首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Enzyme inhibitors and other bioactive compounds from marine actinomycetes   总被引:5,自引:0,他引:5  
Several enzyme-inhibitor-producing actinomycetes were isolated from various samples collected from the marine environment and characterized. Most of them produced novel compounds that are useful in medicine and agriculture. Actinomycete strain no. 18, which produces antibiotics against Gram-positive bacteria only in the presence of seawater, was isolated from sediment sampled from neritic sea water and characterized. The production of antibiotics was observed at seawater concentrations ranging from 60 to 110% (v/v). Thus, the production was seawater-dependent. The production of tetrodotoxin (TTX), known otherwise as puffer fish toxin, was investigated in various actinomycetes collected from the marine environment. Of 10 isolates from various sea areas, 9 produced TTX as judged by their retention times on high-performance liquid chromatography (HPLC). To our knowledge, this is the first report of actinomycetes from the marine environment that produce TTX.  相似文献   

2.
Symbiotic bacteria play vital roles in the survival and health of marine sponges. Sponges harbor rich, diverse and species-specific microbial communities. Symbiotic marine bacteria have increasingly been reported as promising source of bioactive compounds. A culturomics-based study was undertaken to study the diversity of bacteria from marine sponges and their antimicrobial potential. We have collected three sponge samples i.e. Acanthaster carteri, Rhytisma fulvum (soft coral) and Haliclona caerulea from north region (Obhur) of Red Sea, Jeddah Saudi Arabia. Total of 144 bacterial strains were isolated from three marine sponges using culture dependent method. Screening of isolated strains showed only 37 (26%) isolates as antagonists against oomycetes pathogens (P. ultimum and P. capsici). Among 37 antagonistic bacteria, only 19 bacterial strains exhibited antibacterial activity against human pathogens (Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 8739, Enterococcus faecalis ATCC 29212). Four major classes of bacteria i.e γ-Proteobacteria, α-Proteobacteria, Firmicutes and Actinobacteria were recorded from three marine sponges where γ-Proteobacteria was dominant class. One potential bacterial strain Halomonas sp. EA423 was selected for identification of bioactive metabolites using GC and LC-MS analyses. Bioactive compounds Sulfamerazine, Metronidazole-OH and Ibuprofen are detected from culture extract of strain Halomonas sp. EA423. Overall, this study gives insight into composition and diversity of antagonistic bacterial community of marine sponges and coral from Red Sea and presence of active metabolites from potential strain. Our results showed that these diverse and potential bacterial communities further need to be studied to exploit their biotechnological significance.  相似文献   

3.
4.
Parasitic diseases especially those prevail in tropical and subtropical regions severely threaten the lives of people due to available drugs found to be ineffective as several resistant strains have been emerged. Due to the complexity of the marine environment, researchers considered it as a new field to search for compounds with therapeutic efficacy, marine sponges represents the milestone in the discovery of unique compounds of potent activities against parasitic infections. In the present article, literatures published from 2010 until March 2021 were screened to review antiparasitic potency of bioactive compounds extracted from marine sponges. 45 different genera of sponges have been studied for their antiparasitic activities. The antiparasitic activity of the crude extract or the compounds that have been isolated from marine sponges were assayed in vitro against Plasmodium falciparum, P. berghei, Trypanosoma brucei rhodesiense, T. b. brucei, T. cruzi, Leishmania donovani, L. tropica, L. infantum, L. amazonesis, L. major, L. panamesis, Haemonchus contortus and Schistosoma mansoni. The majority of antiparastic compounds extracted from marine sponges were related to alkaloids and peroxides represent the second important group of antiparasitic compounds extracted from sponges followed by terpenoids. Some substances have been extracted and used as antiparasitic agents to a lesser extent like steroids, amino acids, lipids, polysaccharides and isonitriles. The activities of these isolated compounds against parasites were screened using in vitro techniques. Compounds' potent activity in screened papers was classified in three categories according to IC50: low active or inactive, moderately active and good potent active.  相似文献   

