共查询到20条相似文献,搜索用时 109 毫秒
1.
IAA对小麦胚芽鞘质膜蛋白磷酸化的影响 总被引:1,自引:0,他引:1
磷酸化/脱磷酸化机制是众多信号过程中的重要环节,很多信号物质被细胞受体识别后引发蛋白激酶和蛋白磷酸酶活性变化,通过磷酸化/脱磷酸化进一步调节多种酶活性而产生各种生理效应。在对生长素IAA的信号转导的研究中,发现IAA处理的小麦胚芽鞘质膜蛋白中蛋白激酶的活性和蛋白磷酸化程度都发生改变,并找到两种受到调节的蛋白激酶。钙离子通道抑制剂LaCl3阻断了IAA的这种作用,表明Ca%2+参与了IAA的信号转导 相似文献
2.
饥饿对小鼠脑中tau蛋白磷酸化和O-GlcNAc糖基化的影响 总被引:4,自引:1,他引:4
为了探讨大脑中葡萄糖摄取和代谢障碍在阿尔茨海默病(Alzheimer$sdisease,AD)神经退行性病变中的作用,将昆明种小鼠进行饥饿和再喂食处理,并使用多种磷酸化tau蛋白特异性的抗体和蛋白O-GlcNAc糖基化特异性抗体进行检测,观察饥饿及恢复喂养后不同时间点大脑皮质中tau蛋白糖基化及多个位点磷酸化的变化.结果显示:饥饿处理引起小鼠大脑皮质中总蛋白和tau蛋白的O-GlcNAc糖基化水平降低,同时tau蛋白磷酸化水平升高,饥饿引起的tauO-GlcNAc糖基化和磷酸化改变均在恢复进食后逆转成正常水平.该研究结果提示:大脑中tau蛋白的磷酸化和O-GlcNAc糖基化之间存在相互调节,脑中葡萄糖代谢障碍可能通过下调tau蛋白O-GlcNAc糖基化水平使tau蛋白产生异常过度磷酸化,进而促发AD的病理进程.这一结果为在早期阶段通过逆转tau蛋白异常过度磷酸化治疗AD成为可能提供了实验基础. 相似文献
3.
IAA对小麦胚芽鞘质膜蛋白磷酸化的影响 总被引:1,自引:0,他引:1
磷酸化/ 脱磷酸化机制是众多信号转导过程中的重要环节,很多信号物质被细胞受体识别后引发蛋白激酶和蛋白磷酸酶活性变化,通过磷酸化/ 脱磷酸化进一步调节多种酶活性而产生各种生理效应。在对生长素IAA 的信号转导的研究中,发现IAA 处理的小麦胚芽鞘质膜蛋白中蛋白激酶的活性和蛋白磷酸化程度都发生改变,并找到两种受到调节的蛋白激酶。钙离子通道抑制剂LaCl3 阻断了IAA 的这种作用,表明Ca2+参与了IAA的信号转导过程。 相似文献
4.
5.
目的:观察电休克对大鼠空间记忆和海马磷酸化细胞外调节蛋白激酶(p-ERK)活性的影响。方法:大鼠随机分为电休克组和伪电休克组,每组12只。电休克组每天给予电痉挛刺激,伪电休克组每天给予假电痉挛刺激,共10天;第11天用水迷宫检测各组大鼠的空间学习记忆,然后每组大鼠再随机分为两组,每组6只。一组于学习后1小时处死取海马用Western blot法检测p-ERK活性,另一组于48小时后行水迷宫空间位置探寻实验检测大鼠的存储记忆。结果:电休克组的潜伏期显著长于伪电休克组(P0.01)。电休克组在隐匿平台周围区域/相反区域的搜寻时间无显著性差异(P0.05);伪电休克组在隐匿平台周围区域/相反区域的搜寻时间有显著性差异(P0.05)。电休克组海马p-ERK活性较伪电休克组显著下降(P0.01)。结论:电休克可导致大鼠显著空间记忆障碍,海马p-ERK活性的降低可能是其机制之一。 相似文献
6.
本工作在离休大鼠心脏灌流模型上,观察牛磺酸对异丙肾上腺素(Iso)刺激引起的心肌收缩蛋白(肌钙蛋白I,T,C-蛋白以及P轻链)和肌浆网的受磷醚蛋白(PLB)磷酸化的影响。结果表明:Iso刺激后 ̄(32)Pi参入肌钙蛋白I和C蛋白的量校对照组分别增加了502.3%和186.7%,给予牛磺酸后即明显降低;Iso刺激后 ̄(32)pi参入肌浆网PLB的量较对照组增加了550.1%,给予牛磺酸后,亦显著降低。表明牛磺酸明显抑制Iso刺激引起的心肌蛋白质磷酸化。提示抑制心肌β受体激动后的蛋白磷酸化,可能是牛磺酸保护心肌的分子机制之一。 相似文献
7.
