH II) (25%), have been characterized by M?ssbauer spectroscopy at pH 8.3. The ratio LpH II/HpH II increases irreversibly with decreasing pH. The large quadrupole splitting value of LpH II (DeltaE(Q)=2.29 (2) mm/s, with delta(/Fe)=0.03 (2) mm/s), compared to that of HpH II (DeltaE(Q)=1.47 (2) mm/s, with delta(/Fe)=0.07 (2) mm/s), reflects the protonation of the ferryl group. Quadrupole splitting values of 1.46 and 2.15mm/s have been computed by DFT for optimized models of the ferryl compound II (model 1) and the protonated ferryl compound II (model 2), respectively, starting from the Fe(IV)O model initially published by Rovira and Fita [C. Rovira, I. Fita, J. Phys. Chem. B 107 (2003) 5300-5305]. Therefore, we attribute the LpH II compound to a protonated ferryl Fe(IV)-OH complex, whereas the HpH II compound corresponds to the classical ferryl Fe(IV)O complex.  相似文献   

10.
The addition of 25μM hydrogen peroxide to 20μM metmyoglobin produces ferryl (FeIV = O) myoglobin. Optical spectroscopy shows that the ferryl species reaches a maximum concentration (60-70% of total haem) after 10 minutes and decays slowly (hours). Low temperature EPR spectroscopy of the high spin metmyoglobin (g = 6) signal is consistent with these findings. At this low peroxide concentration there is no evidence for iron release from the haem. At least two free radicals are detectable by EPR immediately after H2O2 addition, but decay completely after ten minutes. However, a longer-lived radical is observed at lower concentrations that is still present after 90 minutes. The monohydroxamate N-methylbutyro-hydroxamic acid (NMBH) increases the rate of decay of the fenyl species. In the presence of NMBH, none of the protein-bound free radicals are detectable; instead nitroxide radicals produced by oxidation of the hydroxamate group are observed. Similar results are observed with the trihydroxamate, desferoxamine. “Ferryl myoglobin” is still able to initiate lipid peroxidation even after the short-lived protein free radicals are no longer detectable (E.S.R. Newman, C.A. Rice-Evans and M.J. Davies (1991) Biochemical and Biophysical Research Communications 179, 1414-1419). It is suggested that the longer-lived protein radicals described here may be partly responsible for this effect. The mechanism of inhibition of initiation of lipid peroxidation by hydroxamate drugs, such as NMBH, may therefore be due to reduction of the protein-derived radicals, rather than reduction of ferryl haem.  相似文献   

11.
Craft JL  Ludden PW  Brunold TC 《Biochemistry》2002,41(5):1681-1688
Carbon monoxide dehydrogenase (CODH) from Rhodospirillum rubrum utilizes three types of Fe-S clusters to catalyze the reversible oxidation of CO to CO(2): a novel [Ni4Fe5S] active site (C cluster) and two distinct [4Fe4S] electron-transfer sites (B and D clusters). While recent X-ray data show the geometric arrangement of the five metal centers at the C cluster, electronic structures of the various [Ni4Fe5S] oxidation states remain ambiguous. These studies report magnetic circular dichroism (MCD), variable temperature, variable field MCD (VTVH MCD), and resonance Raman (rR) spectroscopic properties of the Fe-S clusters contained in Ni-deficient CODH. Essentially homogeneous sample preparations aided in the resolution of the reduced [4Fe4S](1+) (S = (1)/(2)) B cluster and the reduced Ni-deficient C cluster (denoted C, S > (1)/(2)) by MCD. The three Fe atoms derived from the [Ni3Fe4S] cubane component appear to dominate the reduced C cluster MCD spectrum, while the presence of a fourth Fe center can be inferred from the ground state spin. The same underlying MCD features present in Ni-deficient CODH spectra are also observed for Ni-containing CODH, suggesting that both proteins contain the same C cluster Fe-S component. Overlooked in all spectroscopic studies to date, the D cluster was confirmed by rR to be a typical [4Fe4S] site with cysteinyl coordination. Together, MCD and rR data show that the D cluster remains in the oxidized [4Fe4S](2+) (S = 0) state at potentials > or = -530 mV (versus SHE), thus exhibiting an unusually low redox potential for a standard [4Fe4S](2+/1+) electron-transfer site.  相似文献   

