首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
R. A. Briers  P. H. Warren 《Oecologia》2000,123(2):216-222
Simple metapopulation models assume that local populations occur in patches of uniform quality habitat separated by non-habitat. However field metapopulations tend to show considerable spatial and temporal variation in patch quality, and hence probability of occupancy. This may have implications for the adequacy of simple metapopulation models in describing and predicting regional population dynamics of natural systems. This study investigated the effects of habitat characteristics on landscape-scale occupancy dynamics of two species of backswimmer (Notonecta, Hemiptera: Notonectidae) in small freshwater ponds. The results demonstrated clear links between habitat, pond occupancy and population turnover, particularly local extinction. There were considerable changes in the habitat of individual ponds between years, but local changes were not spatially correlated and the frequency distribution of habitat conditions at the landscape level remained similar in different years. Stable occupancy levels of Notonecta species appears to result from a balance of the rates of creation and loss of suitable habitat due to spatially uncorrelated habitat change. Systems such as this, where turnover is driven by habitat dynamics, demonstrate the potential value of incorporating the dynamics of habitat change into metapopulation models. Such developments are likely to improve predictions of landscape-scale occupancy dynamics, whilst also allowing patch-level predictions of occupancy, based on local habitat conditions. Received: 18 August 1999 / Accepted: 3 December 1999  相似文献   

2.
Lepidoptera play an important role in terrestrial ecosystems as pollinators, as components of the food chain and as indicators for healthy ecosystems due to their sensitivity to change. Heterogeneous landscapes with variability of topographical features, vegetation structure combined with food sources for all life stages are the basis for successful lepidopteran oviposition. A multiple-scale analysis is proposed to understand the hierarchical relationships between selected site to plant characteristics and oviposition preferences for the dingy skipper (Erynnis tages). To achieve this goal, factors driving oviposition at the plant and patch scale were identified and scale dependencies at the site scale were assessed. At the plant scale, tallest host plants were used for oviposition; however relative egg height upon each plant was similar in both host plant species [bird’s-foot trefoil (Lotus corniculatus) and horseshoe vetch (Hippocrepis comosa)]. The main factors preferred by E. tages in L. corniculatus patches were sward height and percent of bare ground, and in H. comosa host plant density patches. Selected patches had slopes of greater gradients (mostly facing south) than patches with no selected host plants. At the site scale, oviposition patches were clustered at small scales and oviposition sites were dispersed at larger scales. Our study suggests that oviposition selection in E. tages is a hierarchical process varying from the site to the plant scale. Our study provides empirical evidence useful to inform landscape management strategies. These can be expanded to assess larger scale vegetation and habitat suitability beyond individual sites for systematic conservation planning.  相似文献   

3.
Fragmentation of a large habitat makes local populations less linked to others, and a whole population structure changes to a metapopulation. The smaller a local population is, the more strengthened extinction factors become. Then, frequent extinctions of local populations threaten persistence of the metapopulation unless recolonizations occur rapidly enough after local extinctions. Spatially structured models have been more widely used for predicting future population dynamics and for assessing the extinction risk of a metapopulation. In this article, we first review such spatially structured models that have been applied to conservation biology, focusing on effects of asynchronization among local population dynamics on persistence of the whole metapopulation. Second, we introduce our ongoing project on extinction risk assessment of an endangered composite biennial plant, Aster kantoensis, in the riverside habitat, based on a lattice model for describing its spatiotemporal population dynamics. The model predicted that the extinction risk of A. kantoensis depends on both the frequency of flood occurrence and the time to coverage of a local habitat by other competitively stronger perennials. Finally, we present a measure (Hassell and Pacala's CV 2) for quantifying the effect of asynchronization among local population dynamics on the persistence of a whole metapopulation in conservation ecology. Received: January 12, 2000 / Accepted: February 8, 2000  相似文献   