8.
目的:研究不同低氧暴露对小鼠学习记忆及脑中tau蛋白磷酸化的影响。方法:雄性昆明小鼠40只,随机分为4组(n=10):对照组(control)、8h低氧暴露组(8h)、7d低氧暴露组(7d)和28d低氧暴露组(28d)。将低氧暴露模型组置于模拟高原海拔5500m的低压氧舱,每天低氧暴露8h,避暗和旷场实验检测其活动能力及学习记忆能力:免疫印迹技术检测小鼠海马和皮层中tau蛋白磷酸化水平。结果:随着低氧时间的增加,小鼠短期学习记忆力及活动能力下降程度增大,28d低氧暴露后其下降程度最大;海马中tau蛋白多个位点的磷酸化水平呈现升高趋势,28d时tau蛋白磷酸化程度最高(P〈0.05);皮层中的磷酸化水平在低氧暴露7d时达到最高,低氧暴露28d时略有降低,但与control组相比仍有明显差异(P〈0.05)。结论:慢性间歇性低氧可导致小鼠学习记忆能力下降,其机制可能与tau蛋白过度磷酸化相关。 相似文献
9.
目的:观察大鼠长期皮下注射叠氮钠后的学习记忆、中枢神经系统β-淀粉样蛋白含量的改变.方法:采用Morris水迷宫、放射免疫和透射电镜的方法.结果:大鼠出现明显的空间记忆功能障碍,海马和额叶大脑皮层内Aβ含量升高.结论:长期皮下注射叠氮钠可以制备AD模型,并导致中枢Aβ的升高. 相似文献
10.
Alzheimer病(AD)中, 异常过度磷酸化的tau蛋白会导致细胞骨架的异常并与神经元的死亡有关. 在体外, 细胞周期蛋白依赖性蛋白激酶5(cdk-5)能在大多数AD相关位点磷酸化tau蛋白. 旨在整体水平研究cdk-5过度表达对大鼠微管相关蛋白 tau的磷酸化及空间记忆的影响. 结果显示, 在大鼠海马区转染cdk-5基因, 24 h后其局部表达增加, 并使得抗体tau-1显色减弱, PHF-1和12e8显色增强, 提示tau蛋白在Ser199/202, Ser396/404和Ser262/356位点过度磷酸化. 此外, 在水迷宫测试中, cdk-5转染鼠寻找安全平台所需时间比对照鼠明显延长, 而转染后48 h cdk-5的表达较24 h时下降, 同时伴有tau蛋白磷酸化程度的下降和空间记忆能力的改善. 这些结果提示整体水平的cdk-5的过度表达会导致大鼠的空间记忆损伤, 而过度磷酸化的tau蛋白可能参与了该病理过程. 相似文献
11.
目的:为了进一步研究苯丙胺神经毒性作用机制,我们对大鼠进行不同时长的反复苯丙胺刺激,检测大鼠部分脑区中蛋白羰基化的变化情况,我们的研究为苯丙胺的成瘾及治疗提供了新的理论依据。方法:分别对大鼠进行1d、3d、7d、10d及14d的苯丙胺反复刺激,进行旷场测试检测其活动量变化后,采用DNPH法检查的大鼠大脑前皮层、海马区、杏仁核三大脑区总蛋白的蛋白羰基化水平变化,探讨反复苯丙胺刺激对大鼠脑部蛋白羰基化的影响。结果:苯丙胺刺激7d及14d时,大鼠活动量出现了显著性增加,同时大鼠前皮层总蛋白的蛋白羰基化也出现了显著性增加,而海马区及杏仁核区域总蛋白的蛋白羰基化没有明显变化。结论:反复苯丙胺刺激能够增加大鼠活动量及大脑前皮层总蛋白蛋白羰基化水平。 相似文献
12.
Microtubule associated protein tau is abnormally hyperphosphorylated in Alzheimer disease (AD) brain. To investigate the role of protein kinases involved in this lesion, metabolically active slices made from brains of adult rats were treated with or without various specific kinase activators in oxygenated artificial cerebrospinal fluid. The basal kinase activities of protein kinase-A (PKA), CaM Kinase II and GSK-3 were stimulated more than two-fold by isoproterenol, bradykinin and wortmannin, respectively. We found that cdk5 activity was co-stimulated with PKA by isoproterenol. Sequential activation of PKA (+cdk5), CaM Kinase II and GSK-3 produced hyperphosphorylation of tau at Ser-198/Ser-199/Ser-202, Ser-214, Thr-231/Ser-235, Ser-262, Ser-396/Ser-404 and Ser-422 sites. Like AD P-tau, the P-tau from brain slices bound to normal tau and its binding to tubulin was inhibited. These studies suggest that PKA, cdk5, CaM Kinase II and GSK-3 are involved in the regulation of phosphorylation of tau and that AD-type phosphorylation of tau is probably a product of the synergistic action of two or more of these kinases. 相似文献
13.