5.
【目的】研究微波处理对于分离嗜碱和嗜盐海洋放线菌的效果。【方法】用微波处理7份海泥样品,梯度稀释后涂布于3种分离培养基,分离具有嗜碱和嗜盐特性的海洋放线菌。【结果】微波处理后的7份样品中,4份样品中嗜碱海洋稀有放线菌和3份样品的嗜盐海洋稀有放线菌数量极显著提高;7份样品中的嗜碱、嗜盐海洋小单孢菌属、游动放线菌属、诺卡氏菌属等稀有放线菌数量均有显著增加,不同样品中新分离到链孢菌属、小双孢菌属、链孢囊菌属及其他未鉴定的海洋稀有放线菌,分离到属的数量提高了1-4个。【结论】微波处理不仅显著提高嗜碱和嗜盐海洋放线菌的分离数量,而且明显增加了海洋稀有放线菌的分离种类。  相似文献   

6.
生物活性物质在食品、饵料、化妆品、保健品和医药等行业具有广阔的应用前景,其研究早已受到广泛关注。鉴于海洋硅藻具有生长速度快、生物活性物质含量高、易于规模培养、便于提取等诸多优势,为理想的生物活性物质生产者。尽管国内外已进行了大量利用海洋硅藻生产生物活性物质的研究,但是受限于培养工艺老旧、生产成本过高等缺陷,商业化利用海洋硅藻开发生物活性物质依然停滞不前。阐述海洋硅藻五种常见生物活性物质的应用价值,进一步探讨海洋硅藻高产生物活性物质的策略,就如何低成本、高效开发利用硅藻源生物活性物质提出建议,为海洋硅藻商业化开发利用提供参考。  相似文献   

7.
【目的】筛选产广谱、高效抑菌活性物质的海洋放线菌,为新型抗生素的开发奠定基础。【方法】采用琼脂块法初筛,打孔扩散法复筛,以金黄色葡萄球菌、大肠埃希氏菌、枯草芽孢杆菌和单核细胞增生李斯特菌为指示菌从海泥样品中筛选目标菌株;利用20种指示菌株考查Y10、Y11、Y15、Y16和Y21的抑菌谱;通过形态观察和16S r RNA基因序列分析确定菌株分类地位;以单核细胞增生李斯特菌的OD600值为指标探讨Y15抑菌活性物质对该菌的作用方式;以抑菌活性为指标研究Y15抑菌活性物质的理化性质。【结果】共分离12株具抑菌活性的海洋放线菌,其中Y15抑菌谱最广,对20种指示菌株中的18种具有抑菌活性,并且在4种培养基中均能产生抑菌活性物质。16S r RNA基因序列分析表明Y15属于小单孢菌属,并与Micromonospora endolithica亲缘关系最近。Y15抑菌活性物质在144 h达到最高值为480 AU/m L,在168-216 h保持平衡为320 AU/m L。Y15抑菌活性物质对单核细胞李斯特菌作用方式为杀菌。Y15抑菌活性物质在-20-60°C抑菌活性保持稳定,在80-120°C活性逐渐下降,但在120°C处理30 min仍保留37.5%的活性;在p H 7.0-10.0抑菌活性稳定,在p H 2.0-6.0和p H 11.0-12.0抑菌活性均有所损失;Y15抑菌活性物质对紫外和4种酶(蛋白酶K、胰蛋白酶、木瓜蛋白酶和α-淀粉酶)处理均保持稳定,表明活性物质为非蛋白和非多肽类的抑菌物质。【结论】Y15产生的活性物质具有良好的抑菌谱和抑菌活性,且较为稳定,具有较高的应用价值。  相似文献   