4.
Regional persistence of species requires a positive balance between colonizations and local extinctions. In this study, we examined the amount of colonizations and extinctions and their likelihood as a function of patch size, isolation, and habitat characteristics of a riparian perennial plant, Erigeron acer subsp. decoloratus. We also studied the importance of patch dynamics to the regional population growth. Over five successive years, we counted the number of plant patches along 43 km of riverside. Most patches were small in area and population size. The annual finite growth rate in the number of patches varied between years, but the geometric mean was close to 1.0, indicating a viable patch network in spite of local extinctions. Extinction rate was highest on steep slopes and for small patches with few individual plants and a small patch area. When the patches were classified into different stage classes, the most common fate was stasis, i.e., the patch remained at the same stage. Patch survival and local, within-patch dynamics were most important during this five-year period. Between-patch dynamics (including colonization for example) accounted for 5–10% of annual transitions. The overall dynamics were relatively similar to those of other plant species subjected to riparian disturbance regimes. In the long run, the survival of the species depends on how well it is able to escape from competition from forest and meadow species and track the availability of suitable habitats. This kind of habitat tracking differs from classical metapopulation dynamics. In the former, local extinctions occur as a consequence of adverse changes in the habitat and recolonizations are rare, whereas metapopulation models assume a highly persistent habitat structure with frequent recolonizations. In this respect, the regional dynamics of perennial plants in disturbed riparian habitats may differ from classical metapopulations.  相似文献   

5.
B. K. Orr  V. H. Resh 《Oecologia》1992,90(4):474-482
Summary The surface cover produced by aquatic macrophytes is the primary habitat for immature stages (eggs, larvae, and pupae) ofAnopheles mosquitoes. We hypothesized that both the abundance of immatureAnopheles and the recruitment ofAnopheles (from oviposition or larval movement) is positively related to the amount of surface cover present. Field sampling documented a positive correlation betweenAnopheles egg and larval abundance and the amount of vegetative cover present (measured as the number of emergent stems m-2) in monospecific beds ofMyriophyllum aquaticum in a California, USA, wetland. Experiments conducted to determine the influence ofMyriophyllum stem density on selection of oviposition sites by adultAnopheles females clearly indicate that oviposition rate (eggs m-2 d-1) increases as stem density increases from 0 to 1000 stems m-2 but decreases as stem density approaches 2000 stems m-2. In selecting microhabitats,Anopheles larvae preferred patches with high stem densities over patches with few or no plant stems; this preference correlates with differences in habitat quality (e.g., increased refuge from predation and enriched food sources). The optimal habitat for anopheline mosquitoes apparently occurs above a threshold plant density of approximately 500Myriophyllum stems m-2. Habitat heterogeneity produced by variability in the distribution and structure of aquatic vegetation strongly influences the local distribution and abundance of anopheline mosquitoes.  相似文献   

6.
栖息地质量对两种网蛱蝶集合种群结构和分布的影响   总被引:7,自引:0,他引:7  
在河北省赤城县研究了栖息地质量对大网蛱蝶Melitaea phoebe和金堇蛱蝶Euphydryas aurinia两种网蛱蝶集合种群结构和分布的影响。这两种网蛱蝶在约10 km2的区域内共存,成虫期的蜜源植物几乎相同,大网蛱蝶的发生峰期比金堇蛱蝶晚约一个月,两者只有不到一周左右的时间重叠。大网蛱蝶和金堇蛱蝶幼虫的寄主植物分别是: 祁州漏芦(菊科)和华北蓝盆花(川续断科)。蜜源植物的丰度与两种网蛱蝶的局域种群大小呈正相关;祁州漏芦的密度对大网蛱蝶的局域种群大小影响很大,金堇蛱蝶的局域种群大小则与其寄主植物华北蓝盆花的高度正相关;斑块内平均植被高度与两种网蛱蝶的局域种群大小均呈正相关,植物多样性、植物均匀性和植被盖度均与金堇蛱蝶的局域种群大小负相关,与大网蛱蝶的关系不大。同时分析了其他因子如斑块的坡向、坡度等的影响。主要结论是:1)幼虫寄主植物的不同和成蝶飞行峰期的分离允许两种网蛱蝶在这样一个小的斑块区域内共存;2)蜜源是重要的限制因子,并且受气候随机性的影响很大,蜜源的波动可以很好地解释网蛱蝶集合种群在年度间的动态变化;3)大网蛱蝶和金堇蛱蝶的飞行、食物搜寻能力的不同以及各自寄主植物的生物学特性、空间分布的不同决定了它们具有不同的集合种群结构: 金堇蛱蝶是经典的集合种群,大网蛱蝶是源-汇集合种群;4)斑块质量和昆虫行为共同决定了两种网蛱蝶的集合种群结构和分布。  相似文献   

