首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
真核生物除了传统的帽依赖型翻译机制外,还存在内部核糖体进入位点(internal ribosome entry site, IRES)介导的翻译机制。雌激素受体2(estrogen receptor 2, ESR2)是雌激素受体家族成员之一,其编码的蛋白质在许多肿瘤中发挥重要的作用。ESR2蛋白的异常表达会导致众多肿瘤的发生,但其蛋白质翻译水平的调控机制至今仍不清楚。研究发现,在药物刺激的条件下,乳腺癌细胞MCF7/WT中ESR2蛋白的表达提高,但是其转录水平基本未见发生改变。猜测ESR2 mRNA 5′非翻译区(5′ untranslated region, 5′ UTR)具有IRES活性。为了验证ESR2 mRNA 5′ UTR是否具有IRES元件,将ESR2 mRNA 5′ UTR插入到双顺反子报告基因载体(pRF)中,构建pRL-ESR2-FL重组质粒载体,将其瞬时转染到HEK293细胞。结果发现,ESR2 mRNA 5′ UTR有假定的IRES活性。并且通过3个排除实验验证了ESR2 IRES活性与其5′ UTR中的内部潜在启动子(P<0.0001)、内部剪切位点以及核糖体通读无关。进一步对其序列进行截短研究发现,ESR2 IRES活性发挥的关键区域是3′端的439~468 nt,且ESR2 IRES最大活性的发挥依赖于5′ UTR序列的完整性。并且发现,ESR2 IRES活性的发挥不但需要特定的一级核酸序列,还要有稳定的二级茎环结构。此研究有望为ESR2蛋白调控的相关疾病提供新的药物治疗靶点。  相似文献   

2.
通过五指山猪内源性反转录病毒5′端非编码区(5′UTR)cDNA的克隆,分析其一级结构和调控元件,为进一步研究其在PERV复制、转录中的调控机制奠定基础。本研究采用cDNA末端快速扩增技术(RACE)获得全长约1035bp的PERV 5′UTR。通过NCBI公共数据库BLASTn序列进行同源性分析,并应用KEGG数据库对该转录调控区进行顺式作用元件定位分析,结果发现PERV 5′UTR与GenBank公布的部分PERV 5′UTR相比较,同源性在82.6~94.8%之间。一级结构分析发现PERV 5′UTR由U3、R、U5区、引物结合区(PBS)及前导序列组成,可能的核心启动子序列与具有增强子作用的39bp重复序列分别位于U3区的-67~ 1与-97~-59区段。在5′UTR转录调控区(-428~ 507)鉴定出31个有效的顺式作用元件位点,其中NF-Y、TBP、Oct-1、HSF、GATA-1和GATA-2等与PERV的转录、调控密切相关。  相似文献   

3.
《生命世界》2009,(11):7-7
科学家对果蝇天然免疫进行研究,发现具有不同表达动态特性和抗菌谱的抗菌肽的mRNA稳定性不同,这是由果蝇Tisll蛋白介导的,它与抗菌肽mRNA的3’UTR上的调控元件ARE作用使得mRNA变得不稳定。进一步实验证明p38MAPK途径通过抑制Tisll介导的mRNA降解对维持含有ARE元件的mRNAs稳定性具有重要作用。  相似文献   

4.
mRNA定位的意义在于使特定的蛋白质定位于细胞内特定的区域,特别是在胚胎发育过程中和在极性细胞中,mRNA的定位具有极其重要的作用,顺式作用元件和反式作用因子参与介导mRNA的定位,有多种机制调控其定位,其中主动运输机制是最主要的定位机制,需要细胞骨架系统和蛋白马达的参与。mRNA定位机制与其它水平上的表达调控机制,特别是mRNA转录后加工,核转运和翻译调控机制紧密偶联。  相似文献   

5.
mRNA稳定机制在低氧反应基因表达调控中的作用   总被引:3,自引:0,他引:3  
几乎所有生物的信使RNA稳定性都影响基因表达。而mRNA的稳定性除了由其本身的序列和识别该序列的结合蛋白共同决定外,还受特异性的顺式作用元件和mRNA结合蛋白的影响。真核细胞中有3个独特的顺式作用元件:富AU元件(ARE)、茎环结构和富嘧啶结构,在mRNA稳定性调节中发挥重要作用。本文着重论述mRNA稳定机制在低氧诱导的一系列基因表达调控中的作用。  相似文献   

