首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidation of tyrosine moieties by radicals involved in lipid peroxidation is of current interest; while a rate constant has been reported for reaction of lipid peroxyl radicals with a tyrosine model, little is known about the reaction between tyrosine and alkoxyl radicals (also intermediates in the lipid peroxidation chain reaction). In this study, the reaction between a model alkoxyl radical, the tert-butoxyl radical and tyrosine was followed using steady-state and pulse radiolysis. Acetone, a product of the β-fragmentation of the tert-butoxyl radical, was measured; the yield was reduced by the presence of tyrosine in a concentration- and pH-dependent manner. From these data, a rate constant for the reaction between tert-butoxyl and tyrosine was estimated as 6 ± 1 × 10(7) M(-1) s(-1) at pH 10. Tyrosine phenoxyl radicals were also monitored directly by kinetic spectrophotometry following generation of tert-butoxyl radicals by pulse radiolysis of solutions containing tyrosine. From the yield of tyrosyl radicals (measured before they decayed) as a function of tyrosine concentration, a rate constant for the reaction between tert-butoxyl and tyrosine was estimated as 7 ± 3 × 10(7) M(-1) s(-1) at pH 10 (the reaction was not observable at pH 7). We conclude that reaction involves oxidation of tyrosine phenolate rather than undissociated phenol; since the pK(a) of phenolic hydroxyl dissociation in tyrosine is ≈ 10.3, this infers a much lower rate constant, about 3 × 10(5) M(-1) s(-1), for the reaction between this alkoxyl radical and tyrosine at pH 7.4.  相似文献   

2.
Kojic acid is widely used to inhibit the browning effect of tyrosinase in cosmetic and food industries. In this work, synthesis of kojic monooleate ester (KMO) was carried out using lipase-catalysed esterification of kojic acid and oleic acid in a solvent-free system. Response Surface Methodology (RSM) based on central composite rotatable design (CCRD) was used to optimise the main important reaction variables, such as enzyme amount, reaction temperature, substrate molar ratio, and reaction time along with immobilised lipase from Candida Antarctica (Novozym 435) as a biocatalyst. The RSM data indicated that the reaction temperature was less significant in comparison to other factors for the production of a KMO ester. By using this statistical analysis, a quadratic model was developed in order to correlate the preparation variable to the response (reaction yield). The optimum conditions for the enzymatic synthesis of KMO were as follows: an enzyme amount of 2.0 wt%, reaction temperature of 83.69°C, substrate molar ratio of 1:2.37 (mmole kojic acid:oleic acid) and a reaction time of 300.0 min. Under these conditions, the actual yield percentage obtained was 42.09%, which is comparably well with the maximum predicted value of 44.46%. Under the optimal conditions, Novozym 435 could be reused for 5 cycles for KMO production percentage yield of at least 40%. The results demonstrated that statistical analysis using RSM can be used efficiently to optimise the production of a KMO ester. Moreover, the optimum conditions obtained can be applied to scale-up the process and minimise the cost.  相似文献   

3.
Cleavage of a viral polyprotein by a cellular proteolytic activity.   总被引:5,自引:4,他引:1       下载免费PDF全文
The 200,000-dalton polyprotein encoded by the bottom component RNA of cowpea mosaic virus was synthesized in rabbit reticulocyte lysates, and this in vitro-synthesized protein was isolated from the lysate reaction mixture by sucrose density gradient centrifugation. Incubation of the isolated polyprotein with buffer caused no change in the protein, but incubation with reticulocyte lysates or with fractionated lysate proteins resulted in cleavage of the protein into the expected cleavage products (32,000- and 170,000-dalton proteins). This finding indicated that reticulocytes contain a proteolytic activity that is needed for the primary cleavage reaction. A cleavage assay in which we used partially purified preparations showed that cleavage was an ATP-dependent reaction.  相似文献   