7.
The occurrence of the froghopper Neophilaenus albipennis was surveyed in a network of 506 patches of its host plant Brachypodium pinnatum. The occupancy pattern largely depends on the size and isolation of the habitat patches. Together with the observed turnover this indicates a metapopulation structure. In order to simulate the dynamics of the metapopulation the incidence function model was used. The model was successfully fitted to the field data. Impacts on the metapopulation were simulated and the probability of survival of the whole metapopulation was estimated. Implications for conservation, especially the minimum viable metapopulation size, are discussed.  相似文献   

8.
Recent studies on the determinants of distribution and abundance of animals at landscape level have emphasized the usefulness of the metapopulation approach, in which patch area and habitat connectivity have often proved to explain satisfactorily existing patch occupancy patterns. A different approach is needed to study the common situation in which suitable habitat is difficult to determine or does not occur in well‐defined habitat patches. We applied a landscape ecological approach to study the determinants of distribution and abundance of the threatened clouded apollo Parnassius mnemosyne butterfly within an area of 6 km2 of agricultural landscape in south‐western Finland. The relative role of 24 environmental variables potentially affecting the distribution and abundance of the butterfly was studied using a spatial grid system with 2408 grid squares of 0.25 ha, of which 349 were occupied by the clouded apollo. Both the probability of butterfly presence and abundance in a 0.25 ha square increased with the presence of the larval host plant Corydalis solida the cover of semi‐natural grassland, the amount of solar radiation and spalial autocorrelation in butterfly occurrence. Additionally, butterfly abundance increased with overall mean patch size and decreased with maximum slope angle and wind speed. Two advantages of the employment of a spatial grid system included the avoidance of a subjective definition of suitable habitat patches and an evaluation of the relative significance of different components of habitat quality at the same time with habitat availability and connectivity. The large variation in habitat quality was influenced by the abundance of the larval host plant and adult nectar sources but also by climatological. topographical and structural factors. The application of a spatial grid system as used here has potential for a wide use in studies on landscape‐level distribution and abundance patterns in species with complex habitat requirements and habitat availability patterns.  相似文献   