6.
黄峙  周天鸿  郭宝江 《遗传学报》2004,31(11):1321-1326
真核生物利用无义介导的mRNA降解(nonsense-mediated mRNA decay,NMD),对含有提前终止密码子(premature termination codons,PTC)的异常转录产物进行快速清除,防止毒害性截短蛋白(truncatedproteins)的产生,是真核生物重要的mRNA监视机制。NMD作用的启动与多种顺式调控元件有关,它们包括:提前终止密码子的标识;PTC下游特定位置的序列元件,在酵母细胞称为DSE(downstream sequence element,DSE),在哺乳动物细胞主要为内含子剪接依赖性序列元件(exon-exon junction,EEJ);稳定作用元件(stabilizer elements,STE)对NMD作用的阻抑调节;以及其他与NMD作用相关的序列,如poly(A)延长、5’-UTR的uORF(upstream open reading frame,uORF)和程序化核糖体移码(programmed-1 ribosomal frameshift,-1PRF)信号序列等。NMD途径中的这些顺式调控元件可能是分子遗传调控的关键靶点。  相似文献   

7.
Rho蛋白作为细胞信号转导的分子开关之一,在细胞骨架动态变化中发挥着极其重要的作用。Rho蛋白对细胞骨架动态变化的调节是一个复杂的信号传递过程,涉及到Rho蛋白介导的信号通路中不同效应物间和Rho蛋白介导的多条信号通路间的相互作用。在Rho蛋白介导的信号通路中,上游调控因子、Rho蛋白、效应物在细胞中的正确定位对信号传递有着决定性的作用。  相似文献   

8.
启动子是位于基因5′端上游的一段DNA序列, 负责调控基因的转录。与植物抗病相关基因的启动子区含有能针对病原菌胁迫做出应答的顺式作用元件, 这些顺式作用元件通过与转录因子特异性结合, 进而增强抗病基因的转录表达, 提高植物的抗病性。该文主要综述了病原菌诱导型启动子相关顺式作用元件及与这些元件互作的转录因子, 特别对一类特殊的转录因子--病原菌TAL效应子与植物靶基因启动子之间的相互作用机制进行了阐述, 并对其应用前景进行了展望。  相似文献   

9.
真核mRNA的3‘非翻译区转录后水平调控作用研究进展   总被引:8,自引:0,他引:8  
真核mRNA的3‘非翻译区(3‘-UTR)在基因表达的转录后调控中起着重要作用:3‘-UTR内存在末端加工信号以指导mRNA3‘末端的加工;3‘-UTR不但控制mRNA的稳定性及降解速率、协助辨认特殊密码子,而且还控制着mRNA的翻译时间、位点及控制其翻译起始及效率等。  相似文献   

10.
文章利用20个中国汉族个体样本建立了稳定精确的HLA-A、-B基因全长序列的克隆测序方法, 获得HLA-A 10个等位基因4.2 kb序列, HLA-B 6个等位基因3.7 kb序列, 序列涵盖了两个基因的所有外显子、所有内含子、5′启动子区以及3′非翻译区(3′UTR)。A*1153是文章发现的一个新等位基因, B*151101的内含子序列、5个HLA-A以及2个HLA-B等位基因的5′启动子序列和3′UTR序列为国际上首次报道, 其他等位基因均延伸了IMGT/HLA数据库中释放的全长序列。文章首次在中国汉族个体中测定了IMGT/HLA数据库中没有覆盖的HLA-A、-B基因的上游5′启动子以及下游3′UTR区域的多态性模式。HLA-A基因5′启动子延伸区域共发现26个SNPs和一处3 bp(AAA/-)的插入/缺失, 3′UTR延伸区域共发现14个SNPs; HLA-B基因5′启动子延伸区域共发现5个SNPs和一处1 bp(T/-)的插入/缺失, 3′UTR延伸区域共发现8个SNPs。通过对两个基因的5′启动子、外显子以及3′UTR的系统发育树分析, 发现两个基因调控区与外显子的进化关系有所不同, HLA-A基因除A*24020101外, 其他等位基因两端调控区与外显子连锁比较紧密, HLA-B基因两端调控区与外显子之间则发生了较为频繁的重组事件。  相似文献   

