首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abasic sites in DNA have been specifically targeted by synthetic compounds able to cleave DNA at abasic sites and to induce photodamages in the vicinity of the lesion. The synthesis and the photoactivity of the drugs on abasic sites containing DNA and oligonucleotides are reported.  相似文献   

2.
Reactive oxygen species produce a wide spectrum of DNA damage, including oxidative base damage and abasic (AP) sites. Many procedures are available for the quantification and detection of base damage and AP sites. However, either these procedures are laborious or the starting materials are difficult to obtain. A biotinylated aldehyde-specific reagent, ARP, has been shown to react specifically with the aldehyde group present in AP sites, resulting in biotin-tagged AP sites in DNA. The biotin-tagged AP sites can then be determined colorimetrically with an ELISA-like assay, using avidin/biotin-conjugated horseradish peroxidase as the indicator enzyme. The ARP assay is thus a simple, rapid, and sensitive method for the detection of AP sites in DNA. Furthermore, removal of damaged base by DNA N-glycosylases generates AP sites that can be measured by the ARP reagent. By coupling the ARP assay with either endonuclease III from Escherichia coli or 8-oxoguanine N-glycosylase (OGG1) from yeast, investigators can rapidly determine the amount of oxidative pyrimidine damage (endonuclease III-sensitive sites) or purine damage (OGG1-sensitive sites) in cellular DNA, respectively. An increased level of oxidative damage has been implicated in several age-related human diseases such as Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease, as well as the aging process. The sensitivity and simplicity of the ARP assay thus make it a valuable method for investigators who are interested in estimating the level of oxidative DNA damage in cells and tissues derived from patients with various age-related diseases or cancers.  相似文献   

3.
Inside cells chromium(VI) is activated to its ultimate carcinogenic form by reducing agents including glutathione (GSH) and ascorbate (AsA). The precise mechanism by which DNA damaging species are formed is unclear. In earlier in vitro work with isolated DNA we have shown that chromium(VI) in combination with GSH or AsA is able to induce similar numbers of single strand breaks and apurinic/apyrimidinic sites (AP-sites). Moreover, the formation of both lesions followed a similar temporal pattern. It is conceivable that the two forms of DNA damage arise from a common precursor lesion (e.g. hydrogen abstraction at C4' of the DNA sugar moiety) with a partitioning along two pathways, one yielding an AP-site, the other a single strand break (SSB) and a base propenal. The present study is intended to test this hypothesis by analysing whether oxidation products of deoxyribose can be formed in the presence of chromium(VI) and GSH or AsA. It was found that mixtures of chromium(VI) and GSH or AsA were able to oxidise 2-deoxyribose to yield malondialdehyde, which was detected by reaction with thiobarbituric acid. The characteristic pink chromogen, which forms upon reaction with thiobarbituric acid, was also observed with calf thymus DNA as the substrate. In both experimental systems the addition of catalase prevented the formation of deoxyribose breakdown products. Hydroxyl radicals did not seem to be important for the generation of DNA damage as the characteristic modified DNA bases could not be detected by using gas chromatography-mass spectrometry. These results lead us to conclude that the formation of SSB during the reductive conversion of chromium(VI) proceeds primarily via hydrogen abstraction from C4'. The observation that Fenton chemistry is not involved in these processes is intriguing and necessitates further research into the ways in which chromium can activate molecular oxygen to form DNA damaging species.  相似文献   

