首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
细菌氧化锰的分子机制   总被引:1,自引:0,他引:1  
张震  李林  刘凡 《微生物学报》2011,51(2):170-177
摘要: 氧化锰是在生物地球化学循环中起重要作用的一种高反应活性矿物, 而微生物对Mn(Ⅱ)的氧化作用是自然界中氧化锰矿物形成的主要动力。目前从海水、淡水、土壤和矿石等环境中分离到的多种细菌表现出对Mn(Ⅱ)的氧化作用, 对其相关基因与细菌锰氧化分子机制的研究已取得了一定的进展。本文简要总结了几类主要锰氧化细菌的锰氧化基因的结构与功能、基因表达的调控影响因素以及多铜氧化酶的结构和特性, 并对目前在细菌锰氧化作用的分子机制研究中存在的部分悬疑问题及未来研究方向进行了分析。  相似文献   

2.
氨氧化古菌及其在氮循环中的重要作用   总被引:15,自引:2,他引:13  
Liu JJ  Wu WX  Ding Y  Shi DZ  Chen YX 《应用生态学报》2010,21(8):2154-2160
氨氧化作用作为硝化过程的第一步,是氮素生物地球化学循环的关键步骤.长期以来,变形菌纲卢和',亚群中的氨氧化细菌一直被认为是氨氧化作用的主要承担者.然而,近年来研究发现氨氧化古菌广泛存在于各种生态系统中,并且在数量上占明显优势,在氮素生物地球化学循环中起着非常重要的作用.本文概述了氨氧化古菌的形态、生理生态特性及其系统发育特征,对比分析了氨氧化古菌和氨氧化细菌的氨单加氧酶及其编码基因的异同,综述了氨氧化古菌在水生和陆地等生态系统氮素循环中的作用,同时就氨氧化古菌在应用生态和环境保护领域今后的研究重点进行了展望.  相似文献   

3.
硝酸盐是海洋微生物可利用氮的主要形式,也是限制表层海洋生物生产力的主要营养物质,海洋中的硝酸盐主要由氨和亚硝酸盐的氧化产生。探索亚硝酸盐氧化细菌在海洋生态系统中的生态位以及对环境变化的响应机制,对认识微生物参与的氮循环具有十分重要的意义。本文综述了海洋亚硝酸盐氧化细菌的研究进程及其主要种类,并总结了其主要的生理生态学特征,指出微生物在海洋生态系统变迁中所衍生出的适应对策。基于当前的研究现状,展望亚硝酸盐氧化细菌未来的研究方向,以期更好地了解海洋中亚硝酸盐的氧化过程,为进一步认识氮在生物地球化学中的循环奠定基础。  相似文献   

4.
河流沉积物氮循环主要微生物的生态特征   总被引:3,自引:0,他引:3  
微生物驱动的氮循环过程是全球生物地球化学循环的重要组成部分,由于人类活动的影响,氮循环负荷加剧,氮素的生态平衡和微生物的功能特征也相应地受到干扰。河流生态系统是陆地与海洋联系的纽带,因人类活动过量活性氮的输入导致水体富营养化,明显影响着河流的生态功能以及河口沿岸海洋生态系统的平衡。富含微生物的沉积物对氮素的转化和去除起着至关重要的作用。本文主要介绍河流沉积物氮循环主要功能微生物,包括氨氧化细菌、氨氧化古菌、亚硝酸盐氧化菌、反硝化细菌和厌氧氨氧化细菌的群落特征和生态功能,总结氮相关营养盐、溶氧和季节变化等环境因子,以及河道控制管理措施和污水处理厂扰动等条件下氮循环过程主要功能类群的生态特征和响应关系。指出还需深入全面地研究河流沉积物生态系统氮循环过程的驱动机制和微生物的贡献效率,加强城市河流沉积物微生物功能作用的研究及河道生物修复技术的开发。  相似文献   