11.
We previously demonstrated statins to enhance cytokine-mediated nitric oxide (NO) synthesis in vascular smooth muscle cells (VSMC). To clarify the mechanism by which this occurs, we evaluated the effects of fluvastatin in lipopolysaccharide (LPS)-stimulated VSMC. NO production induced by LPS was dose-dependently enhanced by fluvastatin, as were iNOS mRNA levels and iNOS protein expression. Exogenous mevalonate and geranylgeranylpyrophosphate (GGPP) dampened the stimulatory effect of fluvastatin. A pull-down assay demonstrated fluvastatin to decrease levels of GTP-bound Rho A. Moreover, a Rho-kinase inhibitor, Y-27632, was observed to enhance LPS-induced NO production. We recently demonstrated that disrupting F-actin formation dramatically potentiates the ability of LPS to induce iNOS mRNA and protein expression. In the present study, staining of F-actin with nitrobenzoxadiazole (NBD)-phallacidin demonstrated that fluvastatin significantly impairs F-actin stress fiber formation. In light of these results, the ability of statins to increase NO production is due, at least in part, to their ability to block the biosynthesis of mevalonate, thereby preventing isoprenoid biosynthesis. This inhibits Rho/Rho-kinase signalling and, in turn, disrupts the actin cytoskeleton. Further analysis of the signalling pathway by which the actin cytoskeleton affects iNOS expression might yield new insight into mechanisms of regulation of NO production.  相似文献   

12.
We tested the hypothesis that the equilibrium between F- and G-actin in endothelial cells modulates the integrity of the actin cytoskeleton and is important for the maintenance of endothelial barrier functions in vivo and in vitro. We used the actin-depolymerizing agent cytochalasin D and jasplakinolide, an actin filament (F-actin) stabilizing and promoting substance, to modulate the actin cytoskeleton. Low doses of jasplakinolide (0.1 microM), which we have previously shown to reduce the permeability-increasing effect of cytochalasin D, had no influence on resting permeability of single-perfused mesenteric microvessels in vivo as well as on monolayer integrity. The F-actin content of cultured endothelial cells remained unchanged. In contrast, higher doses (10 microM) of jasplakinolide increased permeability (hydraulic conductivity) to the same extent as cytochalasin D and induced formation of intercellular gaps in cultured myocardial endothelial (MyEnd) cell monolayers. This was accompanied by a 34% increase of F-actin and pronounced disorganization of the actin cytoskeleton in MyEnd cells. Furthermore, we tested whether an increase of cAMP by forskolin and rolipram would prevent the cytochalasin D-induced barrier breakdown. Conditions that increase intracellular cAMP failed to block the cytochalasin D-induced permeability increase in vivo and the reduction of vascular endothelial cadherin-mediated adhesion in vitro. Taken together, these data support the hypothesis that the state of polymerization of the actin cytoskeleton is critical for maintenance of endothelial barrier functions and that both depolymerization by cytochalasin D and hyperpolymerization of actin by jasplakinolide resulted in an increase of microvessel permeability in vivo. However, cAMP, which is known to support endothelial barrier functions, seems to work by mechanisms other than stabilizing F-actin.  相似文献   

