首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
微生物区系在天然生境中分布广泛,利用传统纯培养等方法无法全面认识其分布和功能,因此被认为是地球上的"暗物质"。随着新一代测序技术与高分辨率质谱技术的快速发展,研究者可以在非培养条件下全面快速分析天然生境中微生物组及其动态变化,这开启了微生物组时代,使得研究地球上"暗物质"成为可能,从而改变了微生物学研究的现状。腐生生境作为生物地球化学循环的重要推动部分,因其高效降解转化有机废弃物能力而被广泛关注。腐生生境由于原料多变、环境复杂等原因未能被全面深入研究,而整合宏组学技术则为解析相关生境微生物区系的多样性及其功能动态演替规律奠定了技术基础。基于整合宏组学数据分析与环境参数的优化,可以在认识微生物组及其功能的动态水平上,针对复杂物料建立高效降解转化的绿色转化工艺,促进农牧业废弃物无害化和资源化利用进程。  相似文献   

2.
刘学端 《微生物学通报》2020,47(9):2681-2682
面对物种数量繁多、生态分布广泛、生态功能强大的微生物资源,微生物生态学的任务一方面在于不断发现和认识这类生命"暗物质"及其存在机制,另一方面要充分挖掘和利用这些微生物资源。微生物生态学的应用从最早的混合发酵发展到极端微生物资源利用、微生物生态制剂开发逐渐拓展到合成微生物生态等多个领域。2019年10月在湖南省长沙市举行的"中国生态学学会微生物生态专业委员会学术年会"设立了3个与微生物生态学应用相关的分会场,本期《微生物学通报》也开辟了"人工生态系统微生物"栏目,凸显了我国微生物生态学在资源、能源和环境等应用领域的成果,让我们看到了其成为社会与经济"绿色高效发展"重要驱动力的希望。  相似文献   

3.
自然环境中99%微生物在实验室条件下仍是不能被培养的,称之为"未培养"微生物或微生物"暗物质"。对其进行研究不仅有助于认识环境中微生物代谢多样性,丰富生命之树,同时未培养微生物还蕴含着巨大的新基因和新天然产物资源。但传统培养技术的局限性阻碍了"未培养"微生物资源的开发和利用。虽然随着分子生物学技术的发展,可以直接从环境中获得未培养微生物的遗传信息,分析微生物的广泛代谢多样性,但微生物的生理特征和代谢产物等分析仍然需要建立在研究纯菌株的基础上。目前,已经有很多新颖的培养技术被研发,如原位培养技术、共培养技术和连续流生物反应器培养技术等用于挖掘未培养微生物资源。本文主要介绍了连续流生物反应器培养新技术的发展与改进,探讨了"未培养"微生物培养技术及设备的发展方向,以进一步促进"未培养"微生物资源的开发与利用。  相似文献   

4.
未/难培养微生物可培养策略研究:机遇与挑战   总被引:1,自引:0,他引:1  
微生物分布广泛、种类众多、功能多样,虽体积微小但功能强大,关乎人类的安全健康和生态的稳定发展,在整个地球生命系统中起着举足轻重的作用。17世纪以来,研究者们一直努力获得、了解和利用这些微生物,然而目前分离方法的局限性使得环境中绝大部分微生物仍不能被纯培养,严重阻碍了我们对微生物生命活动规律的认知。因此,如何分离获得这些仍未被培养出来的“暗物质”是微生物研究面临的严峻挑战和重大机遇。本文分析了环境中制约微生物分离培养的因素,综述未/难培养微生物可培养研究的最新进展,着重论述优化的传统培养方法及网络导向培养、膜扩散培养、微流控分选培养和细胞分选培养等新型技术的应用,并对未来研究进行展望,探索多技术联合使用策略,为未/难微生物资源的挖掘及开发利用提供借鉴。  相似文献   