4.
Impaired DNA repair may fuel up malignant transformation of breast cells due to the accumulation of spontaneous mutations in target genes and increasing susceptibility to exogenous carcinogens. Moreover, the effectiveness of DNA repair may contribute to failure of chemotherapy and resistance of breast cancer cells to drugs and radiation. The breast cancer susceptibility genes BRCA1 and BRCA2 are involved in DNA repair. To evaluate further the role of DNA repair in breast cancer we determined: (1) the kinetics of removal of DNA damage induced by hydrogen peroxide and the anticancer drug doxorubicin, and (2) the level of basal, oxidative and alkylative DNA damage before and during/after chemotherapy in the peripheral blood lymphocytes of breast cancer patients and healthy individuals. The level of DNA damage and the kinetics of DNA repair were evaluated by alkaline single cell gel electrophoresis (comet assay). Oxidative and alkylative DNA damage were assayed with the use of DNA repair enzymes endonuclease III (Endo III) and formamidopyrimidine-DNA glycosylase (Fpg), recognizing oxidized DNA bases and 3-methyladenine-DNA glycosylase II (AlkA) recognizing alkylated bases. We observed slower kinetics of DNA repair after treatment with hydrogen peroxide and doxorubicin in lymphocytes of breast cancer patients compared to control individuals. The level of basal, oxidative and alkylative DNA damage was higher in breast cancer patients than in the control and the difference was more pronounced when patients after chemotherapy were engaged, but usually the level of DNA damage in these patients was too high to be measured with our system. Our results indicate that peripheral blood lymphocytes of breast cancer patients have more damaged DNA and display decreased DNA repair efficacy. Therefore, these features can be considered as risk markers for breast cancer, but the question whether they are the cause or a consequence of the illness remains open. Nevertheless, our results suggest that research on the mutagen sensitivity and efficacy of DNA repair could impact the development of new diagnostic and screening strategies as well as indicate new targets to prevent and cure cancer. Moreover, the comet assay may be applied to evaluate the suitability of a particular mode of chemotherapy to a particular cancer patient.  相似文献   

5.
DNA from plasmid pUC18 was irradiated with low-LET (13 keV/μm) or high-LET (60 keV/μm) carbon ions or X-rays (4 keV/μm) in solutions containing several concentrations of Tris (0.66–200 mM) to determine the yield of abasic (AP) sites and the effect of scavenging capacity. The yield of AP sites, detected as single-strand breaks (SSB) after digestion with E. coli endonuclease IV (Nfo), was compared with that of SSB and base lesions. At higher concentrations of Tris, the yields of single or clustered AP sites were significantly lower than those of single or clustered base lesions. The relative yields of single AP sites and AP clusters were less than 10 and 7 %, respectively, of the total damage produced at a scavenger capacity mimicking that in cells. The dependence of the yield of AP sites on scavenging capacity was similar to that of prompt strand breaks. The ratios of the yield of isolated AP sites to that of SSB induced by carbon ion or X-ray irradiation were relatively constant at 0.45 ± 0.15 over the tested range of scavenger capacity, although the ratio of SSB to double-strand breaks (DSB) showed the characteristic dependence on both scavenging capacity and radiation quality. These results indicate that the reaction of water radiolysis products, presumably OH radicals, with the sugar-phosphate moieties in the DNA backbone induces both AP sites and SSB with similar efficiency. Direct ionization of DNA is notably more involved in the production of DSB and base lesion clusters than in the production of AP site clusters.  相似文献   

6.
The abasic site is one of the most frequent changes occurring in DNA and has been shown to be lethal and mutagenic. An abasic site in DNA can be tagged by reaction with O-4-nitrobenzylhydroxylamine (NBHA), resulting in the formation of an oxime linkage between the abasic site and the NBHA moiety. In order to measure NBHA-tagged abasic sites, a monoclonal antibody was elicited against a 5'-phosphodeoxyribosyl O-4-nitrobenzyl hydroxylamine-BSA conjugate. The antibody was specific for the NBHA residue as demonstrated by hapten inhibition, with IC50 values for 5'-phosphodeoxyribosyl-NBHA, deoxyribosyl-NBHA, ribosyl-NBHA and NBHA of 0.3 microM, 5 microM, 5 microM and 7 microM, respectively. Other haptens examined, including benzylhydroxylamine, 5'-phosphodeoxyribosyl-, deoxyribosyl-, and ribosyl-benzylhydroxylamine, showed no inhibition even at 1 mM. The antibody showed high specificity for NBHA-modified AP sites in DNA and exhibited no cross reactivity with normal DNA bases, otherwise-modified DNA bases or unmodified AP sites. Using a direct ELISA assay, the antibody detected 1 AP site (after NBHA-modification) per 10,000 base-pairs or approximately 10 femtomoles of AP sites in DNA. DNA lesions were detectable in 60Co gamma-irradiated DNA at a dose as low as 10 rad (0.1 Gy) and the production of antibody detectable sites was proportional to the gamma-ray dose. Since NBHA reacts with lesions containing an aldehyde group, the simplicity and sensitivity of the antibody assay should provide a useful method for the quantitation of AP sites or other DNA lesions containing an aldehyde group.  相似文献   