4.
Tin (IV) oxide was made using an anodization and annealing method and was used as a working electrode in an electrochemical cofactor regeneration reaction. This material was formed with a large surface area, and by changing the preparation conditions, it was possible to control the morphology. Tin oxide has redox properties similar to those of frequently used mediators required for electron transfer between cofactors and an electrode. Therefore, by using tin oxide as a novel electrode, mediator-free electrochemical cofactor regeneration may be possible. Oxidation and reduction of the nicotinamide cofactors, NAD(P)H and NAD(P)+, were carried out under various reaction conditions. The results showed a high efficiency for oxidizing NADH over a broad range of pH and temperatures. The oxidation tendency of NADPH was also observed, and it demonstrated a similar reaction tendency as NADH. When using a tin oxide electrode, NAD+ was readily reduced to NADH, though the efficiency of this reaction was lower than for NADH oxidation. Oxidation of 2-propanol to acetone was used as a model system using alcohol dehydrogenase and the cofactor regeneration system suggested in this study. The electroenzymatic reaction showed efficient regeneration of NADP+ without a mediator.  相似文献   

5.
5-Oxo-L-prolinase catalyzes a reaction in which the endergonic cleavage of 5-oxo-L-proline to form L-glutamate is coupled to the exergonic cleavage of ATP to ADP and Pi. In the present research, the enzyme present in a strain of Pseudomonas putida isolated from soil by enrichment culture was found to be composed of two protein components. Neither component alone could catalyze the 5-oxoprolinase reaction, but the reaction was effectively catalyzed when they were mixed. One component (A) exhibited 5-oxo-L-proline-dependent ATPase activity indicating that Component A can interact with both ATP and 5-oxo-L-proline. The other component (coupling protein; B) does not exhibit ATPase activity nor is there evidence that it binds 5-oxo-L-proline. The findings are consistent with (but do not prove) the hypothesis that the Component A catalyzes an initial step in the reaction which involves 5-oxoproline and ATP, such as phosphorylation of 5-oxoproline. The coupling protein (B) may function as a catalyst that converts a phosphorylated form of 5-oxoproline to glutamate, or it might alter the conformation of Component A so as to facilitate the reaction.  相似文献   

6.
This work presents laccase-mediated model reactions for coupling of reduced 2,4,6-trinitrotoluene (TNT) metabolites to an organic soil matrix. The structure of an isolated coupling product of 2,4-diamino-6-nitrotoluene (2,4-DANT) to guaiacol as humic constituent was determined. Among several structures, the compound was identified conclusively to be the trinuclear coupling product 5-(2-amino-3-methyl-4-nitroanilino)-3,3(prm1)-dimethoxy-4,4(prm1)-diphenoqu inone. The compound has a weight of 409 g mol(sup-1) and may serve as a model reaction for the biogenic formation of bound residues in soil from TNT by coupling aminotoluenes (reduced TNT metabolites) to humic constituents. A linear correlation of the substrate consumption to the enzyme activity was detected. Based on this observation, the described reaction of 2,4-DANT coupling to guaiacol may be used for determination of laccase activity since the reaction was not inhibited by other compounds of culture supernatants. We propose a two-step mechanism for the coupling reaction because 2,4-DANT was not transformed by laccases in the absence of guaiacol and guaiacol oxidation was independent of the presence of 2,4-DANT. The first reaction step is a laccase-mediated dimerization of two guaiacol monomers with subsequent oxidation to a diphenoquinone. The second step is the nucleophilic addition of 2,4-DANT to the ortho position of the carbonyl group of the diphenoquinone structure.  相似文献   

7.
An attempt was made to use the phospholipase D (PLD)- containing culture supernatants of actinomycetes directly as catalysts for the transphosphatidylation reaction of phosphatidylcholine (PC) to phosphatidylethanolamine (PE) in a biphasic system. Of the five actinomycetes (three Streptomyces sp. and two Streptoverticillium sp.) examined, three (St. mediocidicus, Stv. cinnamoneum and Stv. hachijoense) exhibited good PLD production performance, but the selectivity (ratio of transphosphatidylation to hydrolysis) of the PLDs in the culture supernatant of all three actinomycetes were significantly low. However, the addition of EDTA to the reaction mixture as a chelating agent remarkably improved the selectivity of the PLDs, which approached 100% in all the culture supernatants. Commercially available PLDs were also investigated and classified into two types. The PLDs of one type had high selectivity and no metal was required for the enzyme activity, while those of the other type showed low selectivity and a metal was necessary for the enzyme to be activated. From this finding, it was considered that the culture supernatants used in this study contained several PLDs of both types. When the chelating agent was added to the reaction mixture, the hydrolysis due to PLDs with low selectivity was suppressed by removal of the essential metal, resulting in an increased in the overall selectivity of the PLDs in the culture supernatant. Repeated batch transphosphatidylation reactions were performed 20 times, reusing the PLDs in the aqueous phase by centrifugation; the reaction rate gradually decreased to 60% of that of batch 1 by batch 20. This suggests that the transphosphatidylation reaction using a culture supernatant has potential for industrial application. (c) 1994 John Wiley & Sons, Inc.  相似文献   