5.
分子生物学技术在热泉地质微生物学研究中的应用   总被引:1,自引:0,他引:1  
何晴  王尚  邓晔 《微生物学报》2019,59(6):996-1011
陆地热泉是一类典型的极端生命-环境互作的地质系统,是我们认识生命与环境协同演化的天然实验室。然而,受限于有限的研究手段,热泉中仍存在大量未解密的微生物"暗物质"。这种困境随着技术的革新得到了改善,尤其是近几年来基于组学、探针和同位素标记的多元化检测手段在嗜热微生物多样性的挖掘、新物种和新代谢途径的发现以及嗜热微生物对元素地球化学循环的调控和响应等方面取得了一系列令人瞩目的研究成果,使得热泉极端微生物和地质环境内在联系的研究也成为地质微生物学研究的热点。立足于前人研究成果,本文将简述常用于热泉地质微生物学研究的分子生物学手段的发展,重点总结其在挖掘热泉微生物多样性和热泉微生物的环境功能研究中的应用及进展,最后对未来研究方向提出展望。  相似文献   

6.
微生物广泛存在于自然界,其代谢活动对环境和人类健康有重要影响。定植于人体表面和内部的微生物无论从细胞还是基因数量上都远超人体,而90%以上的微生物是未培养的,这严重限制了对人体共生微生物功能的研究。因此,鉴定和分离未知或以前无法培养的微生物的必要性是显而易见的。随着各种技术的进步,可培养的微生物数量不断增加,但仍存在不足。本文论述了利用基因组测序探索微生物“暗物质”的效果,以及分离培养未培养微生物和对其进行开发利用的重要性;综述了当前有效的微生物鉴定和培养技术,如基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF MS)、基因组信息抗体工程等;阐述了微生物与人体健康的相互作用,揭示了人体微生物“暗物质”的潜力,对人体微生物“暗物质”未来的研究和发展进行了讨论。  相似文献   

7.
放线菌——微生物药物的重要资源   总被引:19,自引:3,他引:16  
刘志恒   《微生物学通报》2005,32(6):143-145
微生物早在38亿前已经在地球上发生,但人们真正认识它们的存在也只有300年。迄今,事实尽管说明微生物是地球生命体的主要组成,维持着地球的生态平衡,并起着了解地球历史和地球生命健康以及开发所有应用生物技术潜能的关键作用;然而,我们对它们中的大多数仍然了解甚微。因此,微生物仍然是我们人类不断获得知识和发展生物技术的重要载体。  相似文献   

8.
海洋沉积物是地球上最大的有机碳库,其中生存的微生物总量大、分布范围广、类群多样、代谢方式复杂,并共同构成海洋沉积物微生物组。海洋沉积物微生物组介导的有机碳降解与矿化过程不但能为沉积物中的生命活动提供物质和能量,也能参与调控碳循环过程,并在长时间尺度上对地球气候系统产生重大影响。沉积物中的有机碳在复杂多样的微生物代谢活动下被逐步降解,其最终的矿化过程与不同的电子受体消耗相偶合,并形成对应的地球化学分区。研究海洋沉积物微生物及其介导的有机碳转化过程对我们深入认识沉积物中的元素循环过程,并进一步评估其对整个地球系统的影响具有重要科学意义。本文对海洋沉积物微生物组的体量、包含的微生物多样性、代谢活性以及在不同地球化学分区中主要的微生物类群和代谢机制进行综述,最后基于研究现状展望了海洋沉积物微生物组的未来研究方向。  相似文献   

9.
未培养微生物研究:方法、机遇与挑战   总被引:3,自引:1,他引:3  
自然界中绝大部分的微生物仍是未培养的,称之为未培养微生物或微生物"暗物质"。对其进行研究不仅有助于认识微生物多样性及其代谢特征,加深对环境中微生物参与的生态学过程的理解,还有利于重构生命之树,揭示微生物的进化历程,具有重要的科学意义。同时未培养微生物是发现新基因资源和新活性物质的巨大宝库。随着现代分子生物学研究方法和培养技术的成熟和完善,从环境中直接破译未培养微生物的遗传信息,并实现培养逐渐成为可能。本文主要介绍了基于宏基因组技术和单细胞基因组技术或两者结合运用,研究环境中未培养微生物的主要方法和挑战,总结分析了目前已经解析的未培养微生物的主要类群,并对未来研究的机遇进行了展望。  相似文献   