7.
Abasic sites are common DNA lesions resulting from spontaneous depurination and excision of damaged nucleobases by DNA repair enzymes. However, the influence of the local sequence context on the structure of the abasic site and ultimately, its recognition and repair, remains elusive. In the present study, duplex DNAs with three different bases (G, C or T) opposite an abasic site have been synthesized in the same sequence context (5′-CCA AAG6 XA8C CGG G-3′, where X denotes the abasic site) and characterized by 2D NMR spectroscopy. Studies on a duplex DNA with an A opposite the abasic site in the same sequence has recently been reported [Chen,J., Dupradeau,F.-Y., Case,D.A., Turner,C.J. and Stubbe,J. (2007) Nuclear magnetic resonance structural studies and molecular modeling of duplex DNA containing normal and 4′-oxidized abasic sites. Biochemistry, 46, 3096–3107]. Molecular modeling based on NMR-derived distance and dihedral angle restraints and molecular dynamics calculations have been applied to determine structural models and conformational flexibility of each duplex. The results indicate that all four duplexes adopt an overall B-form conformation with each unpaired base stacked between adjacent bases intrahelically. The conformation around the abasic site is more perturbed when the base opposite to the lesion is a pyrimidine (C or T) than a purine (G or A). In both the former cases, the neighboring base pairs (G6-C21 and A8-T19) are closer to each other than those in B-form DNA. Molecular dynamics simulations reveal that transient H-bond interactions between the unpaired pyrimidine (C20 or T20) and the base 3′ to the abasic site play an important role in perturbing the local conformation. These results provide structural insight into the dynamics of abasic sites that are intrinsically modulated by the bases opposite the abasic site.  相似文献   

8.
Apurinic/apyrimidinic (AP) sites, a prominent type of DNA damage, are repaired through the base excision repair mechanism in both prokaryotes and eukaryotes and may interfere with many other cellular processes. A full repertoire of AP site-binding proteins in cells is presently unknown, preventing reliable assessment of harm inflicted by these ubiquitous lesions and of their involvement in the flux of DNA metabolism. We present a proteomics-based strategy for assembling at least a partial catalogue of proteins capable of binding AP sites in DNA. The general scheme relies on the sensitivity of many AP site-bound protein species to NaBH(4) cross-linking. An affinity-tagged substrate is used to facilitate isolation of the cross-linked species, which are then separated and analyzed by mass spectrometry methods. We report identification of seven proteins from Escherichia coli (AroF, DnaK, MutM, PolA, TnaA, TufA, and UvrA) and two proteins from bakers' yeast (ARC1 and Ygl245wp) reactive for AP sites in this system.  相似文献   

9.
In this study we demonstrate that the different substrate recognition properties of bacterial and human AP endonucleases might be used to quantify and localize apurinic (AP) sites formed in DNA in vivo. By using a model oligonucleotide containing a single AP site modified with methoxyamine (MX), we show that endonuclease III and IV of E. coli are able to cleave the alkoxyamine-adducted site whereas a partially purified HeLa AP endonuclease and crude cell-free extracts from HeLa cells are inhibited by this modification. In addition MX-modified AP sites in a DNA template retain their ability to block DNA synthesis in vitro. Since MX can efficiently react with AP sites formed in mammalian cells in vivo we propose that the MX modified abasic sites thus formed can be quantitated and localized at the level of the individual gene by subsequent site specific cleavage by either E. coli endonuclease III or IV in vitro.  相似文献   

10.
Redmond Red, a fluoropore containing a redox-active phenoxazine core, has been explored as a new electrochemical probe for the detection of abasic sites in double-stranded DNA. The electrochemical behavior of Redmond Red-modified DNA at gold surfaces exhibits stable, quasi-reversible voltammetry with a midpoint potential centered around -50 mV versus NHE. Importantly, with Redmond Red positioned opposite an abasic site within the DNA duplex, the electrochemical response is significantly enhanced compared to Redmond Red positioned across from a base. Redmond Red, reporting only if well-stacked in the duplex, represents a sensitive probe to detect abasic sites electrochemically in a DNA-mediated reaction.  相似文献   