9.
P. Doak 《Oecologia》2000,122(4):556-567
Despite extensive research on parasitoid-prey interactions and especially the effects of heterogeneity in parasitism on stability, sources of heterogeneity other than prey density have been little investigated. This research examines parasitism rates by three parasitoid species in relationship to prey density and habitat spatial pattern. The herbivore Itame andersoni (Geometridae) inhabits a subdivided habitat created by patches of its host plant, Dryas drummondii, in the Wrangell Mountains of Alaska. Dryas colonizes glacial moraines and spreads clonally to form distinct patches. Habitat subdivision occurs both on the patch scale and on the larger spatial scale of sites due to patchy successional patterns. Itame is attacked by three parasitoids: an ichneumonid wasp (Campoletis sp.), a braconid wasp (Aleiodes n. sp.), and the tachinid fly (Phyrxe pecosensis). I performed a large survey study at five distinct sites and censused Itame density and parasitism rates in 206 plant patches for 1–3 years. Parasitism rates varied with both plant patch size and isolation and also between sites, and the highest rates of overall parasitism were in the smallest patches. However, the effects of both small- and large-scale heterogeneity on parasitism differed for the three parasitoid species. There was weak evidence that Itame density was positively correlated with parasitism for the braconid and tachinid at the patch scale, but density effects differed for different patch sizes, patch isolations, and sites. At the site scale, there was no evidence of positive, but some indication of negative density-dependent parasitism. These patterns do not appear to be driven by negative interactions between the three parasitoid species, but reflect, rather, individual differences in habitat use and response to prey density. Finally, there was no evidence that parasitism strongly impacted the population dynamics of Itame. These results demonstrate the importance of considering habitat pattern when examining spatial heterogeneity of parasitism and the impacts of parasitoids. Received: 3 June 1999 / Accepted: 4 October 1999  相似文献   

10.
Srinivasan M 《Oecologia》2003,137(1):76-84
Many coral reef fishes have restricted depth ranges that are established at settlement or soon after, but the factors limiting these distributions are largely unknown. This study examines whether the availability of microhabitats (reef substrata) explains depth limits, and evaluates whether juvenile growth and survival are lower beyond these limits. Depth-stratified surveys of reef fishes at Kimbe Bay (Papua New Guinea) showed that the abundance of new settlers and the cover of coral substrata differed significantly among depths. A field experiment investigated whether settling coral reef fishes preferred particular depths, and whether these depth preferences were dependent on microhabitat. Small patch reefs composed of identical coral substrata were set up at five depths (3, 6, 10, 15 and 20 m), and settlement patterns were compared to those on unmanipulated reef habitat at the same five depths. For all species, settlement on patch reefs differed significantly among depths despite uniform substratum composition. For four of the six species tested, depth-related settlement patterns on unmanipulated habitat and on patch reefs did not differ, while for the other two, depth ranges were greater on the patch reefs than on unmanipulated habitat. A second experiment examined whether depth preferences reflected variation in growth and survival when microhabitat was similar. Newly settled individuals of Chrysiptera parasema and Dascyllus melanurus were placed, separately, on patch reefs at five depths (as above) and their survival and growth monitored. D. melanurus, which is restricted to shallow depths, had highest survival and growth at the shallowest depth. Depth did not affect either survival or growth of C. parasema, which has a broader depth range than D. melanurus (between 6 and 15 m). This suggests that the fitness costs potentially incurred by settling outside a preferred depth range may depend on the strength of the depth preference.  相似文献   

11.
Extinction, colonization, and species occupancy in tidepool fishes   总被引:1,自引:0,他引:1  
Despite the increasing sophistication of ecological models with respect to the size and spatial arrangement of habitat, there is relatively little empirical documentation of how species dynamics change as a function of habitat size and the fraction of habitat occupied. In an assemblage of tidepool fishes, I used maximum-likelihood estimation to test whether models which included habitat size provided a better fit to empirical data on extinction and colonization probabilities than models that assumed constant probabilities over all habitats. I found species differences in how extinction and colonization probabilities scaled with habitat size (and hence local population size). However, there was little evidence for a relationship between extinction and colonization probabilities and the fraction of occupied tidepools, as assumed in simple metapopulation models. Instead, colonization and extinction were independent of the fraction of occupied tidepools, favoring a MacArthur-Wilson island-mainland model. When I incorporated declines in extinction probability with tidepool volume in a simple simulation model, I found that predicted occupancy could change greatly, especially when colonization was low. However, the predicted fraction of occupied patches in the simulation model changed little when I incorporated the range of values reported here for extinction and colonization and the rate at which they scale with habitat size. Quantifying extinction and colonization patterns of natural populations is fundamental to understanding how species are distributed spatially and whether metapopulation models of species occupancy provide explanatory power for field populations. Received: 14 March 1997 / Accepted: 21 September 1997  相似文献   

