首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
近年来,纳米技术为酶固定化提供了多种纳米级材料,纳米材料固定化酶不仅具有高的酶负载量,而且具有良好的酶稳定性。本文基于纳米材料固定化酶,对纳米材料的种类进行了总结,分析了纳米材料对固定化酶性能的影响,并介绍了纳米级固定化方法及纳米材料固定化酶在生物转化、生物传感器、生物燃料电池等领域的应用。  相似文献   

2.
固定化酶及其应用研究进展   总被引:16,自引:0,他引:16  
酶作为一种生物催化剂 ,一经发现就被人们广泛应用在酿造、食品、医药等领域。由于酶可以在常温、常压等温和的反应条件下高效地催化反应 ,一些难以进行的化学反应在酶的催化下能顺利地完成。酶的开发利用在2 0世纪得到了巨大的发展 ,但由于酶一般必需在温和的条件下才有催化作用 ,在实际运用中也就带来了很多问题 ,从而限制了酶制剂产品的使用和开发 ,固定化酶就是在这种情况下产生的。1 固定化酶简介1916年 Nelson和 Griffin最先发现了酶的固定化现象后 ,科学家就开始了固定化酶的研究工作。 196 9年日本一家制药公司第 1次将固定化的酰…  相似文献   

3.
生物催化是指利用酶或者生物有机体(细胞、细胞器和组织等)作为催化剂进行化学转化的反应过程。酶催化在食品、化学和制药等不同领域的应用中发挥着重要作用,促进了绿色制造以及精细化学品,食品添加剂和药物的可持续生产。在工业化酶促反应中,酶的固定化有助于实现酶的回收或可重复使用并提高其稳定性。随着现代生物技术的不断发展以及学科间的相互渗透,相较于基于普适性思维设计的传统固定化酶策略,根据酶的特性以及应用需求研发的新型固定化方法,以及微/纳米结构等具有优秀比表面积材料的出现,都提供了高负载的固定化材料,并通过多功能的固定化方法有效提高了酶的固定化效率。作为现代合成化学中低碳经济的生产工具,酶提供的化学反应种类几乎可以涵盖所有传统有机合成中的反应策略,因其固定化形态更利于工业化生产,酶固定化技术备受关注。因此,本文对生物催化领域中酶的固定化策略和相关应用进展进行了总结。  相似文献   

4.
多酶共固定化的研究进展   总被引:1,自引:0,他引:1  
固定化酶技术是现代生物催化的核心技术。过去几十年里,固定化酶技术的研究主要集中在单酶固定化。近年来,多酶共固定化由于具有可增加反应的局部浓度、提高反应收率等优点而得到研究者的广泛关注。本文根据国内外研究现状并结合本实验研究从多酶非特异性共价共固定化、非特异性非共价共固定化、非共价包埋固定化以及位点特异性固定化四个方面阐述多酶固定化方法的研究进展,并分析和展望了其在工业上的应用前景。  相似文献   

5.
固定化酶载体研究进展   总被引:1,自引:0,他引:1  
固定化酶技术的应用提高了酶的稳定性和重复使用性,为酶在工业上的大规模运用提供了条件,其中载体是固定化酶技术的关键环节之一,已成为固定化酶技术目前研究的热点。介绍了介孔材料、纳米材料、磁性材料、天然高分子材料在固定化酶领域的的优缺点、研究现状及其应用情况,综述了载体材料固定化酶研究过程中的分析表征手段,包括形貌分析、结构分析、元素分析、比表面积和孔径分析,并提出了固定化酶载体今后的研究方向,为固定化酶载体进一步的研究和合理利用提供参考。  相似文献   