13.
Increased production and activation of matrix metalloproteinase-2 (MMP-2) are critical events in skeletal muscle angiogenesis and are known to occur in response to mechanical stresses. We hypothesized that reorganization of the actin cytoskeleton would increase endothelial cell production and activation of MMP-2 and that this increase would require a MAPK-dependent signaling pathway in endothelial cells. The pharmacological actin depolymerization agent cytochalasin D increased expression of MMP-2 and membrane type 1-matrix metalloproteinase (MT1-MMP) mRNA, and this was reduced significantly in the presence of the JNK inhibitor SP600125. Activation of JNK by anisomycin was sufficient to induce expression of both MMP-2 and MT1-MMP mRNA in quiescent cells. Downregulation of c-Jun, a downstream target of JNK, with small interference (si)RNA inhibited MMP-2 expression in response to anisomycin. Inhibition of phosphoinositide 3-kinase (PI3K), but not JNK, significantly decreased the amount of active MMP-2 following cytochalasin D stimulation with a concurrent decrease in MT1-MMP protein. Physiological reorganization of actin occurs during VEGF stimulation. VEGF-induced MMP-2 protein production and activation, as well as MT1-MMP protein production, depended on PI3K activity. VEGF-induced MMP-2 mRNA expression was reduced by inhibition of JNK or by treatment with c-Jun siRNA. In summary, our results provide novel insight into the signaling cascades initiated in the early stages of angiogenesis through the reorganization of the actin cytoskeleton and demonstrate a critical role for JNK in regulating MMP-2 and MT1-MMP mRNA expression, whereas PI3K regulates protein levels of both MMP-2 and MT1-MMP. angiogenesis; mechanotransduction; vascular endothelial growth factor; c-Jun; phosphoinositide 3-kinase; membrane type 1-matrix metalloproteinase  相似文献   

14.
15.
16.
These studies were designed to determine whether small cytoplasmic RNAs and two different mRNAs (actin mRNA and histone H4 mRNA) were uniformly distributed among various subcellular compartments. The cytoplasm of HeLa S3 cells was fractionated into four RNA-containing compartments. The RNAs bound to the cytoskeleton were separated from those in the soluble cytoplasmic phase and each RNA fraction was further separated into those bound and those not bound to polyribosomes. The four cytoplasmic RNA fractions were analysed to determine which RNA species were present in each. The 7 S RNAs were found in all cytoplasmic fractions, as were the 5 S and 5.8 S ribosomal RNAs, while transfer RNA was found largely in the soluble fraction devoid of polysomes. On the other hand a group of prominent small cytoplasmic RNAs (scRNAs of 105-348 nucleotides) was isolated from the fraction devoid of polysomes but bound to the cytoskeleton. Actin mRNA was found only in polyribosomes bound to the cytoskeleton. This mRNA was released into the soluble phase by cytochalasin B treatment, suggesting a dependence upon actin filament integrity for cytoskeletal binding. A significant portion of several scRNAs was also released from the cytoskeleton by cytochalasin B treatment. Analysis of the spatial distribution of histone H4 mRNAs, however, revealed a more widely dispersed message. Although most (60%) of the H4 mRNA was associated with polyribosomes in the soluble phase, a significant amount was also recovered in both of the cytoskeleton bound fractions either associated or free of polyribosome interaction. Treatment with cytochalasin B suggested that only cytoskeleton bound, untranslated H4 mRNA was dependent upon the integrity of actin filaments for cytoskeletal binding.  相似文献   

17.
Hemodynamic shear stress guides a variety of endothelial phenotype characteristics, including cell morphology, cytoskeletal structure, and gene expression profile. The sensing and processing of extracellular fluid forces may be mediated by mechanotransmission through the actin cytoskeleton network to intracellular locations of signal initiation. In this study, we identify rapid actin-mediated morphological changes in living subconfluent and confluent bovine aortic endothelial cells (ECs) in response to onset of unidirectional steady fluid shear stress (15 dyn/cm2). After flow onset, subconfluent cells exhibited dynamic edge activity in lamellipodia and small ruffles in the downstream and side directions for the first 12 min; activity was minimal in the upstream direction. After 12 min, peripheral edge extension subsided. Confluent cell monolayers that were exposed to shear stress exhibited only subtle increases in edge fluctuations after flow onset. Addition of cytochalasin D to disrupt actin polymerization served to suppress the magnitude of flow-mediated actin remodeling in both subconfluent confluent EC monolayers. Interestingly, when subconfluent ECs were exposed to two sequential flow step increases (1 dyn/cm2 followed by 15 dyn/cm2 12 min later), actin-mediated edge activity was not additionally increased after the second flow step. Thus, repeated flow increases served to desensitize mechanosensitive structural dynamics in the actin cytoskeleton.  相似文献   