11.
DNA polymerase lambda (pol lambda) is a member of the X family of DNA polymerases that has been implicated in both base excision repair and non-homologous end joining through in vitro studies. However, to date, no phenotype has been associated with cells deficient in this DNA polymerase. Here we show that pol lambda null mouse fibroblasts are hypersensitive to oxidative DNA damaging agents, suggesting a role of pol lambda in protection of cells against the cytotoxic effects of oxidized DNA. Additionally, pol lambda co-immunoprecipitates with an oxidized base DNA glycosylase, single-strand-selective monofunctional uracil-DNA glycosylase (SMUG1), and localizes to oxidative DNA lesions in situ. From these data, we conclude that pol lambda protects cells against oxidative stress and suggest that it participates in oxidative DNA damage base excision repair.  相似文献   

12.
K Kubo  H Ide  S S Wallace  Y W Kow 《Biochemistry》1992,31(14):3703-3708
Free radicals produce a wide spectrum of damages; among these are DNA base damages and abasic (AP) sites. Although several methods have been used to detect and quantify AP sites, they either are relatively laborious or require the use of radioactivity. A novel reagent for detecting abasic sites in DNA was prepared by reacting O-(carboxymethyl)hydroxylamine with biotin hydrazide in the presence of carbodiimide. This reagent, called Aldehyde Reactive Probe (ARP), specifically tagged AP sites in DNA with biotin residues. The number of biotin-tagged AP sites was then determined colorimetrically by an ELISA-like assay using avidin/biotin complex conjugated to horseradish peroxidase as the indicator enzyme. With heat/acid-depurinated calf thymus or bacteriophage f1 DNA, ARP detected femtomoles of AP sites in DNA. Using this assay, DNA damages generated in calf thymus, phi X174 RF, and f1 single-stranded DNA, X-irradiated in phosphate buffer, were easily detectable at 10 rad (0.1 Gy). Furthermore, ARP sites were detectable in DNA isolated from heat-inactivated X-irradiated (10 Gy) and methyl methanesulfonate (MMS)-treated (5 microM) Escherichia coli cells. The rate of production of ARP sites was proportional to the X-ray dose as well as to the concentration of MMS. Thus, the sensitivity and simplicity of the ARP assay should provide a potentially powerful method for the quantitation of AP sites or other DNA lesions containing an aldehyde group.  相似文献   

13.
14.
Hot piperidine is often used to cleave abasic and UV-irradiated DNA at the sites of damage. It can inflict non-specific damage on DNA, probably because it is a strong base and creates significant concentrations of hydroxyl ions which can attack purines and pyrimidines. We show that several other amines can cleave abasic DNA at or near neutral pH without non-specific damage. One diamine, N,N'-dimethylethylenediamine, efficiently cleaves abasic DNA at pH 7.4 by either beta- or beta,delta-elimination, depending on temperature. Using end-labelled oligonucleotides we show that cleavage depends mainly on elimination reactions, but that 4',5'-cyclization is also significant. This reagent also cleaves at photoproducts induced by UVC and UVB, producing the same overall pattern as piperidine, but with no non-specific damage. It should prove valuable in locating low levels of photoproducts in DNA, such as those induced by natural sunlight.  相似文献   

15.
Zhao B  Xie Z  Shen H  Wang Z 《Nucleic acids research》2004,32(13):3984-3994
Abasic (AP) sites are major DNA lesions and are highly mutagenic. AP site-induced mutagenesis largely depends on translesion synthesis. We have examined the role of DNA polymerase η (Polη) in translesion synthesis of AP sites by replicating a plasmid containing a site-specific AP site in yeast cells. In wild-type cells, AP site bypass resulted in preferred C insertion (62%) over A insertion (21%), as well as −1 deletion (3%), and complex event (14%) containing multiple mutations. In cells lacking Polη (rad30), Rev1, Polζ (rev3), and both Polη and Polζ, translesion synthesis was reduced to 30%, 30%, 15% and 3% of the wild-type level, respectively. C insertion opposite the AP site was reduced in rad30 mutant cells and was abolished in cells lacking Rev1 or Polζ, but significant A insertion was still detected in these mutant cells. While purified yeast Polα effectively inserted an A opposite the AP site in vitro, purified yeast Polδ was much less effective in A insertion opposite the lesion due to its 3′→5′ proofreading exonuclease activity. Purified yeast Polη performed extension synthesis from the primer 3′ A opposite the lesion. These results show that Polη is involved in translesion synthesis of AP sites in yeast cells, and suggest that an important role of Polη is to catalyze extension following A insertion opposite the lesion. Consistent with these conclusions, rad30 mutant cells were sensitive to methyl methanesulfonate (MMS), and rev1 rad30 or rev3 rad30 double mutant cells were synergistically more sensitive to MMS than the respective single mutant strains.  相似文献   