6.
酶的固定化技术最新研究进展   总被引:2,自引:0,他引:2  
酶是一种高效、绿色、应用广泛的生物催化剂,因其固定化形态在多种性质上均优于游离态,酶固定化技术应运而生并不断发展。我国固定化技术研究始于20世纪70年代,目前固定化酶在食品、医疗、能源、环境治理等领域得到了广泛的应用,但现有固定化技术仍存在适用范围小、成本较高等缺陷。因此,在较为成熟的传统固定化技术基础上,研究者们对新型固定化技术的研究与创新进行了大量尝试,形成了一批以固定化载体和固定化方式为核心的新型固定化技术。文中作者结合团队十余年对固定化技术的研究和理解,归纳介绍了新型酶固定化技术的发展方向和应用趋势,并阐述了对固定化技术未来发展的理解和建议。  相似文献   

7.
金属有机骨架(MOFs)是由有机配体和金属离子或团簇通过配位键自组装形成的具有分子内孔隙的有机无机杂化材料,由于其比表面积大和化学稳定性、可调控的孔隙以及多样性被越来越多地用于生物分子的装载尤其是酶的固定化领域.本文综述了近年来国内外制备MOFs以及MOFs基的复合材料固定化酶的制备方法、改进策略和应用,并对MOFs基...  相似文献   

8.
为保障消费者食用安全,迫切需要研发农产品和食品中的农药残留快速检测技术.酶抑制法检测是目前农药残留快速检测技术中的主要研究方向之一,而酶的固定化是用基于酶抑制法原理对农药残留检测研究中的重要步骤.通过物理或化学的方法高效地将酶固定于载体上,同时保持酶的催化活性是开发各类基于酶抑制法检测农药残留传感器的关键.本文将从固定...  相似文献   

9.
纤维素酶固定化的研究进展   总被引:5,自引:0,他引:5  
王景林 《生命科学》1997,9(3):116-118,135
纤维素酶成本过高是纤维糖化工艺中的主要障碍,因此,各国学者都在研究和探索降低纤维素酶成本及提高其酶解效率的有效方法,酶的固定化技术便有很有希望的方法之一。本文综述了近20年国内外应用不同性质的载体研究纤维素酶固定化的若干结果和进展。  相似文献   

10.
多酶催化是利用多种生物酶构建反应体系或网络,在生物体外实现化学品的合成。在生物制造过程中,多酶的共固定化有利于提高酶的稳定性和重复使用率,更利于多酶间的协同催化。在精准调控下,多酶固定化载体的微囊材料有望实现多酶协同催化性能的最大化。本文中,笔者分析了微囊体系的特点,综述了微囊材料及其固定化多酶的优缺点,总结了微囊多酶固定化体系的应用案例,探讨了其未来发展和应用前景,以期为后续的研究提供参考和指导。  相似文献   

11.
Enzymes have been widely used because of their catalytic properties, and immobilization is a promising technique to improve their catalytic activity and stability. Due to their large specific surface areas, exceptional chemical, mechanical, thermal and cost effective characteristics, nanomaterials should be ideal carriers for the immobilization of enzymes. Enzymes immobilized on nano-carriers are more robust and stable, and can be recycled and reused. This review focuses on the nanomaterial immobilized enzymes and their applications. The introduction addresses the advantages of immobilized enzymes and the features of enzyme immobilization nanocarriers. The next section covers carbonaceous nanomaterials used in enzymes immobilization, with subsections on carbon nanotube, graphene, graphene oxide and reduced graphene oxide. The third section treats metallic nanomaterials for enzymes immobilization, with subsections on metal (gold), metal oxide (titanium dioxide, zinc oxide) and metal hydroxide (layered double hydroxide) nanomaterials. Then, the next section summarizes the applications of nanomaterial immobilized enzymes. A concluding section discusses the challenges and prospects of nanomaterial immobilized enzymes.  相似文献   

12.
Abstract

Enzymes are one of the foundations and regulators for all major biological activities in living bodies. Hence, enormous efforts have been made for enhancing the efficiency of enzymes under different conditions. The use of nanomaterials as novel carriers for enzyme delivery and regulating the activities of enzymes has stimulated significant interests in the field of nano-biotechnology for biomedical applications. Since, all types of nanoparticles (NPs) offer large surface to volume ratios, the use of NPs as enzyme carriers affect the structure, performance, loading efficiency, and the reaction kinetics of enzymes. Hence, the immobilization of enzymes on nanomatrices can be used as a useful approach for direct delivery of therapeutic enzymes to the targeted sites. In other words, NPs can be used as advanced enzyme delivery nanocarriers. In this paper, we present an overview of different binding of enzymes to the nanomaterials as well as different types of nanomatrix supports for immobilization of enzymes. Afterwards, the enzyme immobilization on nanomaterials as a potential system for enzyme delivery has been discussed. Finally, the challenges associated with the enzyme delivery using nano matrices and their future perspective have been discussed.

