首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phosphoenolpyruvate carboxykinase was studied in primary adult rat hepatocyte cultures maintained for 48 h. Between 48 h and 52 h norepinephrine (10?5 mol/l) and epinephrine (10?6 mol/l) in the presence of dexamethasone (10?8 mol/l) and insulin (10?9 mol/l) increased the enzyme activity about fourfold. This increase was prevented by cycloheximide. The induction by norepinephrine and epinephrine could be inhibited almost completely by the β-blocking agent propranolol, while that by glucagon remained unaffected. The concentration dependence of enzyme induction may indicate that epinephrine might act as a circulating hormone, while norepinephrine might be operative as a neurotransmitter requiring higher local concentrations. The results are in line with the proposal that hepatic nerves might directly control gene expression.  相似文献   

2.
3.
Troglitazone is an oral insulin-sensitizing drug used to treat patients with type 2 diabetes. A major feature of this hyperglycemic state is the presence of increased rates of hepatic gluconeogenesis, which troglitazone is able to ameliorate. In this study, we examined the molecular basis for this property of troglitazone by exploring the effects of this compound on the expression of the two genes encoding the major regulatory enzymes of gluconeogenesis, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) in primary cultures of rat hepatocytes. Insulin is able to inhibit expression of both of these genes, which was verified in our model system. Troglitazone significantly reduced mRNA levels of PEPCK and G6Pase in rat hepatocytes isolated from normal and Zucker-diabetic rats, but to a lesser extent than that observed with insulin. Interestingly, troglitazone was unable to reduce cAMP-induced levels of PEPCK mRNA, suggesting that the molecular mechanism whereby troglitazone exerted its effects on gene expression differed from that of insulin. This was further supported by the observation that troglitazone was able to reduce PEPCK mRNA levels in the presence of the insulin signaling pathway inhibitors wortmannin, rapamycin, and PD98059. These results indicate that troglitazone can regulate the expression of specific genes in an insulin-independent manner, and that genes encoding gluconeogenic enzymes are targets for the inhibitory effects of this drug.  相似文献   

4.
5.
6.
Glutathione is a small tripeptide to maintain overall reducing environment in vivo. Reduced endogenous glutathione level has been associated with aging, obesity and diabetes. In this study, the direct impact of low endogenous glutathione level on energy homeostasis is investigated at molecular level. Depletion of endogenous glutathione in rat primary hepatocytes by BSO, an inhibitor of gamma-glutamylcysteine synthase, leads to reduced mRNA levels of several key enzymes in energy homeostasis, including phosphoenolpyruvate carboxylkinase (PEPCK), the rate-limiting enzyme in gluconeogenesis. Supplementation of various reducing reagents, including N-acetylcysteine, DTT and glutathione, reverses the inhibitory effect of BSO on PEPCK mRNA level. The suppressive effect of BSO on PEPCK mRNA level is also reversed through co-treatment with either SB210290, a specific p38 kinase inhibitor, or wortmannin and LY294002, the well-established PI-3 kinase inhibitors, suggesting the involvement of these kinases in this process. These observations correlate well with the observations that reduced endogenous glutathione level and reduced gluconeogenesis coincide with aging process, implying a causal relationship between these changes in aged population. More importantly, this study suggests that endogenous glutathione level tightly associates with energy homeostasis at molecular level, identifying reduced endogenous glutathione level as a potential contributing factor to dysregulated metabolic processes in aging, obese and diabetic populations. In addition, the different responses of PEPCK expression to the alteration of endogenous glutathione level in rat hepatoma cells from primary hepatocytes raises caution against using established cell lines in examining the dysregulated metabolic process related to altered endogenous glutathione level.  相似文献   