16.
DNA continuously suffers the loss of its constituent bases, and thereby, a loss of potentially vital genetic information. Sites of missing bases--termed abasic or apurinic/apyrimidinic (AP) sites--form spontaneously, through damage-induced hydrolytic base release, or by enzyme-catalyzed removal of modified or mismatched bases during base excision repair (BER). In this review, we discuss the structural and biological consequences of abasic lesions in DNA, as well as the multiple repair pathways for such damage, while emphasizing the mechanistic operation of the multi-functional human abasic endonuclease APE1 (or REF-1) and its potential relationship to disease.  相似文献   

17.
Abstract

Objectives

The presence of inflammatory cells indicates the development of epithelial cell injury in nasal polyposis (NP) and the potential for production of high levels of reactive oxygen and nitrogen species. The aim of our study was to clarify the role of oxidative stress and antioxidant status in the deterioration accompanying NP.

Methods

Twenty patients (11 men) aged 47.2 ± 17.0 years with nasal polyps were included in the study. Twenty healthy subjects (7 men) aged 48.2 ± 15.3 years formed the control group. The erythrocyte activities of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), and plasma nitric oxide (NO) concentrations were measured. An alkaline comet assay was used to determine the extent of blood lymphocyte DNA damage of oxidized purines as glicosylo-formamidoglicosylase (Fpg) sites, and oxidized pyrimidines as endonuclease III (Nth) sites.

Results

A significant increase of NO (P < 0.05) and non-significant decreases of SOD (P > 0.05), CAT (P > 0.05), and GPx (P > 0.05) were seen in NP patients compared to healthy controls. The level of blood lymphocyte oxidative DNA damage in NP patients was significantly higher compared to the control group (P = 0.01).

Discussion

The blood lymphocyte DNA damage level increased in patients with NP. Elevated DNA damage may be related to overproduction of reactive oxygen and nitrogen species and/or decreased antioxidant protection.  相似文献   

18.
DNA-bending flexibility is central for its many biological functions. A new bending restraining method for use in molecular mechanics calculations and molecular dynamics simulations was developed. It is based on an average screw rotation axis definition for DNA segments and allows inducing continuous and smooth bending deformations of a DNA oligonucleotide. In addition to controlling the magnitude of induced bending it is also possible to control the bending direction so that the calculation of a complete (2-dimensional) directional DNA-bending map is now possible. The method was applied to several DNA oligonucleotides including A(adenine)-tract containing sequences known to form stable bent structures and to DNA containing mismatches or an abasic site. In case of G:A and C:C mismatches a greater variety of conformations bent in various directions compared to regular B-DNA was found. For comparison, a molecular dynamics implementation of the approach was also applied to calculate the free energy change associated with bending of A-tract containing DNA, including deformations significantly beyond the optimal curvature. Good agreement with available experimental data was obtained offering an atomic level explanation for stable bending of A-tract containing DNA molecules. The DNA-bending persistence length estimated from the explicit solvent simulations is also in good agreement with experiment whereas the adiabatic mapping calculations with a GB solvent model predict a bending rigidity roughly two times larger.  相似文献   

19.
20.
HU is one of the most abundant DNA binding proteins in Escherichia coli. We find that it binds strongly to DNA containing an abasic (AP) site or tetrahydrofuran (THF) (apparent Kd ≈50 nM). It also possesses an AP lyase activity that cleaves at a deoxyribose but not at a THF residue. The binding and cleavage of an AP site was observed only with the HUαβ heterodimer. Site-specific mutations at K3 and R61 residues led to a change in substrate binding and cleavage. Both K3A(α)K3A(β) and R61A(α)R61A(β) mutant HU showed significant reduction in binding to DNA containing AP site; however, only R61A(α)R61A(β) mutant protein exhibited significant loss in AP lyase activity. Both K3A(α)K3A(β) and R61K(α)R61K(β) showed slight reduction in AP lyase activities. The function of HU protein as an AP lyase was confirmed by the ability of hupA or hupB mutations to further reduce the viability of an E. coli dut(Ts) xth mutant, which generates lethal AP sites at 37°C; the hupA and hupB derivatives, respectively, had a 6-fold and a 150-fold lower survival at 37°C than did the parental strain. These data suggest, therefore, that HU protein plays a significant role in the repair of AP sites in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号