Communicated by Ramasamy H. Sarma  相似文献   

13.
Glycans play important biological roles in cell‐to‐cell interactions, protection against pathogens, as well as in proper protein folding and stability, and are thus interesting targets for scientists. Although their mechanisms of action have been widely investigated and hypothesized, their biological functions are not well understood due to the lack of deglycosylation methods for large‐scale isolation of these compounds. Isolation of glycans in their native state is crucial for the investigation of their biological functions. However, current enzymatic and chemical deglycosylation techniques require harsh pretreatment and reaction conditions (high temperature and use of detergents) that hinder the isolation of native glycan structures. Indeed, the recent isolation of new endoglycosidases that are able to cleave a wider variety of linkages and efficiently hydrolyze native proteins has opened up the opportunity to elucidate the biological roles of a higher variety of glycans in their native state. As an example, our research group recently isolated a novel Endo‐β‐N‐acetylglucosaminidase from Bifidobacterium longum subsp. infantis ATCC 15697 (EndoBI‐1) that cleaves N‐N′‐diacetyl chitobiose moieties found in the N‐linked glycan (N‐glycan) core of high mannose, hybrid, and complex N‐glycans. This enzyme is also active on native proteins, which enables native glycan isolation, a key advantage when evaluating their biological activities. Efficient, stable, and economically viable enzymatic release of N‐glycans requires the selection of appropriate immobilization strategies. In this review, we discuss the state‐of‐the‐art of various immobilization techniques (physical adsorption, covalent binding, aggregation, and entrapment) for glycosidases, as well as their potential substrates and matrices. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:104–112, 2017  相似文献   

14.
In this article, the results from a theoretical and experimental investigation of enzyme immobilization in porous membranes are reported. A theoretical model of the immobilization process, which accounts for restricted diffusion of enzyme in the pores of the membrane, has been developed. The model predicts the effect of immobilization kinetics and time of immobilization on the enzyme distribution in the pores of the membrane. The immobilization of glucose oxidase and glucose oxidase-biotin conjugate on porous alumina membranes was experimentally investigated. Enzyme uptake data was correlated to the theory to determine the rate constant of imobilization and the distribution of the enzyme in the pore. Immobilization studies were carried out for enzyme adsorption and for enzyme attachment by covalent coupling. The distribution of enzyme was experimentally studied by assembling five membranes in the diffusion cell. Following immobilization, the membranes were separated and each was assayed for activity. The amount of active enzyme present in each membrane yielded a discrete distribution that compared well with that predicted by theory. (c) 1992 John Wiley & Sons, Inc.  相似文献   

15.
Application of nanomaterials as novel supporting materials for enzyme immobilisation has generated incredible interest in the biotechnology community. These robust nanostructured forms, such as nanoparticles, nanofibres, nanotubes, nanoporous, nanosheets, and nanocomposites, possess a high surface area to volume ratios that can cause a high enzyme loading and facilitate reaction kinetics, thus improving biocatalytic efficiency for industrial applications. In this article, we discuss research opportunities of nanoscale materials in enzyme biotechnology and highlight recent developments in biofuel production using advanced material supports for enzyme immobilisation and stabilisation. Synthesis and functionalisation of nanomaterial forms using different methods are highlighted. Various simple and effective strategies designed to result in a stable, as well as functional protein-nanomaterial conjugates are also discussed. Analytical techniques confirming enzyme loading on nanomaterials and assessing post-immobilisation changes are discussed. The current status of versatile nanomaterial support for biofuel production employing cellulases and lipases is described in details. This report concludes with a discussion on the likely outcome that nanomaterials will become an integral part of sustainable bioenergy production.  相似文献   