12.
The magnetic circular dichroism (MCD) spectra of the 4Fe clusters in the iron-sulphur proteins high-potential iron protein from Chromatium and the 8Fe ferredoxin from Clostridium pasteurianum have been measured over the wavelength range 300-800 nm at temperatures between approx. 1.5 and 50 K and at magnetic fields up to 5 tesla. In both cases the proteins have been studied in the oxidized and reduced states. The reduced state of high-potential iron protein gives a temperature-independent MCD spectrum up to 20 K, confirming the diamagetism of this state at low temperature. The MCD spectrum of samples of oxidized ferredoxin invariably show the presence of a low concentration of a paramagnetic species, in agreement with the observation that the EPR spectrum always shows a signal at g = 2.01. The paramagnetic MCD spectrum runs across the whole of the wavelength range studied and therefore most probably originates from an iron-sulphur centre. The diamagnetic component of the MCD spectrum of oxidized ferredoxin is very similar to that of reduced high-potential iron protein. The low-temperature MCD spectra of oxidized high-potential iron protein and reduced ferredoxin reveal intense, temperature-dependent bands. The spectra are highly structured with that of high-potential iron protein showing a large number of electronic transitions across the visible region. The MCD spectra of the two different oxidation levels are quite distinctive and should provide a means of establishing the identity of these state of 4Fe clusters in more complex proteins. MCD magnetisation curves have been constructed from detailed studies of the field and temperature dependence of the MCD spectra of the two paramagnetic oxidation states. These plots can be satisfactorily fitted to the theoretically computed curves for an S = 1/2 ground state with the g factors experimentally determined by EPR spectroscopy. The low-temperature MCD spectra of the reduced 2Fe-2S ferredoxin from Spirulina maxima are also presented and MCD magnetisation curves plotted and fitted to the experimentally determined g factors.  相似文献   

13.
The magnetic circular dichroism (MCD) spectra of three horse heart metmyoglobin compounds, the cyanide, azide and hydroxide forms, have been measured in the visible and near infrared spectral regions at temperatures down to 1.5 K. The three compounds are all virtually completely low-spin at low temperatures with ground g factors of decreasing rhombicity in the order CN- greater than N3- greater than OH-. The MCD magnetization curves have been constructed at selected wavelengths throughout the visible and near infrared regions. The curves are independent of wavelength, showing that all the bands studied are x,y polarized and can, moreover, be satisfactorily fitted to the g factors determined by EPR spectroscopy with theoretical expressions (Thomson, A.J. and Johnson, M.K. (1980) Biochem. J. 191, 411-420). This confirms the assignment and polarizations of the near infrared region low-spin ferric haem charge-transfer bands. The energies of these transitions are markedly dependent upon the added axial ligand, ranging from 1595 to 1295, and 1050 nm for the compounds CN-, N3- and OH-. The MCD spectra of bovine liver catalase and its cyanide adduct have been recorded in the Soret, visible and near infrared regions. Catalase is know to have phenolate anion as the proximal ligand of the haem group. The forms of the spectra make an interesting comparison with those of the analogous metmyoglobin derivatives, in which histidine is the proximal ligand. The MCD spectra of catalase at 4.2 K is an example of a fully high-spin haemoprotein. The cyanide compound is completely low-spin at 4.2 K. The near infrared charge-transfer band is at 1300 nm, showing the effect on the energy of this band of changing from imidazole to phenolate ion as the proximal ligand to haem.  相似文献   