Nitric Oxide Regulates Cyclic GMP-Dependent Protein Kinase Phosphorylation in Rat Brain 总被引:1,自引:0,他引:1
Alaa El-Din El-Husseini Christopher Bladen Julie A. Williams Peter B. Reiner Steven R. Vincent 《Journal of neurochemistry》1998,71(2):676-683
Abstract: Nitric oxide (NO) acts via soluble guanylyl cyclase to increase cyclic GMP (cGMP), which can regulate various targets including protein kinases. Western blotting showed that type II cGMP-dependent protein kinase (cGK II) is widely expressed in various brain regions, especially in the thalamus. In thalamic extracts, the phosphorylation of several proteins, including cGK II, was increased by exogenous NO or cGMP. In vivo pretreatment with a NO synthase inhibitor reduced the phosphorylation of cGK II, and this could be reversed by exogenous NO or cGMP. Conversely, brainstem electrical stimulation, which enhances thalamic NO release, caused a NO synthase-dependent increase in the phosphorylation of thalamic cGK II. These results indicate that endogenous NO regulates cGMP-dependent protein phosphorylation in the thalamus. The activation of cGKII by NO may play a role in thalamic mechanisms underlying arousal. 相似文献
14.
Abstract: Neurocatin, a neuroregulatory factor isolated from mammalian brain, is a powerful affector of protein phosphorylation in rat striatal synaptosomes. Two major synaptosomal phosphoproteins of ~80 and ~60 kDa, possibly synapsin I and tyrosine hydroxylase, were especially sensitive to neurocatin. Immunoprecipitation experiments confirmed that the 60-kDa protein is the enzyme tyrosine hydroxylase. At low concentrations of neurocatin (to ~7.5 ng/100 μl of suspension), incorporation of 32P orthophosphate into these proteins increased with increasing neurocatin concentration. At 7.5 ng of neurocatin, incorporation of the label into the two proteins increased by 22 and 26%, respectively. Concentrations of neurocatin >7.5 ng/100 μl caused progressive decrease in incorporation of 32P into many synaptosomal proteins; by a concentration of neurocatin of ~45 ng/100 μ/l, the level of 32P incorporation into many proteins was ≤70% of control. The effects of neurocatin on synaptosomal protein phosphorylation were also dependent on the time of incubation. At a constant concentration of ~7.5 ng/100 μl of neurocatin, increased incorporation of 32P into many proteins was measurable within 0.5 min and was maximal by 1 min. Incubation times >2.0 min, showed progressive decrease in 32P incorporation. Removing extrasynaptosomal Ca2+ with EGTA attenuated the increased 32P incorporation induced by low neurocatin concentrations, suggesting that calcium plays a role in neurocatin-induced phosphorylation of rat striatal synaptosomal proteins. The reduced incorporation of label induced by high neurocatin concentrations, however, was not calcium dependent. The effects of neurocatin on the level of 32P incorporation into proteins were observed only in intact synaptosomes, consistent with this compound acting through receptors on the plasma membrane. 相似文献
15.
Postnatal Age and Protein Tyrosine Phosphorylation at Synapses in the Developing Rat Brain 总被引:5,自引:3,他引:5
The relationship between postnatal age and protein tyrosine kinase activity in synaptosomes prepared from the rat forebrain was studied. Synaptosomal particulate and soluble fractions, as well as total homogenates, the cell soluble fraction, and P3, were prepared from rats ranging in postnatal age from 5 to 60 days and analyzed for (a) tyrosine kinase activity using polyglutamyltyrosine (4:1) as the substrate, (b) the presence of endogenous substrates for tyrosine phosphorylation using polyclonal antibodies specific for phosphotyrosine, and (c) levels of pp60src. Enzyme activity, expressed per milligram of protein, in the total homogenate, P3, and both the cell and synaptosomal soluble fractions was highest in the brains of young animals (postnatal days 5-10) and decreased thereafter to adult levels. In contrast, tyrosine kinase activity in the synaptosomal particulate fraction exhibited a unique biphasic developmental profile, increasing to maxima at postnatal days 10 and 20 before decreasing to adult values. Endogenous substrates for tyrosine phosphorylation were identified by incubating subcellular fractions with 2 mM ATP in the presence of sodium orthovanadate and probing nitrocellulose blots of proteins separated by gel electrophoresis with antiphosphotyrosine antibodies. Several phosphotyrosine-containing proteins were detected in the synaptosomal particulate and P3 fractions, including proteins of Mr 180K, 145K, 120K, 100K, 77K, 68K, 62K, 54K, 52K, and 42K. In the cell soluble fraction a protein doublet of Mr 54/52K and a 120K protein were the major phosphotyrosine-containing proteins. The 54/52K doublet was the major protein tyrosine kinase substrate in the synaptosomal soluble fraction.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
16.