10.
水圈微生物:推动地球重要元素循环的隐形巨人   总被引:1,自引:0,他引:1  
正生活在水圈环境中的微生物数量巨大、遗传与代谢方式极为多样,它们驱动着地球上重要元素的循环。水圈微生物研究已经成为生命科学与地球科学的研究热点。国家自然科学基金委员会于2017年启动了"水圈微生物驱动地球元素循环的机制"重大研究计划(简称"水圈微生物"计划)。"水圈微生物"计划拟选择典型水圈生境,通过多学科交叉研究,借助新技术、新方法,揭示水圈微生物在物种、群落和生态水平驱动碳氮硫循环的机制及其环境响应,  相似文献   

11.
自然界中大多数微生物处于未培养状态,被称为“微生物暗物质”。随着微生物单细胞分离方法的不断更新,利用新技术、新方法应对微生物纯培养的挑战获得了重要进展,这些新的分离及培养策略对推动微生物资源学的发展具有重要意义。尽管宏基因组学和基因组学数据相关成果日益增多,但微生物单细胞的分离与培养对于系统研究微生物的生态功能、遗传进化等仍至关重要。本文主要概述了目前使用的或正在研发的膜扩散培养法、微流控分选、荧光激活细胞分选、单细胞拉曼分选、光镊技术、显微操作技术等单细胞分离技术的原理与应用,及其在微生物单细胞分离和培养方面的优点与不足,同时展望了这些单细胞分离技术未来的发展和应用前景。  相似文献   

12.
徐俊 《微生物学报》2017,(9):1311-1313
所谓极端微生物(extremophile)是站在人类的角度,对栖居于地球上所有"非宜居"空间中的微生物的统称。这些微生物包括嗜热、嗜冷、嗜酸、嗜碱、嗜盐、嗜压,以及仍然有待发现的其他嗜"极"微生物。沧海桑田,大千世界,微生物一直在地球和生命的协同演化过程中扮演着重要角色。  相似文献   

13.
梁鹏  刘博  王钰  薛莹  李备 《微生物学报》2021,61(4):781-792
自然界相当多的微生物是未培养的,对这些"微生物界暗物质"进行研究,对于研究微生物的进化过程,充分利用微生物资源具有重要意义。对未培养微生物的分离与培养已成为当前国际研究热点,本文对显微操作、荧光活化分选、微流控分选、光镊技术、激光诱导向前转移等可用于微生物分离与培养的技术原理、发展历程进行简单介绍,对比分析了每种分选技术的优点与不足,重点阐述了激光诱导向前转移技术应用于微生物分离的技术优势,并进一步对未来应用于未培养微生物的研究进行了初步展望。  相似文献   

14.
正"未/难培养微生物"通常是指在环境中存在、但尚未在实验室条件下获得纯培养的微生物统称。微生物是地球上进化历史最长、生物量最大、多样性最丰富的生命形式。这种简单而古老的生命决定了地球演化的方向和进程,参与了生物圈的物质和能量循环,并深刻影响着人类社会发展的历史,在近现代生命科技不断进步的过程中发挥了基础性和关键性作用。  相似文献   

15.
徐俊 《微生物学报》2017,57(9):1311-1312
<正>所谓极端微生物(extremophile)是站在人类的角度,对栖居于地球上所有"非宜居"空间中的微生物的统称。这些微生物包括嗜热、嗜冷、嗜酸、嗜碱、嗜盐、嗜压,以及仍然有待发现的其他嗜"极"微生物。沧海桑田,大千世界,微生物一直在地球和生命的协同演化过程中扮演着重要角色。随着我们对地球深部和宇宙深部探测能力的  相似文献   