14.
The destructive oxidation of aerobically isolated 7Fe Azotobacter vinelandii ferredoxin I [(7Fe)FdI] by Fe(CN)3-6 is examined using low-temperature magnetic circular dichroism (MCD) and EPR. The results demonstrate that oxidation of the [3Fe-3S] cluster occurs only after essentially complete destruction of the [4Fe-4S] cluster. It is therefore feasible by controlled Fe(CN)3-6 oxidation to obtain a partially metallated form of FdI, (3Fe)FdI, containing only a [3Fe-3S] cluster. The MCD and EPR data demonstrate that the [3Fe-3S] cluster in (3Fe)FdI is essentially identical in structure to that in the native protein.  相似文献   

15.
Ferric myoglobin undergoes a two-electron oxidation in its reaction with H(2)O(2). One oxidation equivalent is used to oxidize Fe(III) to the Fe(IV) ferryl species, while the second is associated with a protein radical but is rapidly dissipated. The ferryl species is then slowly reduced back to the ferric state by unknown mechanisms. To clarify this process, the formation and stability of the ferryl forms of the Tyr --> Phe and Trp --> Phe mutants of recombinant sperm whale myoglobin (SwMb) were investigated. Kinetic studies showed that all the mutants react normally with H(2)O(2) to give the ferryl species. However, the rapid phase of ferryl autoreduction typical of wild-type SwMb was absent in the triple Tyr --> Phe mutant and considerably reduced in the Y103F and Y151F mutants, strongly implicating these two residues as intramolecular electron donors. Replacement of Tyr146, Trp7, or Trp14 did not significantly alter the autoreduction, indicating that these residues do not contribute to ferryl reduction despite the fact that Tyr146 is closer to the iron than Tyr151 or Tyr103. Furthermore, analysis of the fast phase of autoreduction in the dimer versus recovered monomer of the Tyr --> Phe mutant K102Q/Y103F/Y146F indicates that the Tyr151-Tyr151 cross-link is a particularly effective electron donor. The presence of an additional, slow phase of reduction in the triple Tyr --> Phe mutant indicates that alternative but normally minor electron-transfer pathways exist in SwMb. These results demonstrate that internal electron transfer is governed as much by the tyrosine pK(a) and oxidation potential as by its distance from the electron accepting iron atom.  相似文献   

16.
Reaction of ferric native myoglobin (Mb) with hydrogen peroxide (H(2)O(2)) was studied by the aid of stopped-flow rapid-scan spectrophotometry. In contrast to the results in previous studies where compound I was reported to be undetectable, both sperm whale and horse heart metmyoglobins (metMbs) formed a significant quantity of compound I, an oxoferryl porphyrin pi-cation radical (Por(+)-Fe(IV)(O)), during their reactions with H(2)O(2). With both kinds of Mbs, formation of compound I was more clearly observed in D(2)O than in H(2)O. The compound thus formed was capable of performing monooxygenation of thioanisole to methyl phenyl sulfoxide and a 2-electron oxidation of H(2)O(2) giving O(2) and H(2)O as products. It was also converted into ferryl myoglobin (Por-Fe(IV)(O)-globin(+)) spontaneously. Rate constants for these reactions and that for a direct conversion of metMb to ferryl Mb through the homolysis of H(2)O(2) were determined. These results established unambiguously that native metMb can form both compound I and ferryl Mb upon reaction with H(2)O(2) and that these high valent iron compounds serve as essential intermediates in Mb-assisted peroxidative reactions. The observed deuterium effect on the apparent stability of compound I was attributable to that effect on the hydrogen abstraction step in the 2-electron oxidation of H(2)O(2) by compound I.  相似文献   