8.
Recently, we purified an alkaline ceramidase (CDase) of Pseudomonas aeruginosa and found that the enzyme catalyzed a reversible reaction in which the N-acyl linkage of ceramide was hydrolyzed or synthesized [J. Biol. Chem. 273 (1998) 14368-14373]. Here, we report the characterization of the reverse hydrolysis reaction of the CDase using a recombinant enzyme. The reverse hydrolysis reaction of the CDase was clearly distinguishable from the reaction of an acyl-coenzyme A (CoA) dependent N-acyltransferase, because the CDase catalyzed the condensation of a free fatty acid to sphingosine (Sph) without cofactors but did not catalyze the transfer of a fatty acid from acyl-CoA to Sph. The reverse hydrolysis reaction proceeded most efficiently in the presence of 0.05% Triton X-100 at neutral pH, while the hydrolysis reaction tended to be favored with an increase in the concentration of the detergent at alkaline pH. The specificity of the reverse reaction for fatty acids is quite broad; saturated and unsaturated fatty acids were efficiently condensed to Sph. In contrast, the stereo-specificity of the reverse reaction for the sphingoid bases is very strict; the D-erythro form of Sph, not the L-erythro or D/L-threo one, was only acceptable for the reverse reaction. Chemical modification of the enzyme protein affected or did not affect both the hydrolysis and reverse reactions to the same extent, suggesting that the two reactions are catalyzed at the same catalytic domain.  相似文献   

9.
Peptide synthesis was carried out in a variety of organic solvents with low contents of water. The enzyme was deposited on the support material, celite, from an aqueous buffer solution. After evaporation of the water the biocatalyst was suspended in the reaction mixtures. The chymotrypsin-catalyzed reaction between Z-Phe-OMe and Leu-NH2 was used as a model reaction. Under the conditions used ([Z-Phe-OMe]0 less than or equal to 40 mM, [Leu-NH2]0/([Z-Phe-OMe]0 = 1.5) the reaction was first order with respect to Z-Phe-OMe. Tris buffer, pH 7.8, was the best buffer to use in the preparation of the biocatalyst. In water-miscible solvents the reaction rate increased with increasing water content, but the final yield of peptide decreased due to the competing hydrolysis of Z-Phe-OMe. Among the water-miscible solvents, acetonitrile was the most suitable, giving 91% yield with 4% (by vol.) water. In water-immiscible solvents the reaction rate and the product distribution were little affected by water additions in the range between 0% and 2% (vol. %) in excess of water saturation. The reaction rates correlated well with the log P values of the solvent. The highest yield (93%) was obtained in ethyl acetate; in this solvent the reaction was also fast. Under most reaction conditions used the reaction product was stable; secondary hydrolysis of the peptide formed was normally negligible. The method presented is a combination of kinetically controlled peptide synthesis (giving high reaction rates) and thermodynamically controlled peptide synthesis (giving stable reaction products).  相似文献   

10.
We have applied an integrated circuit photodiode array (PDA) chip system to a DNA chip. The PDA chip system, constructed using conventional bipolar semiconductor technology, acts as a solid transducer surface as well as a two-dimensional photodetector. DNA hybridization was performed directly on the PDA chip. The target DNA, the Bacillus subtilis sspE gene, was amplified by polymerase chain reaction (PCR). The 340-bp PCR product was labeled using digoxigenin (DIG). A silicon nitride layer on the photodiode was treated with poly-L-lysine to immobilize the DNA on the surface of the photodiode detection elements. Consequently, the surface of the photodiode detector became positively charged. An anti-DIG-alkaline phosphatase conjugate was reacted with the hybridized DIG-labeled DNA. A color reaction was performed based on the enzymatic reaction between nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl-phosphate (NBT/BCIP) staining solution and a DNA complex containing antibodies. A blue precipitate was formed on the surfaces of the photodiode detection elements. Successful quantitative analysis of the hybridized PCR products was achieved from the light absorption properties of the blue enzymatic reaction product that was produced after a series of reaction processes. Our DNA chip system avoids the complicated optical alignments and light-collecting optical components that are usually required for an optical DNA chip device. As a result, a simple, compact, portable and low-cost DNA chip is achieved. This system has great potential as an alternative system to the conventional DNA reader.  相似文献   

