首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human cathepsin B was purified by affinity chromatography on the semicarbazone of Gly-Phe-glycinal linked to Sepharose 4B, with elution by 2,2'-dipyridyl disulphide at pH 4.0. The product obtained in high yield by the single step from crude starting material was 80-100% active cathepsin B. The possibility that this new form of affinity chromatography may be of general usefulness in the purification of cysteine proteinases is discussed.  相似文献   

2.
Val-D-Leu-Pro-Phe-Phe-Val-D-Leu, a specific inhibitor of aspartate proteinases of the pepsin type, was synthesized. Its bonding to activated 6-aminohexanoic acid-Sepharose 4B afforded an affinity support suitable for the purification of human, porcine, and chicken pepsin, human gastricsin, and bovine cathepsin D. These enzymes bind to the support over the pH range 2-5 at 0-1.5 M concentration of NaCl. A buffer at pH greater than or equal to 6, low ionic strength, and containing 20% dioxane can serve as a general desorption agent. The proteinases were isolated from the crude extracts by a single-step procedure in a high degree of purity and in yields exceeding 70%; human pepsin, however, was not separated from human gastricsin. The support does not show any binding capacity for rat plasma renin at pH 7.4 and for some cysteine endopeptidases (cathepsin B, H, and L) at pH 3-5. The cathepsin D preparations isolated by affinity chromatography on the new support and on pepstatin-Sepharose were of the same degree of purity as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, N-terminal amino acid sequences, and specific activity.  相似文献   

3.
A new subtilisin-like proteinase hydrolyzing chromogenic peptide substrate Glp-Ala-Ala-Leu-p-nitroanilide optimally at pH 8.1 was found in common plantain leaves. The protease named plantagolisin was isolated by ammonium sulfate precipitation of the leaves' extract followed by affinity chromatography on bacitracin-Sepharose and ion-exchange chromatography on Mono Q in FPLC regime. Its molecular mass is 19000 Da and pI 5.0. pH-stability range is 7-10 in the presence of 2 mM Ca(2+), temperature optimum is 40 degrees C. The substrate specificity of subtilase towards synthetic peptides and insulin B-chain is comparable with that of two other subtilisin-like serine proteinases: proteinase from leaves of the sunflower and taraxalisin. Besides, the proteinase is able to hydrolyze substrates with Pro in P(1) position. The enzyme hydrolyzes collagen. alpha and beta chains are hydrolyzed simultaneously in parallel; there are only low-molecular-mass hydrolysis products in the sample after 2 h of incubation. Pure serine proteinase was inactivated by specific serine proteinases inhibitors: diisopropylfluorophosphate, phenylmethylsulfonyl fluoride and Hg(2+). The plantagolisin N-terminal sequence ESNSEQETQTESGPGTAFL-, traced for 19 residues, revealed 37% homology with that of subtilisin from yeast Schizosaccharomyces pombe.  相似文献   

4.
The inhibitory effect of the aromatic tetra-benzamidine derivative tetra-p-amidinophenoxy-neo-pentane (TAPP) on the catalytic properties of beta-trypsin (EC 3.4.21.4), alpha-thrombin (EC 3.4.21.5), factor Xa (EC 3.4.21.6), Lys77-plasmin (EC 3.4.21.7) and beta-kallikrein-B (EC 3.4.21.35) was investigated (between pH 2 and 8, I = 0.1 M; T = 37 +/- 0.5 degrees C), and analyzed in parallel with that of benzamidine, commonly taken as a molecular inhibitor model of serine proteinases. Over the whole pH range explored, TAPP and benzamidine show the same values of the dissociation inhibition constant (Ki) for beta-trypsin; at variance with the affinity of TAPP for alpha-thrombin, factor Xa, Lys77-plasmin and beta-kallikrein-B which is higher than that found for benzamidine association around neutrality, but tends to converge in the acidic pH limb. On lowering the pH from 5.5 to 3.0, values of Ki for TAPP binding to beta-trypsin as well as for benzamidine association to all the enzymes investigated decreased thus reflecting the pK-shift, upon inhibitor binding, of a single ionizing group. Over the same pH range, values of Ki for TAPP binding to alpha-thrombin, factor Xa, Lys77-plasmin and beta-kallikrein-B may be described as depending on the pK-shift, upon inhibitor association, of two equivalent proton-binding amino acid residues. Considering the X-ray three-dimensional structures and the computer-generated molecular models of serine proteinases: TAPP and :benzamidine adducts, the observed binding behaviour of TAPP and benzamidine to the enzymes considered has been related to the inferred stereochemistry of proteinase: inhibitor contact region(s).  相似文献   