8.
Summary A total of 94 actinomycete strains were isolated from the marine sediments of a shrimp farm, 87.2% belonged to the genus Streptomyces, others were Micromonospora spp. Fifty-one percent of the actinomycete strains showed activity against the pathogenic Vibrio spp. strains. Thirty-eight percent of marine Streptomyces strains produced siderophores on chrome azurol S (CAS) agar plates. Seven strains of Streptomyces were found to produce siderophores and to inhibit the growth of Vibrio spp. in vitro. Two of them belonged to the Cinerogriseus group, the most frequently isolated group of Streptomyces. The results showed that streptomycetes could be a promising source for biocontrol agents in aquaculture.  相似文献   

9.
海洋微生物生物活性物质研究   总被引:40,自引:5,他引:40  
海洋微生物以其分类的多样性和遗传背景的特征而具有产生新型生物活性物质的巨大潜力,本文对海洋微生物产生的生物活性物质的研究进展进行了综述,从报道的研究结果看,占海洋微生物主导地位的海洋细菌产生的活性物质种类最为丰富;海洋真菌和海洋放射线菌虽非海洋微生物中的主要菌群,但其产生新型生物活性物质的潜能不可低估。此外,目前研究主要局限于那些在常规条件下易于培养的微生物类群,今后的之一是对于非可培养海洋微生物产生的生物活性物质的探索,我国应充分利用国内海洋微生物资源优势加强这一领域的研究。  相似文献   

10.
Chemical communications play an important role in plants, fungi, and algae. Volatile organic compounds in marine algae are released into the seawater. These compounds play a role as either pheromones or allelochemicals. We observed that the turbinid gastropod Lunella coronata coreensis inhabits the intertidal zone and often grazes the green alga Ulva pertusa. Feeding tests and feeding preference studies were performed with green, brown and red algae or by using the powdered freeze-dried seaweed in agar. The snails fed on U. pertusa preferentially compared to the other marine algae, and recognized chemoreception compounds from the alga but not their structural or morphological differences. From feeding tests using artificial foods, it is suggested that the feeding attractants are in the essential oil of the alga U. pertusa.  相似文献   

11.
We isolated a bioactive streptomycete from marine sediment samples collected at Bay of Bengal, India, during our systematic study of marine actinobacteria. The taxonomic studies indicated that the isolate is related to Strepomyces corchorusii. However, it differed in certain aspects, and, hence, was designated as S. corchorusii AUBN1/7. A solvent extraction followed by a chromatographic purification helped obtain from the isolate two cytotoxic compounds, which were identified as resistomycin, a quinone-related antibiotic, and tetracenomycin D, an anthraquinone antibiotic, on the basis of spectral data of pure compounds. They demonstrated in vitro a potent cytotoxic activity against cell lines HMO2 (gastric adenocarcinoma) and HePG2 (hepatic carcinoma) and also exhibited weak antibacterial activities against Gram-positive and Gram-negative bacteria. Published in Russian in Bioorganicheskaya Khimiya, 2006, Vol. 32, No. 3, pp. 328–334. The text was submitted by the authors in English.  相似文献   

12.
《Microbiological research》2014,169(4):262-278
Marine actinobacteria are one of the most efficient groups of secondary metabolite producers and are very important from an industrial point of view. Many representatives of the order Actinomycetales are prolific producers of thousands of biologically active secondary metabolites. Actinobacteria from terrestrial sources have been studied and screened since the 1950s, for many important antibiotics, anticancer, antitumor and immunosuppressive agents. However, frequent rediscovery of the same compounds from the terrestrial actinobacteria has made them less attractive for screening programs in the recent years. At the same time, actinobacteria isolated from the marine environment have currently received considerable attention due to the structural diversity and unique biological activities of their secondary metabolites. They are efficient producers of new secondary metabolites that show a range of biological activities including antibacterial, antifungal, anticancer, antitumor, cytotoxic, cytostatic, anti-inflammatory, anti-parasitic, anti-malaria, antiviral, antioxidant, anti-angiogenesis, etc. In this review, an evaluation is made on the current status of research on marine actinobacteria yielding pharmaceutically active secondary metabolites. Bioactive compounds from marine actinobacteria possess distinct chemical structures that may form the basis for synthesis of new drugs that could be used to combat resistant pathogens. With the increasing advancement in science and technology, there would be a greater demand for new bioactive compounds synthesized by actinobacteria from various marine sources in future.  相似文献   