11.
Saccharomyces cerevisiae (yeast) cells were employed as a source of alcohol dehydrogenase in the NAD(+)-to-NADH reaction. The cells were immobilized in calcium alginate monofilament fibers and used in a biological reactor. The alginate could not be heat sterilized since temperatures above 80 degrees C caused the polymer chains to degrade. The same proved true for the high pH necessary for the reaction, but the alginate strength was increased by Ba(2+) solution treatment. X-ray probe analysis showed that about 30% of the Ca(2+) sites exchanged with the Ba(2+) ions. The Ba(2+) ions (as well as the Ca(2+) ions) permeabilized the cells and increased the reaction rate. Long term trials showed that Ba(2+) ions were slowly elutriated from the fiber biocatalyst, causing a drop in reaction rate. The trend certainly was reversible as far as the fiber was concerned. It is assumed that the permeabilization of the cells by the Ba(2+) ions was a reversible process.  相似文献   

12.
A microchannel reactor system was used in a biodesulfurization process in which the rate of biodesulfurization in the oil/water phase of the microchannel reaction was more than nine-fold that in a batch (control) reaction. In addition, the microchannel reaction system using a bacterial cell suspension degraded alkylated dibenzothiophene that was not degraded by the batch reaction system. This work provides a foundation for the application of a microchannel reactor system consisting of biological catalysts using an oil/water phase reaction.  相似文献   

13.
Starting from D-(-)-ribose, a tricyclic natural product-like scaffold suitable for combinatorial derivatization was synthesized via an intramolecular hetero-Diels-Alder reaction. Lithium perchlorate was found to enhance the reaction rate and, at the same time, had a pronounced influence on the chemoselectivity of the reaction. The stereochemical course of the reaction, however, was not influenced by the Lewis acid.  相似文献   

14.
Pyridoxal 5'-phosphate-dependent tryptophan synthase catalyzes the last two reactions of tryptophan biosynthesis, and is comprised of two distinct subunits, alpha and beta. TktrpA and TktrpB, which encode the alpha subunit and beta subunit of tryptophan synthase from a hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1, were independently expressed in Escherichia coli and their protein products were purified. Tryptophan synthase complex (Tk-TS complex), obtained by heat treatment of a mixture of the cell-free extracts containing each subunit, was also purified. Gel-filtration chromatography revealed that Tk-TrpA was a monomer (alpha), Tk-TrpB was a dimer (beta2), and Tk-TS complex was a tetramer (alpha2 beta2). The Tk-TS complex catalyzed the overall alphabeta reaction with a specific activity of 110 micromol Trp per micromol active site per min under its optimal conditions (80 degrees C, pH 8.5). Individual activity of the alpha and beta reactions of the Tk-TS complex were 8.5 micromol indole per micromol active site per min (70 degrees C, pH 7.0) and 119 micromol Trp per micromol active site per min (90 degrees C, pH 7.0), respectively. The low activity of the alpha reaction of the Tk-TS complex indicated that turnover of the beta reaction, namely the consumption of indole, was necessary for efficient progression of the alpha reaction. The alpha and beta reaction activities of independently purified Tk-TrpA and Tk-TrpB were 10-fold lower than the respective activities detected from the Tk-TS complex, indicating that during heat treatment, each subunit was necessary for the other to obtain a proper conformation for high enzyme activity. Tk-TrpA showed only trace activities at all temperatures examined (40-85 degrees C). Tk-TrpB also displayed low levels of activity at temperatures below 70 degrees C. However, Tk-TrpB activity increased at temperatures above 70 degrees C, and eventually at 100 degrees C, reached an equivalent level of activity with the beta reaction activity of Tk-TS complex. Taking into account the results of circular dichroism analyses of the three enzymes, a model is proposed which explains the relationship between structure and activity of the alpha and beta subunits with changes in temperature. This is the first report of an archaeal tryptophan synthase, and the first biochemical analysis of a thermostable tryptophan synthase at high temperature.  相似文献   