5.
嗜中性微好氧铁氧化菌研究进展   总被引:6,自引:0,他引:6  
林超峰  龚骏 《生态学报》2012,32(18):5889-5899
在弱酸至近中性微氧条件下,嗜中性微好氧铁氧化菌能够通过依赖氧气的呼吸机制将二价亚铁氧化成三价铁,并获得生长所需能量。这一生物铁氧化过程的主要产物之一是无定形羟基氧化铁——一种异化铁还原作用(铁呼吸)的理想底物,故可加速铁元素在氧化还原分界层的地质循环。有关嗜中性微好氧铁氧化菌的记载可追溯到19世纪30年代,但对其生理、生态与系统发育学的研究自20世纪90年代中期才取得显著进展,主要得益于专性铁氧化菌新种、属的成功培养与分离。已知微好氧铁氧化菌广泛分布于弱酸及近中性富铁地下水、湿地和深海等环境,其参与调控的铁氧化过程对铁及其他元素(如碳、氮、磷、锰和砷等)的生物地球化学循环具有重要意义。这类古老微生物在金属成矿、地壳演变、全球气候变化及其它生源要素地球化学过程中的作用研究已逐渐受到关注,正成为地质与环境微生物学领域的研究热点。主要总结国外近15a对嗜中性微好氧铁氧化菌的研究进展,包括其代谢机理、种类和分布、生态学研究方法和技术、以及细菌铁氧化作用的实际应用和环境意义等,并对今后研究方向提出展望。  相似文献   

6.
白刃  贺纪正  沈菊培  陈新  张丽梅 《生态学报》2016,36(13):3871-3881
厌氧铵氧化是由微生物介导的氮素循环过程中的重要途径之一。近20年来,通过对厌氧铵氧化细菌生态学、基因组学和生理代谢特性的探索,人们对其微生物学机制已经有了较多的认识:厌氧铵氧化细菌通过亚硝酸盐还原酶将亚硝酸根离子还原为一氧化氮,进而与铵离子结合在联氨合成酶的作用下生成联氨,最后通过联氨氧化酶的催化产生终产物氮气。同时,对参与这些过程的关键酶及其功能基因的认识有助于选择新的分子标记,从而为研究厌氧铵氧化细菌的多样性和分子生态学特征提供新的工具,以弥补16S rRNA基因特异性相对较低且难以与生态功能关联等方面的不足。对目前已知的参与厌氧铵氧化过程的3种关键酶的研究历程和现状进行了评述,并总结了利用3种功能基因进行厌氧铵氧化细菌生态学研究的最新进展。  相似文献   

7.
自然条件变化和人类活动不仅加剧了土壤酸化,扩大了酸性土壤面积,而且严重影响了土壤氮循环。氨氧化过程作为硝化作用的限速步骤,是全球氮循环的核心环节,受到国内外研究者的广泛关注。探究酸性土壤氨氧化作用及其功能微生物对完善氮循环机制和促进土壤养分循环具有重要意义。本文主要综述了土壤中氨氧化代谢途径,对比了氨氧化细菌(ammoniaoxidizing bacteria, AOB)、氨氧化古菌(ammonia-oxidizing archaea, AOA)和全程硝化菌(complete ammoniaoxidizers,Comammox)对酸性土壤氨氧化作用的相对贡献,分析了微生物内源功能差异及pH、底物浓度等外部环境因素对氨氧化微生物丰度、活性和群落结构的影响,最后对氨氧化微生物研究进行了展望,以期为酸性土壤氨氧化作用研究和微生物修复技术应用与实践提供科学参考。  相似文献   

8.
珠江河口的浮游细菌生态学研究进展   总被引:1,自引:0,他引:1  
河口地区是海陆交互作用的集中地带,生态环境十分脆弱敏感,物质循环机制复杂,而浮游细菌(bacterioplankton)参与的生态过程是河口生态系统物质循环的重要环节。珠江河口是独特的典型亚热带河口。近年的研究表明,浮游细菌在珠江河口生态系统物质循环中占有重要地位,其生产力和丰度受噬菌原生动物(鞭毛虫)和病毒的控制,而且其生物量与浮游植物的数量具有显著的相关性。珠江河口的优势浮游细菌类群为变型菌门(Proteobacteria)和蓝藻菌(Cyanobacteria)等,浮游细菌丰度和群落结构变化主要受到盐度、温度、营养盐水平等因素的影响。珠江河口浮游细菌与地球物质循环功能鲜有报道,而且珠江河口生态系统中有机质的浮游细菌转化机制和生态学效应更是没有深入研究。基于此,本文全面综述了珠江河口浮游细菌种类组成、分布、生物量、地球物质循环及其环境影响因素等方面的研究进展,有助于系统性地揭示近海生态系统的特征;同时,本文作者还对珠江河口浮游细菌生态学研究今后值得关注的科学问题进行了探讨。  相似文献   