5.
Prostate-specific antigen (PSA) is a serine protease with highly prostate-specific expression. Measurement of PSA in serum is widely used for diagnosis and monitoring of prostate cancer. PSA dissolves the seminal gel forming after ejaculation. It has been suggested to mediate invasion and metastasis of prostate cancer but also to exert antiangiogenic activity. We have identified peptides specific for PSA by screening cyclic phage display peptide libraries. PSA-binding peptides were isolated from four different libraries and produced as a fusion protein with glutathione S-transferase (GST). The phage and fusion proteins were shown to bind to PSA specifically as indicated by lack of binding to other serine proteinases. A peptide with four cysteines showed the highest affinity for PSA. Zn2+, an inhibitor of PSA activity, increased the affinity of the peptides to PSA. The binding specificity was characterized by cross-inhibition using monoclonal anti-PSA antibodies of known epitope specificities. The peptides bound to the same region as mAbs specific for free PSA indicating that they bind close to the active site of the enzyme. The peptides enhanced the enzyme activity of PSA against a chromogenic substrate. These results show that peptides binding to PSA and modulating its enzyme activity can be developed by phage display technique. The peptides have the potential to be used for identification of PSA variants and for imaging and targeting of prostatic tumors.  相似文献   

6.
Pyridoxal kinase (PK) is an important enzyme involved in bioactivation of vitamin B(6). Binding of PK with its substrate is the prerequisite step for the subsequent catalytic phosphorylation of the substrate. In the present study, a surface plasmon resonance biosensor (BIAcore) was employed to characterize the binding interaction between wild-type porcine PK and an immobilized substrate, pyridoxamine. Pyridoxamine was modified with 11-mercaptoundecanic acid and immobilized on a sensor chip through the formation of a self-assembled monolayer. The binding of PK to the immobilized pyridoxamine was followed in real time and the kinetic parameters were derived from non-linear analysis of the sensorgram. The effects of buffer pH, monovalent cations (Na(+), K(+)) and divalent cations (Mn(2+), Zn(2+), Mg(2+)) on the binding kinetics were determined. Optimal pH for PK-pyridoxamine interaction in the absence of divalent ions is at around 7.4. While K(+) increased and Na(+) decreased the binding affinity (K(A)) of PK to immobilized pyridoxamine, all divalent cations increased the K(A) of PK for pyridoxamine. Solution phase affinity measurement based on a competitive binding assay was used to determine the affinities of PK for different vitamin B(6) analogues. The order of affinity of PK for different analogues is: pyridoxal-oxime>pyridoxine>pyridoxamine>pyridoxal>pyridoxal phosphate. This is the first study to demonstrate that buffer conditions such as pH and concentration of monovalent and/or divalent ions can directly alter the binding of PK for its substrates. The quantitative kinetic and thermodynamic parameters obtained by SPR measurement provide the insight information into the catalytic activity of this enzyme.  相似文献   

7.
The solution structure of three small serine proteinase inhibitors, two natural and one engineered protein, SGCI (Schistocerca gregaria chymotrypsin inhibitor), SGCI[L30R, K31M] and SGTI (Schistocerca gregaria trypsin inhibitor), were determined by homonuclear NMR-spectroscopy. The molecules exhibit different specificities towards target proteinases, where SGCI is a good chymotrypsin inhibitor, its mutant is a potent trypsin inhibitor, and SGTI inhibits both proteinases weakly. Interestingly, SGTI is a much better inhibitor of insect proteinases than of the mammalian ones used in common assays. All three molecules have a similar fold composed from three antiparallel beta-pleated sheets with three disulfide bridges. The proteinase binding loop has a somewhat distinct geometry in all three peptides. Moreover, the stabilization of the structure is different in SGCI and SGTI. Proton-deuterium exchange experiments are indicative of a highly rigid core in SGTI but not in SGCI. We suggest that the observed structural properties play a significant role in the specificity of these inhibitors.  相似文献   

8.
J. FONTECHA, T. REQUENA AND H.E. SWAISGOOD. 1996. This study describes an affinity chromatography procedure for proteinase purification using bioselective binding to immobilized bacitracin. By coupling bacitracin to controlled-pore glass (CPG) beads, an affinity matrix was obtained that permitted rapid purification of proteinases under conditions that minimize autolysis. Bacitracin-CPG was used to bioselectively adsorb the extracellular proteinase secreted by Enterococcus faecalis var. liquefaciens IFPL 383. The overall purification obtained with this procedure was 5149-fold. The ability of bacitracin-CPG to bind other proteinases was examined using various commercial proteinases. The specific activities of subtilin BPN' and proteinase K were increased by bioselective adsorption and excellent recoveries of all proteinases applied were obtained.  相似文献   