15.
A synchronous enzyme-reaction system using water-soluble formazan and a non-enzymatic electron mediator was developed and applied to an enzyme immunoassay (EIA). The reaction system consists of four steps: (I) dephosphorylation of NADP(+) to produce NAD(+) by alkaline phosphatase (ALP), (II) reduction of NAD(+) to produce NADH with oxidation of ethanol to yield acetaldehyde by alcohol dehydrogenase (ADH), (III) reduction of water-soluble tetrazolium salt (WST-1) to produce formazan by NADH via 1-methoxy-5-methyl-phenazinium methyl sulfate (PMS), and (IV) re-reduction of NAD(+) to produce NADH by ADH. During each cycle, one molecule of tetrazolium is converted to one molecule of formazan. The concentration of formazan during the reaction was given by second-order polynomials of the reaction time. Kinetic studies strongly suggested that the synchronous enzyme-reaction system had the potential to detect an analyte at the attomole level in EIA. On the basis of the kinetic studies, optimal conditions for EIA incorporating the synchronous system were examined. NADP(+) was purified thoroughly to remove minor traces of NAD(+) in the preparation, and an ADH preparation contaminated with the lowest level of ALP activity was used. When the synchronous system was applied to a sandwich-type EIA for human C-reactive protein, the protein was detected with a sensitivity of 50 attomole per well of a micro-titer plate (0.1 ml) in a 1-h reaction. In addition, EIA with water-soluble formazan showed a more quantitative and sensitive result than that with insoluble formazan. These findings indicated that the (WST-1)-PMS system introduced in this study has a great potential for highly sensitive enzyme immunoassay.  相似文献   

16.
Bovine serum amine oxidase is inhibited by benzylhydrazine (BHy), but recovers full activity after a few hours incubation [Hucko-Haas & Reed (1970) Biochem. Biophys. Res. Commun. 38, 396-400]. The first phase of the process, requiring about 15 min, was found to consist of a mechanism-based hydrazine-transfer reaction leading to formation of the hydrazine-bound enzyme, benzaldehyde and H2O2. At variance with the enzymic process, the reaction with O2 preceded the benzaldehyde release. Two reaction intermediates could be characterized by optical spectroscopy and were assigned as the azo derivative and the benzaldehyde hydrazone, the latter one probably being involved in the reaction with O2. No reduction of Cu was detected at any stage. The hydrazine adduct could also be obtained by stoichiometric reaction of hydrazine with the native enzyme. The decay of this species occurred in about 8 h and was not studied in detail. The Cu-binding inhibitor NN-diethyldithiocarbamate affected the BHy reaction by stabilizing the benzaldehyde hydrazone form as against the azo derivative and the reaction with O2. However, under these same conditions the initial spectroscopic properties of the diethyldithiocarbamate adduct were recovered if the oxidase was left overnight. The reaction with O2 was abolished only upon removal of at least one Cu atom from the enzyme. On the basis of the failure to detect any change of Cu redox state and the enzyme behaviour in the presence of inhibitors, a reaction mechanism involving the formation of a hydroperoxy intermediate, as in the FAD-containing enzymes, is tentatively proposed.  相似文献   