16.
Therapeutic enzymes are one of the most promising applications of this century in the field of pharmaceutics. Biocatalyst properties can be improved by enzyme immobilization on nano-objects, thereby increasing stability and reusability and also enhancing the targeting to specific tissues and cells. Therapeutic biocatalyst–nanodevice complexes will provide new tools for the diagnosis and treatment of old and newly emerging pathologies. Among the advantages of this approach are the wide span and diverse range of possible materials and biocatalysts that promise to make the matrix–enzyme combination a unique modality for therapeutic delivery. This review focuses on the most significant techniques and nanomaterials used for enzyme immobilization such as metallic superparamagnetic, silica, and polymeric and single-enzyme nanoparticles. Finally, a review of the application of these nanodevices to different pathologies and modes of administration is presented. In short, since therapeutic enzymes constitute a highly promising alternative for treating a variety of pathologies more effectively, this review is aimed at providing the comprehensive summary needed to understand and improve this burgeoning area.  相似文献   

17.
Three commercial lipases (CLs), A Amano 6 (from Aspergillus niger), M Amano 10 (from Mucor javanicus), and R Amano (from Penicillium roqueforti) - called lipase A, M and R respectively - were characterized in terms of carbohydrate content, protein content and enzymatic activity (p-nitrophenylacetate assay). All the CL preparations contained different proteins as observed from electrophoresis. Lipases were immobilized on Accurel MP1004 porous polypropylene by physical adsorption.The Immobilization process caused a loss of enzymatic activity. The retained activity was similar for lipase M and R (about 15%). In contrast, lipase A retained only the 1.3% of the specific activity of the free lipase. The retained activity of lipases M and R seems to be due to a feature of the support, while the lower activity a of lipase A may be attributed to a strong structure distortion caused by lipase-support interaction.  相似文献   

18.
Three commercial lipases (CLs), A Amano 6 (from Aspergillus niger), M Amano 10 (from Mucor javanicus), and R Amano (from Penicillium roqueforti) – called lipase A, M and R respectively – were characterized in terms of carbohydrate content, protein content and enzymatic activity (p-nitrophenylacetate assay). All the CL preparations contained different proteins as observed from electrophoresis. Lipases were immobilized on Accurel MP1004 porous polypropylene by physical adsorption.The Immobilization process caused a loss of enzymatic activity. The retained activity was similar for lipase M and R (about 15%). In contrast, lipase A retained only the 1.3% of the specific activity of the free lipase. The retained activity of lipases M and R seems to be due to a feature of the support, while the lower activity a of lipase A may be attributed to a strong structure distortion caused by lipase–support interaction.  相似文献   

19.
In this work, we have used supports activated with m-amino-phenylboronic groups to “reversibly” immobilize proteins under very mild conditions. Most of the proteins contained in a crude extract from E. coli could be immobilized on Eupergit C-250 L activated with phenylboronic and then fully desorbed from the support by using mannitol or SDS. This suggested that the immobilization of the proteins on these supports was not only via sugars interaction, but also by other interaction/s, quite unspecific, that might be playing a key role in the immobilization of the proteins. Penicillin acylase from E. coli (PGA) was also immobilized in Eupergit C activated with m-amino-phenylboronic groups. The enzyme could be fully desorbed with mannitol immediately after being immobilized on the support. However, longer incubation times of the immobilized preparation caused a reduction of protein elution from the boronate support in presence of mannitol. Moreover, these immobilized preparations showed a higher stability in the presence of organic solvents than the soluble enzyme; the stability also improved when the incubation time was increased (to a factor of 100). By desorbing the weakest bound enzyme molecules, it was possible to correlate adsorption strength with stabilization; therefore, it seems that this effect was due to the rigidification of the enzyme via multipoint attachment on the support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号