12.
For species with metapopulation structures, variation in abundance among patches can arise from variation in the input rate of colonists. For reef fishes, variability in larval supply frequently is invoked as a major determinant of spatial patterns. We examined the extent to which spatial variation in the amount of suitable habitat predicted variation in the abundance of the damselfish Dascyllus aruanus, an abundant planktivore that occupies live, branched coral throughout the Indo-Pacific. Reef surveys established that size, branching structure and location (proximity to sand) of the coral colonies together determined the ”suitability” of microhabitats for different ontogenetic stages of D. aruanus. Once these criteria were known, patterns of habitat use were quantified within lagoons of five Pacific islands. Availability of suitable habitat generally was an excellent predictor of density, and patterns were qualitatively consistent at several spatial scales, including among different lagoons on the same island, among different islands and between the central (French Polynesia and Rarotonga) and western (Great Barrier Reef, Australia) South Pacific. A field experiment that varied the amount of suitable coral among local plots indicated that habitat for settlers accounted for almost all of the spatial variation in the number of D. aruanus that settled at that location, suggesting that spatial patterns of abundance can be established at settlement without spatial variation in larval supply. Surveys of four other species of reef-associated fish revealed that a substantial fraction of their spatial variation in density also was explained by availability of suitable reef habitat, suggesting that habitat may be a prevalent determinant of spatial patterns. The results underscore the critical need to identify accurately the resource requirements of different species and life stages when evaluating causes of spatial variation in abundance of reef fishes. Received: 18 May 1999 / Accepted: 9 January 1999  相似文献   

13.
Recently, it has been suggested that habitats for insect herbivores have been too narrowly defined, often on the basis of larval hostplants; in particular, non-consumable resources (called utilities; structural elements) have been ignored. Here, the importance of utility resources for roosting and mate location has been examined in the silver-studded blue butterfly Plebejus argus (L.) (Lycaenidae) on the Great Ormes Head, North Wales, UK. The methods included using dedicated surveys and correspondence analysis applied to behavioural observations in relation to vegetation structure on a transect through a key patch for this metapopulation model species. A substantial and significant bias in roosting (97%) and mating (75%) is found to occur outside hostplant areas on shrubs and rank bunched grasses and forbs. Population density is higher in shrubby areas and shrubs are increasingly occupied during the afternoons and night, during the late flight season and in cloudy, cool and windy weather. These findings suggest that shrubs are a valuable habitat component for this butterfly, at least at this coastal location, and important for their conservation. As scrub growth is inimical to calcicolous grassland, population status will depend on a fine balance between shrub and hostplant cover dependent on grazing and browsing by the indigenous goat, sheep and rabbit populations as well as on controlled cutting and burning. Opportunities exist for increasing population size and distribution on the headland but this will need to be managed carefully. There are also implications for metapopulation dynamics studies; the status of shrubs neighbouring host plant areas switches from that of barriers to resources and refuges.  相似文献   

14.
This study aims to analyse larval habitat preferences and landscape level population structure of the threatened Marsh Fritillary butterfly, Euphydryas aurinia, and discusses implications for the conservation and management of this strongly declining species in central Europe. Whereas current management strategies are mainly based on studies of habitat requirements of adult individuals, we intend to emphasise larval habitat quality and population processes at the landscape level as additional key factors. Microhabitat preference analysis of egg-laying females showed that eggs were predominantly laid on prominent large-sized host plant individuals. Additionally, when Succisa pratensis was used as a host plant (as opposed to Gentiana asclepiadea), host individuals in open vegetation structure were preferred. Optimal oviposition conditions were present in recently abandoned calcareous fen meadows and at the edges of such meadows currently in use. A two-year patch-occupancy study in the northern pre-alpine region of south-west Germany indicated that E. aurinia lives in a metapopulation. In a logistic-regression model, patch size, isolation, and habitat quality explained 82% of the observed patch-occupancy pattern in 2001. Our data suggest that a suitable conservation strategy must incorporate both the conservation of a network of suitable habitat patches, and efforts to maximise local habitat quality by ensuring that host plants can grow to a large size and are surrounded by sparse and low vegetation cover.  相似文献   