17.
K Graves-Woodward  R F Pratt 《Biochemistry》1999,38(32):10533-10542
Kinetics studies in homogeneous aqueous solution showed that solubilized penicillin-binding protein 2a (sPBP2a) of methicillin-resistant Staphylococcus aureus (a bacterial DD-peptidase) was inhibited by the amphiphilic glycolipid antibiotic moenomycin. Inhibition at the peptidase site was determined by competition experiments between moenomycin and the chromophoric beta-lactam nitrocefin. Under conditions of high salt concentration (1 M NaCl), pseudo-first-order rate constants for the reaction of moenomycin with sPBP2a leading to inhibition of acylation by nitrocefin varied with moenomycin concentration in a biphasic fashion. At low moenomycin concentration (<20 microM) little inhibition occurred, but at higher concentrations a linear increase in rate constant with moenomycin concentration was observed, yielding a second-order rate constant of inhibition of 120 s(-)(1) M(-)(1). Since the cmc of moenomycin under these conditions was shown to be ca. 20 microM, the inhibition was concluded to arise from reaction of sPBP2a with a moenomycin micelle. Protein fluorescence studies showed a pseudo-first-order decrease in fluorescence on reaction of the protein with moenomycin. The variation of this rate constant with moenomycin concentration was consistent with reaction of a moenomycin monomer with the protein with a second-order rate constant of 650 s(-)(1) M(-)(1). This monomer reaction did not occur at the DD-peptidase site since its rate was unaffected by prior acylation of the enzyme by benzylpenicillin; nor did it inhibit reaction at that site by beta-lactams. Under low salt conditions (0.175 M NaCl) where reaction could be studied over a greater range of monomer concentrations since the cmc was ca. 120 microM, similar reactions were involved. Under these circumstances, inhibition was concerted with the reaction of moenomycin monomers, although fast premicellar aggregation of moenomycin with the protein also occurred. All moenomycin interactions with sPBP2a were reversible, as revealed by detergent-extraction chromatography. Lower limits to moenomycin off-rates and equilibrium dissociation constants were 7.7 x 10(-)(4) s(-)(1) and 1.2 microM, respectively. Other amphiphiles did not react in exactly the same manner as moenomycin, indicating some degree of specificity in reactions of the latter. sPBP2a did not have detectable affinity for lipid surfaces (Triton X-114 and phosphatidylglycerol vesicles). A general scheme for reaction of moenomycin with sPBP2a is proposed.  相似文献   

18.
Some blue pigments were formed in the D-xylose (1 M)-glycine (0.1 M) reaction system. A novel blue pigment, designated as Blue-M2 (blue Maillard intermediate-2), was identified as 5-[1,4-dicarboxymethyl-5-(2,3-dihydroxypropyl)-1,4-dihydropyrrolo[3,2-b]pyrrole-2-ylmethylene]-1,4-dicarboxymethyl-2-{5-[N-carboxymethyl(2,3,4-trihydroxytetrahydrofuran-2-yl)methylamino]-2-hydroxymethyl-4-(1,2,3-trihydroxypropyl)tetrahydrofuran-3-yl}-4,5-dihydropyrrolo-[3,2-b]pyrrole-1-ium. Blue-M2 is presumed to have been generated by the reaction between Blue-M1, which was identified as the major blue pigment in a previous paper (Hayase et al., Biosci. Biotechnol. Biochem., 63, 1512-1514 (1999)), and di-D-xyluloseglycine. Blue pigments are important Maillard reaction intermediates through the formation of melanoidins.  相似文献   

19.
Urate oxidase, or uricase (EC 1.7.3.3), is a peroxisomal enzyme that catalyses the oxidation of uric acid to allantoin. The chemical mechanism of the urate oxidase reaction has not been clearly established, but the involvement of radical intermediates was hypothesised. In this study EPR spectroscopy by spin trapping of radical intermediates has been used in order to demonstrate the eventual presence of radical transient urate species. The oxidation reaction of uric acid by several uricases (Porcine Liver, Bacillus Fastidiosus, Candida Utilitis) was performed in the presence of 5-diethoxyphosphoryl-5-methyl-pyrroline-N-oxide (DEPMPO) as spin trap. DEPMPO was added to reaction mixture and a radical adduct was observed in all cases. Therefore, for the first time, the presence of a radical intermediate in the uricase reaction was experimentally proved.  相似文献   

20.
The immobilization conditions of commercial ketoreductase for continuous enantioselective reduction in the gas-phase reaction were investigated with respect to the immobilization efficiency (residual activity and protein loading) and the gas-phase reaction efficiency (initial reaction rate, half-life, and enantioselectivity). For the analyses, ketoreductase was first immobilized by physical deposition on glass supports and the reduction of 2-butanone to (S)-2-butanol with the concomitant regeneration of NADH by 2-propanol was used as a model reaction. The optimal conditions of enzyme immobilization were obtained using an absolute pressure of 100 hPa for drying, a pH between 6.5 and 7.0, and a buffer concentration of 50 mM. The buffer concentration in particular had a strong effect on both the enzyme activity and enantioselectivity. Under optimal immobilization conditions, the thermostability of ketoreductase in the gas-phase system was enhanced compared to the aqueous-phase system, while the enantioselectivity was successfully maintained at a level identical to that of the native enzyme. These results indicate that the gas-phase reaction has a great potential for industrial production of chiral compounds, but requires careful optimization of immobilization conditions for the reaction to progress effectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号