9.
A serine proteinase possessing a fibrinolytic activity was isolated from a culture filtrate of Streptomyces spheroides, strain 35. A consecutive use of affinity chromatography on bacillichin-silochrome and bacitracin-sepharose and ion-exchange chromatography on anionie PAP and cationic KMT resulted in a homogeneous proteinase with 1060-fold purification and 19% yield. The enzyme has a molecular weight of 28000; its amino acid composition is Asp31, Ser28, Thr29, Glu9, Pro14, Gly35, Ala42, Val26, Ile14, Leu13, Met2, Tyr9, Phe4, Trp3, His6, Lys4, Arg10. The enzyme has a pI at pH greater than 10 and the activity optimum against Z-L-Ala-L-Ala-L-Leu-pNA at pH 10-11. The enzyme is stable within the pH range of 4-11 and in 6 M guanidinium chloride pH 8.0 in the presence of Ca2+. The enzyme is inhibited by diisopropylfluorophosphate and benzylsulfofluoride, specific inhibitors of serine proteinases as well as by potato proteinase inhibitor. The serine proteinase SSPB isolated from Str. spheroides, strain 35 can be related to subtilisin-like serine proteinase, especially to those of SGPD and SGPE of Str. griseus.  相似文献   

10.
A thiol-dependent serine proteinase has been isolated for the first time from a higher basidiomycete Coprinus 7N culture filtrate by affinity chromatography on bacitracin-Sepharose combined with ion-exchange chromatography on DEAE-Sepharose. This procedure resulted in a homogeneous enzyme with 32-fold purification and 55% yield. The enzyme has a molecular mass of 33,000 Da and pI of 8.5; its amino acid composition appears as follows: Lys7, His7, Arg10, Asx29, Thr24, Ser30, Glx19, Pro13, Gly39, Ala40, Cys2-3, Val23, Met1-2, Ile14, Leu13, Tyr6, Phe7. The enzyme shows the optimal activity towards Z-Ala-Ala-Leu-pNA at 8.5 and is stable at pH 6-9. The temperature optimum of the enzyme activity lies at 37 degrees C. The proteinase is completely inactivated by the specific inhibitors of serine proteinases, diisopropylfluorophosphate and phenylmethylsulfonylfluoride, as well as by the SH-group reagent, p-chloromercuribenzoate. The Coprinus 7N proteinase hydrolyzes, azocasein, azoalbumin, hemoglobin, fibrin and synthetic chromogenic peptide substrates, e. g., Z-Ala-Ala-Leu-pNA, Z-Gly-gly-Leu-pNA. Some properties of the Coprinus 7N proteinase are very similar to those of thiol-dependent serine proteinases from bacilli, actinomycetes, fungi and plants which form a subfamily of thiol-dependent serine proteinases within the family of subtilisins.  相似文献   

11.
The cultural filtrates of S. thermovulgaris contain a proteinase which is active towards the chromogenic subtilisin substrate, Z-Ala-Ala-Leu-pNa, and azocasein. Pure enzyme preparations were obtained by affinity chromatography on bacitracin-Sepharose with subsequent rechromatography on the same adsorbent. The proteinase was completely inactivated by PMSF and DFP, the specific inhibitors for serine proteinase, by thiol reagents (HgCl2, PCMB) and by the protein inhibitor from S. jantinus. The pH activity optimum for the enzyme is 7.8-8.2, temperature optimum is 55 degrees C. The enzyme is stable at pH 6-9, has a pI of 5.0 and a molecular mass of 32 kDa. When tested against the peptide substrate, the enzyme shows a specificity characteristic for subtilisins. The N-terminal sequence of the enzyme, Tyr-Thr-Pro-Asn-Asp-Pro-Tyr-Phe-Ser-Ser-Arg-Gln-Tyr-Gly, shows a 100% homology with that of terminase, a thiol-dependent serine proteinase. On the basis of the above considerations the enzyme may be related to the subfamily of thiol-dependent serine proteinases.  相似文献   