7.
The induction of phosphoenolpyruvate carboxykinase (PEPCK) by glucagon was studied in primary rat hepatocyte cultures by determining the time course of the sequential events, increases in the enzyme's mRNA abundance, synthesis rate, amount and activity, and by investigating the antagonistic action of insulin on the induction by glucagon. 1. The mRNA of PEPCK was induced maximally 2-3 h after addition of 10 nM glucagon, as detected by Northern-blot analysis after hybridization with a biotinylated antisense RNA of PEPCK. 2. The synthesis rate of PEPCK increased maximally 2-3 h after application of glucagon as revealed by pansorbin-linked immunoprecipitation of [35S]methionine-labelled PEPCK. 3. The enzyme amount and activity was maximally induced 4 h after glucagon application. 4. The mRNA of PEPCK was half-maximally induced by 0.1 nM and maximally by 1 nM and 10 nM glucagon. The half-maximal induction by 0.1 nM glucagon was antagonized almost totally, and the maximal induction by 1 nM glucagon partially, while the maximal induction by 10 nM glucagon remained unaffected by 10 nM insulin. The results show that in cultured rat hepatocytes physiological concentrations of glucagon stimulated the induction of PEPCK by an increase in mRNA, that the glucagon-dependent increase in mRNA and enzyme-synthesis rate occurred in parallel and preceded the increase of enzyme amount and activity by 1-1.5 h, and that physiological levels of insulin antagonized the induction by glucagon in the physiological concentration range, with glucagon being the dominant hormone.  相似文献   

8.
9.
Summary A completely defined medium (EHM-1), which reflects the amino acid composition of fetal rat serum and contains albumin as the sole proteinaceous compound, allows the accumulation of carbamoylphosphate synthetase and phosphoenolpyruvate carboxykinase in the presence of dexamethasone, dibutyryl cyclic AMP, and triiodothyronine to approximately twice the level attained in a standard culture medium (RPMI 1640) supplemented with 10% fetal bovine serum (and hormones). Using the EHM-1 medium we could show that the capacity of hepatocytes to synthesize phosphoenolpyruvate carboxykinase in the presence of hormones is manifest as soon as the cells differentiate from the embryonic foregut (embryonic Day 11). Furthermore we could show that embryonic hepatocytes can become binuclear or polyploid when cultured in the presence of thyroid hormone. These investigations were supported in part by the Dutch Foundation for Medical Research FUNGO (grant 13-50-38).  相似文献   

10.
11.
The ability of a retinoic acid (RA) response element (RARE) in the phosphoenolpyruvate carboxykinase (PEPCK) gene promoter to mediate effects of either RA or thyroid hormone (T3) on gene expression was studied. Fusion gene constructs consisting of PEPCK promoter sequences ligated to the chloramphenicol acetyltransferase (CAT) reporter gene were used for this analysis. While T3 induced CAT expression to a small degree (about twofold) when such constructs were transiently transfected into H4IIE rat hepatoma cells, along with an expression vector encoding the alpha subtype of the T3 receptor (TR), this effect was mediated by promoter sequences distinct from the PEPCK RARE. Although TRs were capable of binding the PEPCK RARE in the form of putative monomers, dimers, and heterodimers with RA receptors (RARs), this element failed to mediate any positive effect of T3 on gene expression. In contrast, the PEPCK RARE mediated six- to eightfold induction of CAT expression by RA. When TRs were coexpressed along with RARs in transfected H4IIE cells, this RA induction was substantially blunted in a T3-independent manner. This inhibitory effect may be due to the binding of nonfunctional TRs or TR-RAR heterodimers to the PEPCK RARE. A model is proposed to explain the previously observed in vivo effects of T3 on PEPCK gene expression.  相似文献   