18.
P2X1 receptors are ATP-gated ion channels expressed by smooth muscle and blood cells. Carboxyl-terminally His-FLAG-tagged human P2X1 receptors were stably expressed in HEK293 cells and co-purified with cytoskeletal proteins including actin. Disruption of the actin cytoskeleton with cytochalasin D inhibited P2X1 receptor currents with no effect on the time course of the response or surface expression of the receptor. Stabilization of the cytoskeleton with jasplakinolide had no effect on P2X1 receptor currents but decreased receptor mobility. P2X2 receptor currents were unaffected by cytochalasin, and P2X1/2 receptor chimeras were used to identify the molecular basis of actin sensitivity. These studies showed that the intracellular amino terminus accounts for the inhibitory effects of cytoskeletal disruption similar to that shown for lipid raft/cholesterol sensitivity. Stabilization of the cytoskeleton with jasplakinolide abolished the inhibitory effects of cholesterol depletion on P2X1 receptor currents, suggesting that lipid rafts may regulate the receptor through stabilization of the cytoskeleton. These studies show that the cytoskeleton plays an important role in P2X1 receptor regulation.  相似文献   

19.
Abstract: In SH-SY5Y human neuroblastoma cells, insulin-like growth factor (IGF)-I mediates membrane ruffling and growth cone extension. We have previously shown that IGF-I activates the tyrosine phosphorylation of focal adhesion kinase (FAK) and extracellular signal-regulated protein kinase (ERK) 2. In the current study, we examined which signaling pathway underlies IGF-I-mediated FAK phosphorylation and cytoskeletal changes and determined if an intact cytoskeleton was required for IGF-I signaling. Treatment of SH-SY5Y cells with cytochalasin D disrupted the actin cytoskeleton and prevented any morphological changes induced by IGF-I. Inhibitors of phosphatidylinositol 3-kinase (PI 3-K) blocked IGF-I-mediated changes in the actin cytoskeleton as measured by membrane ruffling. In contrast, PD98059, a selective inhibitor of ERK kinase, had no effect on IGF-I-induced membrane ruffling. In parallel with effects on the actin cytoskeleton, cytochalasin D and PI 3-K inhibitors blocked IGF-I-induced FAK tyrosine phosphorylation, whereas PD98059 had no effect. It is interesting that cytochalasin D did not block IGF-I-induced ERK2 tyrosine phosphorylation. Therefore, it is likely that FAK and ERK2 tyrosine phosphorylations are regulated by separate pathways during IGF-I signaling. Our study suggests that integrity as well as dynamic motility of the actin cytoskeleton mediated by PI 3-K is required for IGF-I-induced FAK tyrosine phosphorylation, but not for ERK2 activation.  相似文献   

20.
Role of the cytoskeleton in laminin induced mammary gene expression   总被引:7,自引:0,他引:7  
The differentiation of rat mammary epithelial cells is characterized both by morphologic changes and by the expression of a group of milk protein genes. We have previously shown that by culturing these cells on the basement membrane glycoprotein laminin, the synthesis of the milk proteins, transferrin, alpha-casein, and alpha-lactalbumin is induced. In order to determine if this effect is mediated through the cytoskeleton, we have treated these cells with cytochalasin D and colchicine. Treatment with cytochalasin D or colchicine for 24 h inhibits the accumulation of alpha-casein, transferrin, and alpha-lactalbumin without significant effect on general protein synthesis. Pulse chase studies show that cytochalasin D does not alter the intracellular turnover of alpha-casein or transferrin. Additionally, treatment with cytochalasin D causes an early (within 1 h) increase in secretion of alpha-casein and transferrin suggesting that the actin cytoskeleton provides a meshwork for secretory vesicles. The disruption of this network enhances the secretion of preformed proteins. However, long term (24 h) treatment with cytochalasin D inhibits synthesis of these milk proteins. Northern blot analysis indicates that treatment with cytochalasin D or colchicine inhibits the laminin induced increase in alpha-casein, alpha-lactalbumin, and transferrin mRNAs. These studies indicate that the major effect of the cytoskeleton on laminin induced milk protein gene expression occurs at the level of accumulation of mRNAs for these proteins. We conclude that the expression of laminin induced milk protein gene expression in primary rat mammary cultures depends on the integrity of the actin and microtubule cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号