12.
The anticarcinogenic Bowman-Birk proteinase inhibitor (BBI) inhibits a 70-kDa serine proteinase in C3H/10T1/2 transformed fibroblasts. Two serine proteinases, the proline endopeptidase and a novel neutral proteolytic activity, both having a mass of approximately 70-kDa, were isolated from the cytoplasm of C3H/10T1/2 cells. BBI did not inhibit diisopropylfluorophosphate binding to the proline endopeptidase or its ability to hydrolyze peptides. However, BBI blocked the binding of diisopropylfluorophosphate and inhibited the cleavage of peptides by the novel cytoplasmic enzyme. Thus BBI does not inhibit the proline endopeptidase but another soluble 70-kDa serine proteinase from C3H/10T1/2 cells.  相似文献   

13.
14.
The binding of the recombinant proteinase inhibitor eglin c from the leech Hirudo medicinalis to serine (pro)enzymes belonging to the chymotrypsin and subtilisin families has been investigated from the thermodynamic viewpoint, between pH 4.5 and 9.5 and from 10 degrees C to 40 degrees C. The affinity of eglin c for the serine (pro)enzymes considered shows the following trend: Leu-proteinase [the leucine specific serine proteinase from spinach (Spinacia oleracea L.) leaves] greater than human leucocyte elastase congruent to human cathepsin G congruent to subtilisin Carlsberg congruent to bovine alpha-chymotrypsin greater than bovine alpha-chymotrypsinogen A congruent to porcine pancreatic elastase congruent to bovine beta-trypsin. The serine (pro)enzyme-inhibitor complex formation is an entropy-driven process. On increasing the pH from 4.5 to 9.5, the affinity of eglin c for the serine (pro)enzymes considered increases thus reflecting the acid pK shift of the invariant hystidyl catalytic residue from approximately to 6.9 in the free serine proteinases and bovine alpha-chymotrypsinogen A to congruent to 5.1 in the serine (pro)enzyme-inhibitor complexes. Considering the known molecular models, the observed binding behaviour of eglin c was related to the inferred stereochemistry of the serine (pro)enzyme-inhibitor contact regions.  相似文献   

15.
Glutathione transferase (GST) was purified from the microsomes of rat liver by glutathione affinity chromatography. The interaction of 2,4-dichlorophenoxyacetic acid (2,4-D) and 1,4-benzoquinone with microsomal GST was investigated and compared with cytosolic GST. The kinetic inhibition pattern of 1,4-benzoquinone towards microsomal GST was found to be different from that towards cytosolic GST. Microsomal GST purified by affinity chromatography was inhibited by 2,4-D in a non dose-dependent manner, while the crude microsomal GST was inhibited in a dose-dependent manner. This difference was shown to be induced by a reaction on the affinity column, and not by Triton X-100 (also shown to be a GST inhibitor), glutathione, or the elution buffer 0.2% Triton X-100 and 5 mM glutathione in 50 mM Tris-HCl, pH 9.6. The binding of microsomal GST to the affinity matrix caused a partial inactivation of the active site for 2,4-D interaction. The results show that the properties of soluble GST enzymes may not be extrapolated to the microsomal ones.  相似文献   

16.
T F Holzman  T O Baldwin 《Biochemistry》1982,21(24):6194-6201
A covalently immobilized form of an inhibitor of bacterial luciferase, 2,2-diphenylpropylamine (D phi PA), was an effective affinity resin for purifying this enzyme from several distinct bacterial species. The inhibitor is competitive with the luciferase aldehyde substrate but enhances binding of the flavin substrate FMNH2 (reduced riboflavin 5'-phosphate); comparable binding interactions occur with luciferase, the immobilized inhibitor D phi PA-Sepharose, and the substrates [Holzman, T. F., & Baldwin, T. O. (1981) Biochemistry 20, 5524-5528]. The effect of FMNH2 on the binding of luciferase to D phi PA-Sepharose was mimicked by inorganic phosphate; the luciferase-phosphate complex had a greater affinity for D phi PA-Sepharose than did luciferase. This observation led to the development of a method using D phi PA-Sepharose to purify bacterial luciferase. When crude enzyme in a high-phosphate buffer was applied to a column of the affinity matrix, the luciferase activity was removed from solution. After the column was washed with the same buffer to remove unbound protein, the luciferase was eluted with a non-phosphate cationic buffer. The affinity column has proven useful for rapid purification of luciferase in much greater yield than has been previously possible with standard ion-exchange techniques. This approach has allowed one-step purification of luciferases from ammonium sulfate precipitates of Vibrio harveyi, Vibrio fischeri, and Photobacterium phosphoreum. The dissociation constants in 0.10 M phosphate for the affinity ligand: luciferase complexes were 0.49 micro M, 0.28 micro M, and 0.15 micro M, respectively, for the three species. The dissociation constant for the V. harveyi mutant AK-6, which has normal aldehyde binding but greatly reduced affinity for FMNH2, was 0.30 micro M, while that for the V. harveyi mutant AK-20, which has greatly reduced affinity for aldehyde but a slightly increased affinity for FMNH2, was 1.2 microM. Preliminary experiments indicated that the yellow fluorescence protein (YFP) that participates, through energy transfer, in bioluminescent emission in V. fischeri strain Y-1 could be separated from the luciferase in this strain by chromatography on the affinity matrix, whereas other methods of separating luciferase and YFP have had limited success because of the binding of YFP to luciferase.  相似文献   