9.
厌氧氨氧化细菌的研究进展   总被引:2,自引:0,他引:2  
厌氧氨氧化是指微生物在无氧条件下,以NO_2~–为电子受体,将NH_4~+氧化成N_2的过程,该过程主要由浮霉菌门下的厌氧氨氧化细菌参与。厌氧氨氧化细菌广泛存在于海洋生态系统、淡水生态系统、陆地生态系统及其他一些特殊生境中,其在废水生物脱氮和地球氮循环中扮演着重要角色。本文从厌氧氨氧化细菌的发现历程、种类、特性、代谢途径、分布、检测方法及应用上进行了较为全面的总结;最后对厌氧氨氧化细菌研究前沿问题和未来发展方向进行了探讨与展望。  相似文献   

10.
动物血红素过氧化物酶参与细菌氧化Mn(Ⅱ)的研究进展   总被引:1,自引:0,他引:1  
锰氧化物是自然环境中一种重要的高活性矿物,在多种元素的生物地球化学循环中起着重要作用。细菌对锰氧化物的形成具有推动作用。截至目前,研究者已从环境中分离出多株锰氧化细菌,并在氧化机理的研究上取得了一定的进展。目前细菌中已知的锰氧化酶包括多铜氧化酶和动物血红素过氧化物酶。与多铜氧化酶相比,动物血红素过氧化物酶在蛋白结构与氧化方式上都具有自己的特点。本文结合国内外最新研究结果,在氧化菌株、氧化酶和基因、氧化方式及影响因素等方面对动物血红素过氧化物酶参与细菌氧化Mn(Ⅱ)的研究进行了总结,对未来研究方向进行了展望。  相似文献   

11.
Biomineralisation of manganese on titanium surfaces exposed to seawater   总被引:1,自引:0,他引:1  
A 2-year long study was carried out to isolate and characterise various bacterial species present in the biofilm formed on titanium surfaces exposed to seawater and to assess the manganese oxidizing potential of the marine isolates. The amount of manganese present in the biofilm was also measured using atomic absorption spectrometry (AAS). The results showed that titanium was susceptible to biofouling. More than 50% of the culturable marine bacterial isolates were capable of bringing about oxidation of Mn(II). All these manganese oxidizing bacteria were heterotrophic. Autotrophic manganese oxidizing bacteria such as Leptothrix was not isolated in the present study. The AAS results confirmed that the manganese content in the biofilms increased with increasing exposure time. Hence, the study indicates that the titanium surfaces when exposed to seawater were colonised by a large number of heterotrophic bacteria, which have the ability of bringing about biomineralisation of manganese.  相似文献   

12.
Bacterial manganese (Mn) oxidation plays an important role in the global biogeochemical cycling of Mn and other compounds, and the diversity and prevalence of Mn oxidizers have been well established. Despite many hypotheses of why these bacteria may oxidize Mn, the physiological reasons remain elusive. Intracellular Mn levels were determined for Pseudomonas putida GB-1 grown in the presence or absence of Mn by inductively coupled plasma mass spectrometry (ICP-MS). Mn oxidizing wild type P. putida GB-1 had higher intracellular Mn than non Mn oxidizing mutants grown under the same conditions. P. putida GB-1 had a 5 fold increase in intracellular Mn compared to the non Mn oxidizing mutant P. putida GB-1-007 and a 59 fold increase in intracellular Mn compared to P. putida GB-1 ∆2665 ∆2447. The intracellular Mn is primarily associated with the less than 3 kDa fraction, suggesting it is not bound to protein. Protein oxidation levels in Mn oxidizing and non oxidizing cultures were relatively similar, yet Mn oxidation did increase survival of P. putida GB-1 when oxidatively stressed. This study is the first to link Mn oxidation to Mn homeostasis and oxidative stress protection.  相似文献   