16.
谈地球生物学的重要意义   总被引:2,自引:0,他引:2  
地球生物学是地球科学与生命科学交叉形成的一级学科,它研究作为地球系统三大基本过程之一的生命过程,即生物圈与地球其他圈层的相互作用.不仅是地球影响生物圈.而且生物圈也影响地球系统.这种相互作用或影响,从地球历史早期到现在,是一直在协同、耦合地进行着.生命与地球环境的协同演化是地球生物学的核心.当前地球生物学发展的重点是地球微生物学.宏体生物能反映地球环境对它们的影响及它们对环境的适应,但除植物外,它们对环境的影响有限.了解生物圈与地圈双向的相互作用必须研究地球微生物学.生命科学和整个自然科学都在向微观方向发展,不断形成新的理论和技术方法.古生物学不能停留在以古动、植物学为主的阶段,而要与生命科学和整个自然科学保持同步发展.现在我们已经找到了解决微生物与地质研究相结合问题的途径.微生物功能群具有重要的地质学意义,是研究地球微生物学的突破口.地球生物学是古生物学的继承和超越.分类系统学将仍然是研究的基础,但是包含了传统古生物学的地球生物学在学科内容和技术方法上将更多地与物理、化学、生物等学科交叉融合.其结果将使古生物学在时间上更前溯,在空间上更开拓,为古生物学在地球系统科学研究和为国民经济主战场服务中开辟更广阔的前景.  相似文献   

17.
微生物的地质作用   总被引:1,自引:0,他引:1  
王修垣   《微生物学通报》1999,26(2):154-155
在研究地球历史、地壳和沉积的形成、岩石风化以及矿物的形成和破坏等过程时,遇到并倍受注意的往往是物理的和化学的作用;对于生物的作用,尤其是微生物的作用则常被忽视,置于不顾。但实际上,这些微小的生命是地球上最早出现、种类最多、对环境的适应力强、分布最广、...  相似文献   

18.
程晓钰  李旻  肖龙  刘邓  王红梅 《微生物学报》2024,64(6):1922-1935
天体生物学作为与深空探测相结合的交叉学科,旨在从地球极端环境类比、古代生命载体信息发掘和模拟等方面揭示地外行星体是否适合生命生存和繁衍,其中适宜的环境条件是评价所有天体是否宜居的重要条件。近年来在月球和火星等行星表面发现了大量由火山熔岩流形成的熔岩管道,这些巨型管状地下空间具有稳定的温度和防辐射等环境条件,为生物在地外星体上的生存提供了潜在的庇护场所。基于地球熔岩管道的天体生物学的类比研究可以为探索地外生命痕迹提供重要线索,本文综述了现阶段地球熔岩管道内微生物的研究进展、微生物痕量气体代谢在天体生物学研究中的潜力及天体生物学的研究进展,旨在为后续开展地球及地外熔岩管道的天体生物学研究提供思路。  相似文献   

19.
深海微生物高压适应与生物地球化学循环   总被引:3,自引:0,他引:3  
深海是典型的高压环境,嗜压微生物是深海生态系统中的重要类群.随着深海采样技术的发展及高压微生物特殊培养设备的开发,已从深海环境中分离到一系列嗜压微生物,包括一些常压环境不能生长的严格嗜压菌.对这些嗜压菌的研究,不仅对微生物适应极端高压环境的机制有一定了解,而且发现了一些特殊的代谢产物.研究微生物高压嗜压机理,还有助于探索地球生命的温度压力极限及生命起源和演化等科学问题.从深海嗜压微生物多样性、深海微生物高压环境适应机理及深海微生物在生物地球化学循环中的作用等方面对嗜压微生物的研究进展进行综述.  相似文献   

20.
地下水微生物功能群及生物地球化学循环   总被引:1,自引:0,他引:1  
李平  谭添  刘韩  王和林 《微生物学报》2021,61(6):1598-1609
地下水系统是地球关键带的重要组成部分,为微生物提供了特殊的栖息环境和复杂的生存条件,进而演化出复杂的生物地球化学过程.随着多技术、多学科的交叉融合及发展,近几十年地下水微生物功能群及生物地球化学循环研究取得了引人瞩目的 重要进展.本文从地下水中的微生物群功能分区、微生物介导的地球化学元素循环、污染与修复中的生物地球化学...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号