17.
Chymopapain (EC 3.4.22.6) was purified from commercially available dried latex of papaya (Carica papaya) by extraction at acidic pH, cation-exchange chromatography and active site-directed affinity chromatography on immobilized alanyl-phenyl-alaninaldehyde semicarbazone, with elution by mercuric chloride. The product was found by immunoassay to be essentially free of the other cysteine proteinases from papaya, including papaya proteinase IV, and was fully active. The rate of alkylation of the active site cysteine of chymopapain by iodoacetate was found to be sufficiently rapid and selective for this reagent to be used as an active-site titrant.  相似文献   

18.
Isolated human granulocyte plasma membranes contain progelatinase B. The binding of progelatinase B to the membrane, however, is relatively weak, and a considerable part of progelatinase B can be removed by simply washing the membrane with buffer. This detachment does not depend on the ionic strength of the buffer, indicating that electrostatic forces do not play an important role in the binding of progelatinase B to the membrane. A complete removal of progelatinase B is achieved by chromatography of neutrophil membranes on gelatin-agarose. The plasma membrane of human granulocytes activates added progelatinase B. This activation is inhibited by soybean trypsin inhibitor and is thus performed by membrane bound serine proteinases. In contrast to other reports that claimed an important role of elastase in activating progelatinase B, we found that this activation is mostly inhibited by chymostatin and not by elastatinal and is thus primarily due to cathepsin G. Proteinase 3 was shown to activate progelatinase B as efficient as neutrophil elastase, i. e. much weaker than cathepsin G. Binding of cathepsin G and elastase to the neutrophil membrane does not change their ability to activate progelatinase B. However, cathepsin G, the most potent activator of the three neutrophil serine proteinases, is only a weak activator, when compared to stromelysin-1. This, as well as only a weak binding of progelatinase B, make it doubtful that activation of membrane-bound progelatinase B by membrane-bound serine proteinases is of significant physiological importance.  相似文献   

19.
LPS induces an up-regulation of promatrix metalloproteinase-9 (proMMP9) gene expression in cells of the monocyte/macrophage lineage. We demonstrate here that LPS preparations are also able to activate proMMP9 made by human macrophages or THP-1 cells via LPS-associated proteinases, which cleave the N-terminal propeptide at a site or sites close to the one cleaved upon activation with organomercurial compounds. LPS-associated proteinases are serine proteinases that are able to cleave denatured collagens (gelatin) and the mammalian serine proteinase inhibitor, alpha(1)-proteinase inhibitor, thereby pushing the balance of extracellular matrix turnover even further toward degradation. A low molecular mass, low affinity inhibitor of MMP9, possibly derived from the propeptide, is generated during proMMP9 activation. However, inhibition of the LPS-associated proteinases had no effect on proMMP9 synthesis, indicating that their proteolytic activity was not required for signaling the up-regulation of the proMMP9 gene.  相似文献   

20.
Synthesis of an estrogen affinity adsorbent containing a disulfide linkage between the steroid and stationary matrix permitted facile purification of high affinity estrogen binding proteins. Following affinity chromatography of either antibody directed against estrone 17-carboxymethyloxime — bovine serum albumin or immature calf uterine cytoplasmic estrogen receptor proteins, the specifically bound protein was recovered by incubating the adsorbent with 2-mercaptoethanol. Crude antibody and uterine cytosol was prepared for affinity chromatography in buffer containing 10?3 to 10?2M cystamine (S-S) to block SH-containing proteins, in order to protect the adsorbent against protein-mediated S-S ag SH exchange. Cystamine was found to markedly stabilize crude cytosol receptor protein by 200–300% compared with preparations obtained under ordinary conditions. Disulfide affinity adsorbents are versatile in that they can be used either under conventional conditions of specific protein recovery, or with 2-mercaptoethanol which removes the ligand and bound protein from the stationary matrix quantitatively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号