17.
Beef heart cytochrome c oxidase contains two cytochromes, a and a3, and Pseudomonas aeruginosa cytochrome c peroxidase has one high- and one low-potential c haem, cHP and cLP. The parallelism in co-ordination and spin states between cytochrome a and haem cHP on the one hand and between cytochrome a3 and haem cLP on the other is illustrated. The two latter haems become accessible to cyanide, when the former are reduced. Such reduction also leads to an activation of the enzymes. Mechanisms are presented in which ferryl forms of cytochromes a3 and haem cLP take part. The enzymes reach an oxidation state, formally the same as resting enzyme, but with different properties.  相似文献   

18.
Horseradish peroxidase will catalyze the chlorination of certain substrates by sodium chlorite through an intermediate known as compound X. A chlorite-derived chlorine atom is known to be retained by compound X and has been proposed to be located at the heme active site. Although several heme structures have been proposed for compound X, including an Fe(IV)-OCl group, preliminary data previously reported by our laboratory suggested that compound X contained a heme Fe(IV) = O group, based on the similarity of a compound X resonance Raman band at 788 cm-1 to resonance Raman Fe(IV) = O stretching vibrations recently identified for horseradish peroxidase compound II and ferryl myoglobin. Isotopic studies now confirm that the 788 cm-1 resonance Raman band of compound X is, in fact, due to a heme Fe(IV) = O group, with the oxygen atom derived from chlorite. The Fe(IV) = O frequency of compound X, of horseradish peroxidase isoenzymes B and C, undergoes a pH-induced frequency shift, with behavior which appears to be the same as that previously reported for compound II, formed from the same isoenzymes. These observations strongly suggest that compounds II and X have very similar, if not identical, heme structures. The chlorine atom thus appears not to be heme-bound and may rather be located on an amino acid residue. The studies on compound X reported here were done in a pH region above pH 8, where compound X is moderately stable. The present results do not necessarily apply to compound X below pH 8.  相似文献   

19.
Myoglobin catalyses the breakdown of lipid hydroperoxides (e.g., HPODE) during which the absorption band of the lipid conjugated diene (234 nm) is partially bleached. The constant for this process is strongly pH-dependent (k = 9.5 x 10(-3)s(-1), pH 7: k = 2.3 x 10(-1)s(-1), pH 5). This rate enhancement is not due to acid-induced changes in protein conformation or the involvement of protein-based radical species, as demonstrated by an almost identical pH dependence of the same reaction catalyzed by ferric haemin. The rate constants for ferryl formation and auto-reduction show different pH dependencies, with a pK of 8.3 for ferryl formation and a projected pK of 3.5 for ferryl auto-reduction. The pH dependence for the auto-reduction of the ferryl species is the same as that of the myoblobin catalyzed breakdown of HPODE. We propose that the protonated form of ferryl myoglobin (Fe(4+) - OH(-)) is the reactive species regulating the peroxidatic activity of myoglobin. The protonated ferryl species abstracts an electron from either the protein or porphyrin, allowing fast regeneration of the ferric species. Alkaline conditions stabilize the ferryl species, making myoglobin considerably less reactive towards lipids and lipid hydroperoxides. These findings are significant for understanding myoglobin-induced oxidative stress in vivo and the development of therapies.  相似文献   

20.
Horseradish peroxidase (HRP) compound I is photolabile at all temperatures between room temperature and 4 K. The photoredox reaction has been studied in frozen glassy solutions by using optical absorption and magnetic circular dichroism spectra following photolysis of HRP compound I with visible-wavelength light at 4.2 and 77 K. The photochemical process is characterized as a concerted two-electron transfer reaction which results in the conversion of the Fe(IV) heme pi-cation radical species of HRP compound I into a low-spin Fe(III) heme species. This reaction occurs even when photolysis is carried out at 4.2 K. Spectra recorded between 4.2 and 80 K for the low-spin ferric hydroxide complex of HRP closely resemble the data measured for the photochemical product. The proposed mechanism for the photoreaction is (formula; see text) No evidence is found for the formation of an Fe(II) heme at these temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号