15.
Habitat size, habitat isolation and habitat quality are regarded as the main determinants of butterfly occurrence in fragmented landscapes. To analyze the relationship between the occurrence of the butterfly Cupido minimus and these factors, patch occupancy of the immature stages in patches of its host plant Anthyllis vulneraria was studied in the nature reserve Hohe Wann in Bavaria (Germany). In 2001 and 2002, 82 A. vulneraria patches were surveyed for the presence of C. minimus larvae. The occurrence was largely affected by the size of the food plant patches. In a habitat model that uses multiple logistic regression, the type of management and habitat connectivity are further determinants of species distribution. Internal and temporal validation demonstrate the stability and robustness of the developed habitat models. Additionally, it was proved that the colonization rate of C. minimus was significantly influenced by the distance to the next occupied Anthyllis patch. Concerning long-term survival of (meta-) populations in fragmented landscapes, the results show that lower habitat quality may be compensated by higher connectivity between host plant patches. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Patch occupancy of two hemipterans sharing a common host plant   总被引:5,自引:0,他引:5  
Aim Two hemipteran species were chosen as a study system for the comparative analysis of patch occupancy and spatial population structure of insects sharing a common host plant. This study tested whether (1) the incidence in the host plant patches differed between the two species, and (2) the two species exhibited a different spatial population structure, i.e. were they affected differentially by isolation and area of the host plant patches. Location The porphyry landscape north of Halle (Saale) in Germany comprising 506 patches of the host plant Brachypodium pinnatum. Methods The host plant patches were surveyed for the two hemipterans. To assess the influence of patch quality on species occurrence the patches were characterized by mean cover abundance of B. pinnatum, type of subsoil, slope, exposure, and shading. The spatial configuration of the patches was considered by patch area and isolation. The influence of the habitat factors and the spatial configuration on the occupancy of the two species was analysed by logistic regression. Results Adarrus multinotatus was found in 441 patches, while Neophilaenus albipennis was found in only 90 patches. While A. multinotatus showed virtually no relationship to the habitat factors, the occupancy of N. albipennis was influenced by subsoil type, cover abundance, and shading. The effects of area and isolation on occupancy of the patches also differed between the two species. The occupancy of N. albipennis was determined largely by area and isolation, whereas in A. multinotatus no considerable effect of spatial configuration was found. Main conclusions The study revealed a marked difference between the two hemipteran species in respect of spatial population structure. Adarrus multinotatus built up a ‘patchy population’, whereas N. albipennis showed a ‘metapopulation’ structure within the same set of patches in the same landscape. Spatial population structure was found to be not only a function of spatial configuration of habitat patches, but population structure differed between the habitat generalist A. multinotatus and the habitat specialist N. albipennis.  相似文献   

17.
Habitat perturbations play a major role in shaping community structure; however, the elements of disturbance-related habitat change that affect diversity are not always apparent. This study examined the effects of habitat disturbances on species richness of coral reef fish assemblages using annual surveys of habitat and 210 fish species from 10 reefs on the Great Barrier Reef (GBR). Over a period of 11 years, major disturbances, including localised outbreaks of crown-of-thorns sea star (Acanthaster planci), severe storms or coral bleaching, resulted in coral decline of 46–96% in all the 10 reefs. Despite declines in coral cover, structural complexity of the reef framework was retained on five and species richness of coral reef fishes maintained on nine of the disturbed reefs. Extensive loss of coral resulted in localised declines of highly specialised coral-dependent species, but this loss of diversity was more than compensated for by increases in the number of species that feed on the epilithic algal matrix (EAM). A unimodal relationship between areal coral cover and species richness indicated species richness was greatest at approximately 20% coral cover declining by 3–4 species (6–8% of average richness) at higher and lower coral cover. Results revealed that declines in coral cover on reefs may have limited short-term impact on the diversity of coral reef fishes, though there may be fundamental changes in the community structure of fishes.  相似文献   