13.
Cave ecosystems are carbon limited and thus are particularly susceptible to anthropogenic pollution. Yet, how carbon quality and quantity that can modulate the pathways and amount of Mn cycling in caves remains largely unknown. To explore Mn cycling, baseline bacterial, archaeal, and fungal communities associated with Mn(III/IV) oxide deposits were assessed in both relatively ‘pristine’ and anthropogenically impacted caves in the Appalachian Mountains (USA). Cave sites were then amended with various carbon sources that are commonly associated with anthropogenic input to determine whether they stimulate biotic Mn(II) oxidation in situ. Results revealed patterns between sites that had long-term exogenous carbon loading compared to sites that were relatively ‘pristine,’ particularly among Bacteria and Archaea. Carbon treatments that stimulated Mn(II) oxidation at several sites resulted in significant changes to the microbial communities, indicating that anthropogenic input can not only enhance biotic Mn(II) oxidation, but also shape community structure and diversity. Additional carbon sources amended with copper were incubated at various cave sites to test the role that Cu(II) plays in in situ biotic Mn(II) oxidation. Media supplemented with 100 µM Cu(II) inhibited bacterial Mn(II) oxidation but stimulated fungal Mn(II) oxidation, implicating fungal use of multicopper oxidase (MCO) enzymes but bacterial use of superoxide to oxidize Mn(II). In sites with low C:N ratios, the activity of the Mn(II) oxidizing enzyme manganese peroxidase (MnP) appears to be limited (particularly by MnP-utilizing Basidiomycetes and/or Zygomycetes).  相似文献   

14.
海洋厌氧氨氧化细菌分子生态学研究进展   总被引:4,自引:0,他引:4  
厌氧氨氧化细菌是能在厌氧的条件下将氨氧化为氮气的一类细菌,这类细菌执行着以前未被人们所认知的一个独特的过程--氧氨氧化过程,据估计厌氧氨氧化过程对于海洋氮气的形成有30%~50%的贡献率;海洋厌氧氨氧化细菌能与氨氧化细菌及氨氧化古菌存在潜在的耦合作用,对于海洋氮循环复杂机制的阐述有着非常重要的意义;同时海洋厌氧氨氧化细菌独特的细胞和基因组结构,也成为了解海洋细菌进化重要的模式微生物之一.本文综述了近年来国内外厌氧氨氧化细菌分子生态学方面的进展,并结合作者的工作对未来的研究进行展望.  相似文献   

15.
从典型硝化细菌到全程氨氧化微生物:发现及研究进展   总被引:4,自引:1,他引:3  
生物硝化过程在全球氮循环中起关键性作用,被认为由氨氮氧化成亚硝酸盐和亚硝酸盐氧化成硝酸盐两个步骤组成,分别由氨氧化微生物(Ammonia oxidizing microorganisms,AOM)和硝化细菌(Nitrite oxidizing bacteria,NOB)催化完成。AOM包括氨氧化细菌(Ammonia oxidizing bacteria,AOB)和氨氧化古菌(Ammonia oxidizing archaea,AOA),AOB与AOA分布广泛,两者的相对丰度和氨氮浓度密切相关。2015年底,3个硝化螺菌属(Nitrospira)谱系Ⅱ的NOB被证实含有AOM的特征功能酶,包括氨单加氧酶(AMO)和羟胺脱氢酶(HAO),并证明NOB同时具有氨氧化和亚硝酸盐氧化的能力,命名为全程氨氧化微生物(Complete ammonia oxidizer,Comammox)。根据AMO的α亚基基因amoA的相似性将Comammox分为两大分支clade A和clade B。它们广泛分布于自然环境和人工系统,包括土壤(稻田、森林)、淡水(湿地、河流、湖泊沉积物、蓄水层)、污水处理厂和自来水厂等。本文综述了Comammox的发现及其最新的研究进展,并展望了Comammox作为氮循环关键功能菌群的研究方向和应用前景。  相似文献   