Microtubule-associated protein MAP1B from neonatal rat brain was separated on sodium dodecyl sulfate-containing polyacrylamide gels into two isoforms (high and low MAP1B), both of which were recognized by a panel of monoclonal and polyclonal antibodies against MAP1B. In addition, SMI31, a monoclonal antibody directed against phosphorylated epitopes of the neurofilament proteins, showed phosphatase-sensitive reactivity against the high isoform of MAP1B. The antigenic relationship between the phosphorylated isoform of MAP1B and neurofilaments was confirmed by the reactivity of SMI31 with the immunoprecipitated MAP1B protein. After dephosphorylation of MAP1B with alkaline phosphatase, the higher-molecular-weight isoform of MAP1B was no longer detectable with phosphate-insensitive anti-MAP1B antibodies, whereas there was a significant increase in the immunoreactivity of the lower-molecular-weight MAP1B isoform. These data suggest that the structural microheterogeneity of MAP1B is due to differences in phosphorylation. The two isoforms were present in all brain regions of the young rat. During brain development, the general decrease in MAP1B levels was accompanied by changes in the relative amount of the two isoforms. In particular, the phosphorylated isoform of MAP1B decreased dramatically to almost undetectable levels in adult brain. This conclusion was further supported by immunoblotting analysis that showed the disappearance of phosphorylated epitopes of MAP1B early during brain development. In addition, dephosphorylation experiments demonstrated the phosphatase sensitivity of the phosphorylated isoform throughout development. 相似文献
17.
Evidence for a Single Protein Kinase C-Mediated Phosphorylation Site in Rat Brain Protein B-50 总被引:4,自引:7,他引:4
The neuronal protein B-50 may be involved in diverse functions including neural development, axonal regeneration, neural plasticity, and synaptic transmission. The rat B-50 sequence contains 226 amino acids which include 14 Ser and 14 Thr residues, all putative sites for phosphorylation by calcium/phospholipid-dependent protein kinase C (PKC). Phosphorylation of the protein appears to be a major factor in its biochemical and possibly its physiological activity. Therefore, we investigated rat B-50 phosphorylation and identified a single phosphorylated site at Ser41. Phosphoamino acid analysis eliminated the 14 Thr residues because only [32P]Ser was detected in an acid hydrolysate of [32P]B-50. Staphylococcus aureus protease peptide mapping produced a variety of radiolabelled [32P]B-50 products, none of which had the same molecular weights or HPLC retention times as several previously characterized fragments. Indirect confirmation of the results was provided by differential phosphorylation of major and minor forms of B-60 that have their N-termini at, or C-terminal to, the Ser41 residue and are the major products of specific B-50 proteolysis. Only those forms of B-60 that contained the Ser41 residue incorporated phosphate label. The results are discussed with reference to the substrate requirements for B-50 phosphorylation by PKC and the proposed structure of the B-50 calmodulin binding domain. 相似文献
18.
Synaptosomes from rat forebrain were analyzed for the presence of phosphotyrosine-containing proteins by immunoblotting with antiphosphotyrosine antibodies. Using this technique, 10-11 phosphotyrosine-containing proteins were detected. Depolarization of synaptosomes by transfer to a high (41 mM) K+ medium resulted in increases in the phosphotyrosine content of several synaptosomal proteins, the most pronounced increase being associated with a membrane protein of M(r) 117,000 (ptp117). Additional proteins exhibiting depolarization-dependent increases in phosphotyrosine content had molecular weights of 39,000, 104,000, 135,000, and 160,000. The depolarization-dependent increase in the phosphotyrosine content of ptp117 was apparent within 30 s of the onset of depolarization, reached a maximum between 3 and 5 min, and then decreased to near control values by 30 min. The increase in tyrosine phosphorylation of ptp117 was dependent on the concentration of K+ in the depolarizing medium and was maximal with [K+] in excess of 50 mM. It was also calcium dependent and did not occur in the absence of extracellular calcium. The addition of veratridine to the incubation medium also resulted in an increase in the tyrosine phosphorylation of ptp117. The results suggest that the phosphorylation of synaptic proteins on tyrosine residues may be involved in the regulation or modulation of synaptic activity. 相似文献
19.