13.
本实验从辽宁大连海域的海水、海泥和海参养殖圈的样品中分离得到38株海洋放线菌,以金黄色葡萄球菌、溶壁微球菌、枯草芽孢杆菌、副溶血性弧菌和铜绿假单胞杆菌为指示菌,筛选出两株抑菌活性高的菌株,分别命名为HS-B31和HS-B34。16S r DNA测序鉴定及构建系统发育树的结果显示,它们都属于放线菌目、链霉菌属的不同种。对两株链霉菌的发酵上清液进行萃取、粗提和浓缩得到粗提物,即B31和B34;抗菌作用的结果显示,这两种粗提物的抗菌效果均为显著。经薄层层析分析,并利用制备型层析板对粗提物B31和B34进行活性物质的分离制备,共得到八个组分,即B31-1、B31-2、B31-3、B31-4、B31-5和B34-1、B34-2、B34-3。用滤纸片法对这些组分进行抗菌检测,结果显示组分B31-3和B34-3不仅对革兰氏阳性菌金黄色葡萄球菌有较好的抑菌作用,而且对海洋致病菌革兰氏阴性菌副溶血性弧菌也显示出较强的抑菌效果。研究为新型抗生素的研制和应用提供了微生物新资源。  相似文献   

14.
Interest in the development of bioprocesses for the production or extraction of bioactive compounds from natural sources has increased in recent years due to the potential applications of these compounds in food, chemical, and pharmaceutical industries. In this context, solid-state fermentation (SSF) has received great attention because this bioprocess has potential to successfully convert inexpensive agro-industrial residues, as well as plants, in a great variety of valuable compounds, including bioactive phenolic compounds. The aim of this review, after presenting general aspects about bioactive compounds and SSF systems, is to focus on the production and extraction of bioactive phenolic compounds from natural sources by SSF. The characteristics of SSF systems and variables that affect the product formation by this process, as well as the variety of substrates and microorganisms that can be used in SSF for the production of bioactive phenolic compounds are reviewed and discussed.  相似文献   

15.
【背景】放线菌具有丰富的遗传和功能多样性,其次级代谢产物活性广泛,在临床医疗、农业生产和污染防治等领域都发挥着重要的作用。海洋放线菌由于其特殊的代谢途径,能产生独特的活性天然产物而受到广泛关注。【目的】探究国内外海洋放线菌领域研究的热点和趋势,为后续研究提供参考。【方法】以“marine actinomycetes or marine actinobacteria”为关键词,在Web of Science中检索海洋放线菌领域的文章进行计量分析,使用VOSviewer软件对其关键词、国家、机构、作者、发表时间进行可视化分析。【结果】海洋放线菌领域的文章发表数量总体呈逐年上升趋势,主要集中在微生物学及药学领域,中美两国在论文数量和引用频次上远超其他国家,海洋放线菌领域的研究集中在菌株的分离鉴定、活性天然产物挖掘以及生物信息学等方面。【结论】海洋放线菌在全球范围内愈发受到重视,国内外机构应当加强合作,运用生物信息学技术进一步挖掘活性次级代谢产物,推动海洋放线菌领域进一步发展。  相似文献   

16.
海洋微生物资源及其产生生物活性代谢产物的研究   总被引:3,自引:0,他引:3  
海洋微生物,尤其海洋细菌以其分类的多样性和规模而言,作为生物活性物质产生菌的潜力是巨大的。海洋微生物研究依据分离菌的生境来源可分为海水、沉积物、共栖、共生和深海菌群。生境的不同,不但影响菌群的分布,而且影响微生物代谢产物的合成。从报道的研究结果看,沉积物细菌、共栖细菌和共生细菌是海洋微生物天然药物筛选的重要来源。目前海洋微生物生物活性代谢产物资源的研究仍主要限制在那些在“标准”条件下易于生长和培养的微生物类群。本文对海洋微生物资源产生的生物活性物质的研究进展进行了综述。  相似文献   