16.
The Columbia River is a major source of dissolved nutrients and trace metals for the west coast of North America. A large proportion of these nutrients are sourced from the Columbia River Estuary, where coastal and terrestrial waters mix and resuspend particulate matter within the water column. As estuarine water is discharged off the coast, it transports the particulate matter, dissolved nutrients and microorganisms forming nutrient‐rich and metabolically dynamic plumes. In this study, bacterial manganese oxidation within the plume and estuary was investigated during spring and neap tides. The microbial community proteome was fractionated and assayed for Mn oxidation activity. Proteins from the outer membrane and the loosely bound outer membrane fractions were separated using size exclusion chromatography and Mn(II)‐oxidizing eluates were analysed with tandem mass spectrometry to identify potential Mn oxidase protein targets. Multi‐copper oxidase (MCO) and haem‐peroxidase enzymes were identified in active fractions. T‐RFLP profiles and cluster analysis indicates that organisms and bacterial communities capable of oxidizing Mn(II) can be sourced from the Columbia River estuary and nearshore coastal ocean. These organisms are producing up to 10 fM MnO2 cell?1 day?1. Evidence for the presence of Mn(II)‐oxidizing bacterial isolates from the genera Aurantimonas, Rhodobacter, Bacillus and Shewanella was found in T‐RFLP profiles. Specific Q‐PCR probes were designed to target potential homologues of the Aurantimonas manganese oxidizing peroxidase (Mop). By comparing total Mop homologues, Aurantimonas SSU rRNA and total bacterial SSU rRNA gene copies, it appears that Aurantimonas can only account for ~1.7% of the peroxidase genes quantified. Under the broad assumption that at least some of the peroxidase homologues quantified are involved in manganese oxidation, it is possible that other organisms oxidize manganese via peroxidases.  相似文献   

17.
Bile salts are surface-active steroid compounds. Their main physiological function is aiding the digestion of lipophilic nutrients in intestinal tracts of vertebrates. Many bacteria are capable of transforming and degrading bile salts in the digestive tract and in the environment. Bacterial bile salt transformation and degradation is of high ecological relevance and also essential for the biotechnological production of steroid drugs. While biotechnological aspects have been reviewed many times, the physiological, biochemical and genetic aspects of bacterial bile salt transformation have been neglected. This review provides an overview of the reaction sequence of bile salt degradation and on the respective enzymes and genes exemplified with the degradation pathway of the bile salt cholate. The physiological adaptations for coping with the toxic effects of bile salts, recent biotechnological applications and ecological aspects of bacterial bile salt metabolism are also addressed. As the pathway for bile salt degradation merges with metabolic pathways for bacterial transformation of other steroids, such as testosterone and cholesterol, this review provides helpful background information for metabolic engineering of steroid-transforming bacteria in general.  相似文献   

18.
The dominant initial phase formed during microbially mediated manganese oxidation is a poorly crystalline birnessite-type phyllomanganate. The occurrence of manganese deposits containing this mineral is of interest for increased understanding of microbial involvement in the manganese cycle. A culture independent molecular approach is used as a first step to investigate the role of microorganisms in forming rare earth element enriched birnessite-type manganese oxides, associated with water bearing rock fractures in a tunnel of the Ytterby mine, Sweden. 16S rRNA gene results show that the chemotrophic bacterial communities are diverse and include a high percentage of uncultured unclassified bacteria while archaeal diversity is low with Thaumarchaeota almost exclusively dominating the population. Ytterby clones are frequently most similar to clones isolated from subsurface environments, low temperature milieus and/or settings rich in metals. Overall, bacteria are dominant compared to archaea. Both bacterial and archaeal abundances are up to four orders of magnitude higher in manganese samples than in fracture water. Potential players in the manganese cycling are mainly found within the ferromanganese genera Hyphomicrobium and Pedomicrobium, and a group of Bacteroidetes sequences that cluster within an uncultured novel genus most closely related to the Terrimonas. This study strongly suggest that the production of the YBS deposit is microbially mediated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号