12.
13.
The selective expression of a unique copy gene in several mammalian tissues has been approached by studying the regulatory sequences needed to control expression of the rat phosphoenolpyruvate carboxykinase (PEPCK) gene in transgenic mice. A transgene containing the entire PEPCK gene, including 2.2 kb of the 5'-flanking region and 0.5 kb of the 3'-flanking region, exhibits tissue-specific expression in the liver, kidney, and adipose tissue, as well as the hormonal and developmental regulation inherent to endogenous gene expression. Deletions of the 5'-flanking region of the gene have shown the need for sequences downstream of position -540 of the PEPCK gene for expression in the liver and sequences downstream of position -362 for expression in the kidney. Additional sequences upstream of position -540 (up to -2200) are required for expression in adipose tissue. In addition, the region containing the glucocorticoid-responsive elements of the gene used by the kidney was identified. This same sequence was found to be needed specifically for developmental regulation of gene expression in the kidney and, together with upstream sequences, in the intestine. The apparently distinct sequence requirements in the various tissues indicate that the tissues use different mechanisms for expression of the same gene.  相似文献   

14.
15.
Incubation of isolated hepatocytes from fasted rats with 20 mM LiCl for 1 h decreased glucose production from lactate, pyruvate, and alanine. In addition, phosphoenolpyruvate carboxykinase (PEPCK) gene expression in FTO-2B rat hepatoma cells was inhibited by treatment with LiCl. Lithium was also able to counteract the increased PEPCK mRNA levels caused by both Bt2cAMP and dexamethasone, in a concentration-dependent manner. A chimeric gene containing the PEPCK promoter (-550 to +73) linked to the amino-3-glycosyl phosphotransferase (neo) structural gene was transduced into FTO-2B cells using a Moloney murine leukemia virus-based retrovirus. In these infected cells, 20 mM LiCl decreased both the concentration of neo mRNA transcribed from the PEPCK-neo chimeric gene and mRNA from the endogenous PEPCK gene. Lithium also inhibited the stimulatory effect of Bt2cAMP and dexamethasone on both genes. The stability of neo mRNA was not altered by lithium, since in cells infected with retrovirus containing only the neo gene transcribed via the retroviral 5'-LTR and treated with 20 mM LiCl, no change in neo mRNA levels was observed. The intraperitoneal administration of LiCl to rats caused a decrease in hepatic PEPCK mRNA, indicating that lithium could also modify gene expression in vivo. The effects of lithium were not due to an increase in the concentration of insulin in the blood but were correlated with an increase in hepatic glycogen and fructose 2,6-bisphosphate levels. These results indicate that lithium ions, at concentrations normally used therapeutically for depression in humans, can inhibit glucose synthesis in the liver by a mechanism which can selectively modify the expression of hepatic phosphoenolpyruvate carboxykinase.  相似文献   

16.
The activity and induction pattern of phosphoenolpyruvate carboxykinase (PEPCK) in the liver and brain of young (6-), adult (30-) and old (90-weeks) male rats were studied. The activity of this enzyme increases in both tissues until adulthood and decreases gradually thereafter. Further, the activity of PEPCK is higher in the liver than the brain. Adrenalectomy decreases significantly the activity of this enzyme in the liver of rats of all ages. However, this treatment inhibits brain PEPCK in young and adult rats. Administration of hydrocortisone to adrenalectomized rats increases PEPCK in both tissues of young and adult rats. However, the magnitude of induction is higher in the young, as compared to the adult, rats. This hormone-mediated induction of the enzyme is actinomycin D-sensitive.  相似文献   

17.
18.
19.
To study the liver-specific trans activation of the rat phosphoenolpyruvate carboxykinase (PEPCK) gene, the PEPCK promoter was linked to a reporter gene and was microinjected into Xenopus laevis oocytes alone or in conjunction with rat liver poly(A)+ RNA. The rat liver mRNA markedly enhanced the expression of the PEPCK-chimeric construct. This effect appeared to be sequence specific, as it was dependent on the presence of the intact promoter. Moreover, the RNA effect was limited to mRNA preparations from PEPCK-expressing tissues only. Finally, microinjection of size-fractionated liver mRNA revealed that the trans-acting factor(s) is encoded by RNA of 1,600 to 2,000 nucleotides, providing a direct bioassay for the gene(s) involved in this tissue-specific trans-activation process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号