17.
The search for novel biologically active molecules has extended to the screening of organisms associated with less explored environments. In this sense, Oceans, which cover nearly the 67% of the globe, are interesting ecosystems characterized by a high biodiversity that is worth being explored. As such, marine microorganisms are highly interesting as promising sources of new bioactive compounds of potential value to humans. Some of these microorganisms are able to survive in extreme marine environments and, as a result, they produce complex molecules with unique biological interesting properties for a wide variety of industrial and biotechnological applications. Thus, different marine microorganisms (fungi, myxomycetes, bacteria, and microalgae) producing compounds with antioxidant, antibacterial, apoptotic, antitumoral and antiviral activities have been already isolated. This review compiles and discusses the discovery of bioactive molecules from marine microorganisms reported from 2018 onwards. Moreover, it highlights the huge potential of marine microorganisms for obtaining highly valuable bioactive compounds.  相似文献   

18.
植物内生放线菌是与宿主植物存在互利共生关系的一类特殊微生物,具有丰富的生物学功能,能产生许多具有应用潜力的生物活性物质。阐述了植物内生放线菌与宿主植物之间的关系,并从提高宿主植物抗逆性、促进生长和生物固氮作用三个方面总结了植物内生放线菌的生物学作用研究进展;综述了植物内生放线菌产生的抗生素、酶和抗肿瘤活性物质以及这些物质在农业、医药以及食品行业中的应用前景。最后就内生放线菌生物学作用及活性物质研究中存在的问题和发展趋势进行了展望。  相似文献   

19.
Sixty-three actinomycete strains isolated from the marine shellfish Donax trunculus anatinus were phenotypically identified as ten genera, in addition to two unidentified strains. Their metabolic extracts exhibited wide antimicrobial activities towards 11 reference and clinical cultures; and 17.5% showed antitumor activities with solid tumor selectivity of four Nocardioides, Kitasatosporia and Streptomyces strains. Streptomyces 23-2B was particularly noted for its high antitumor activity against Ehrlich’s ascites carcinoma with plateau inhibitory effect at 500, 250 and 50 μg/ml concentrations, promising solid tumor selectivity and high cytotoxicity to human carcinoma of liver (HEPG2), cervix (HELA) and breast (MCF7) (IC50: 3.89, 9.4 and 10 μg/ml, respectively). In vivo cytotoxicity of S.23-2B metabolites showed common sign of unimpaired kidney and liver functions, as indicated from non-significant elevation in serum enzymatic activities, urea, creatinine, total protein and albumin levels in response to 0.5 and 5 μg/g doses after alternate-day injection for 2 weeks. Microorganisms associated with the marine shellfish are suggested to be potential source of bioactive metabolites.  相似文献   

20.
Bioactive natural products from marine cyanobacteria for drug discovery   总被引:1,自引:0,他引:1  
Tan LT 《Phytochemistry》2007,68(7):954-979
The prokaryotic marine cyanobacteria continue to be an important source of structurally bioactive secondary metabolites. A majority of these molecules are nitrogen-containing compounds biosynthesized by large multimodular nonribosomal polypeptide (NRP) or mixed polyketide-NRP enzymatic systems. A total of 128 marine cyanobacterial alkaloids, published in the literature between January 2001 and December 2006, are presented in this review with emphasis on their biosynthesis and biological activities. In addition, a number of highly cytotoxic compounds such as hectochlorin, lyngbyabellins, apratoxins, and aurilides have been identified as potential lead compounds for the development of anticancer agents. A brief coverage on the distribution of natural product biosynthetic genes as well as the mechanisms of tailoring enzymes involved in the biosynthesis of cyanobacterial compounds will also be given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号