18.
The metapopulation framework considers that the spatiotemporal distribution of organisms results from a balance between the colonization and extinction of populations in a suitable and discrete habitat network. Recent spatially realistic metapopulation models have allowed patch dynamics to be investigated in natural populations but such models have rarely been applied to plants. Using a simple urban fragmented population system in which favourable habitat can be easily mapped, we studied patch dynamics in the annual plant Crepis sancta (Asteraceae). Using stochastic patch occupancy models (SPOMs) and multi‐year occupancy data we dissected extinction and colonization patterns in our system. Overall, our data were consistent with two distinct metapopulation scenarios. A metapopulation (sensu stricto) dynamic in which colonization occurs over a short distance and extinction is lowered by nearby occupied patches (rescue effect) was found in a set of patches close to the city centre, while a propagule rain model in which colonization occurs from a large external population was most consistent with data from other networks. Overall, the study highlights the importance of external seed sources in urban patch dynamics. Our analysis emphasizes the fact that plant distributions are governed not only by habitat properties but also by the intrinsic properties of colonization and dispersal of species. The metapopulation approach provides a valuable tool for understanding how colonization and extinction shape occupancy patterns in highly fragmented plant populations. Finally, this study points to the potential utility of more complex plant metapopulation models than traditionally used for analysing ecological and evolutionary processes in natural metapopulations.  相似文献   

19.
The regional persistence of species subject to local population colonization and extinction necessarily depends on how landscape features and disturbance affect metapopulation dynamics. Here, we characterize the metapopulation structure and short-term dynamics ofPolygonella basiramia. This rare, short-lived perennial herb is endemic to Florida scrublands and lacks a seed bank. Fires create the open sand gaps within a shrub matrix that support this species but also kill established plants. Thus, persistence depends on frequent colonization of unoccupied gaps. We are monitoring population dynamics within and among 1204 gaps distributed among 19 shrub patches. Considerable subpopulation turnover is evident at the gap level with rates of gap extinction exceeding rates of colonization in the first year. Whether declines in overall abundance continue is likely to depend on patterns of disturbance and regional stochasticity in this dynamic landscape.Polygonella is more likely to occupy larger and less isolated gaps, demonstrating that landscape features and disturbance strongly affect metapopulation dynamics. BecausePolygonella basiramia displays characteristics, occupancy patterns, and turnover dynamics consistent with metapopulation theory, it represents a model system for studying plant metapopulations.  相似文献   

20.
Current definitions of habitat are closely allied to the concept of patch and matrix. This concept is, for instance, central to the prevailing metapopulation models of population dynamics. But, butterfly population dynamics, mobility and spatial structure can only properly be understood in the context of a resource-based definition of habitats. In criticising current definitions of habitat, we illustrate how habitat is best understood in terms of resource distributions. These transcend vegetation-based definitions of habitat and lie at the root of life history strategies, the vulnerability of butterflies to environmental changes and extinction, and govern conservation status. We emphasise the need for a resource-use database and demonstrate the shortcomings of current data for conserving butterflies; patch based definitions of habitats are inappropriate for some species and for others do not provide a universal panacea, inadequately explaining spatial occurrence when scaled over space and time. A resource-based habitat definition challenges the bipolar, patch vs. matrix view of landscape; the alternative is to view landscape as a continuum of overlapping resource distributions. We urge greater attention to the details of butterfly behaviour and resource use as the keys to understanding how landscape is exploited and therefore to successful conservation at the landscape scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号