首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The putative 15 S precursor of globin mRNA contains a poly (A) sequence   总被引:2,自引:0,他引:2  
[3H] Uridine or [3H] adenosine pulse-labelled nuclear RNA was isolated from chicken immature red blood cells and separated on denaturing formamide sucrose gradients. RNA of each gradient fraction was hybridized with unlabelled globin DNA complementary to mRNA (cDNA) and subsequently digested by RNAase A and RNAase T1. The experiments revealed two RNA species with globin coding sequences sedimenting 9 S and approx. 15 S, the latter probably representing a precursor of 9 S globin mRNA. A poly (A) sequence was demonstrated in this RNA by two different approaches. Nuclear RNA pulse-labelled with [3H] uridine was fractionated by chromatography on poly (U)-Sepharose. Part of the 15 S precursor was found in the poly(A)-containing RNA. In the second approach 15 S RNA pulse-labelled with [3H]adenosine was hybridized with globin cDNA, incubated with RNAase A and RNAase T1 and subjected to chromatography on hydroxyapatite. The hybrids were isolated and after separation of the strands degraded with DNAase I, RNAase A and RNAase T1. By this procedure poly(A) sequences of approximately 100 nucleotides could be isolated from the 15 S RNA with globin coding sequences. The poly(A) sequence was completely degraded by RNAase T2.  相似文献   

2.
Procedures are described that permit the detection and isolation of a specific messenger RNA as well as its precursor from total cell extracts. DNA complementary to the mRNA was elongated by the addition of dCMP residues and annealed with labeled cell RNA. The elongated DNA with RNA hybridized to it was isolated by chromatography on a poly(I)-Sephadex column. The method was used to isolate 32P-labeled globin mRNA from labeled Friend cells, a mouse erythroleukaemic cell line, induced with dimethylsulfoxide to synthesize hemoglobin. 32P-labeled globin mRNA isolated by this procedure was estimated to be 80% pure by hybridization analysis and sedimented as a single peak at 10 S. Partial sequences were determined for 16 oligonucleotides derived from the purified 32P-labeled globin mRNA by RNAase T1 digestion. The partial sequences for nine oligonucleotides corresponded to those predicted from the amino acid sequences of α and β globin; the other oligonucleotides were presumably derived from non-translated regions.In order to detect a possible precursor to globin mRNA, RNA from induced Friend cells pulse-labeled with [32P]phosphate for 20 minutes was centrifuged through a sucrose gradient and the resulting fractions were analyzed for globinspecific sequences. Two peaks of globin-specific RNA were detected, a larger one at 10 S, the position of mature globin mRNA, and a smaller one at 15 S.  相似文献   

3.
4.
The presence of polyriboadenylic acid sequences in calf lens messenger RNA   总被引:3,自引:0,他引:3  
The presence of poly(rA) sequences in lens RNA has been demonstrated by the isolation of RNase A and T1-resistant fragments of approximately 50 nucleotide residues. These poly(rA)-rich sequences, obtained from lenses incubated for six hours in organ culture with [3H]adenosine, are located at the 3′ termini of mRNA as determined by 3′ exoribonuclease digestion. Limited digestion of the [3H]adenosine-labeled mRNA with the enzyme led to the abolition of binding to poly(rU)-filters and a concomitant loss of template activity with avian myeloblastosis virus RNA-dependent DNA polymerase. Furthermore, after incubation of lenses in organ culture with 3′-deoxyadenosine, the isolated polysomal RNA was unable to function as a template in an avian myeloblastosis virus RNA-dependent DNA polymerase-catalyzed reaction system.  相似文献   

5.
AKR MuLV 70S RNA was separated on Poly(U)-Sepharose into poly(A) and non-poly(A) containing 34S subunits. The ratio of the two fractions was 2:1, respectively. Both fractions were hybridized to AKR MuLV [3H]cDNA, and the hybrids were assayed by nuclease S1 and cesium sulfate centrifugation. The poly(A) and non-poly(A) subunits hybridized to [3H]cDNA to the same extent (80%), with identical CO12 values; and the hybrids of both fractions had identical Tm values (81°C in 0.15 M NaCl). These results demonstrate that the poly(A) and non-poly(A) containing subunits of the AKR genome have identical or very similar base sequences in the heteropolymeric regions.  相似文献   

6.
7.
By hybridization with [3H]labeled globin cDNA the contents of globin coding sequences in total nuclear RNA, poly(A)+nuclear RNA, poly(A)--nuclear RNA and polysomal RNA of chicken immature red blood cells was determined to be 0.86%, 20%, 0.42% and 1% respectively. As the poly(A)+-fraction comprises only about 2% of total nuclear RNA, globin coding sequences are distributed with 49% in the poly(A)+-fraction and with 51% in the poly(A)--fraction.Part of the mRNA sequences which are found in liver are also transcribed in immature red blood cells. These sequences are enriched in poly(A)+-nuclear RNA as the globin coding sequences but their total amount in the poly(A)+-fraction is much smaller than in the poly(A)--fraction.When nuclear RNA from immature red blood cells was translated in an ascites tumor cell-free system, 20% of the newly synthesized proteins were globin chains. The percentage of globin chains in the newly synthesized proteins increased to over 70% when poly(A)+-nuclear RNA was translated. Only about 7.5% of globin chains were found in proteins coded by poly(A)--nuclear RNA.  相似文献   

8.
The induction of poly(A) polymerase was accompanied by a rise in the level of poly(A)+ RNA during early germination of excised wheat embryos (48 h). Fractionation of this RNA-processing enzyme by acrylamide gel electrophoresis and also by molecular sieving on Sephadex G-200 revealed a single molecular form of poly(A) polymerase with a molecular weight of 125 000. Wheat poly(A) polymerase specifically catalyzed the incorporation of [3H]AMP from [3H]ATP into the polyadenylate product only in the presence of primer RNA. Substitution of [3H]ATP by other labelled nucleoside triphosphates, such as [3H]GTP, [3H]UTP or [α-32P]CTP in the assay mixture did not yield any labelled polynucleotide reaction product. The 3H-labelled reaction product was retained on poly(U)-cellulose affinity column and was not degraded by RNAase A and RNAase T1 treatment. In addition, the nearest-neighbour frequency analysis of the 32P-labelled reaction product predominantly yielded [32P]AMP. Thus, characterization of the reaction product clearly indicated its polyadenylate nature. The average chain length of the [3H]poly(A) product was 26 nucleotides. Infection of germinating wheat embryos by a fungal pathogen (Drechslera sorokiana) brought about a severe inhibition (62–79%) of poly(A) polymerase activity. Concurrently, there was a parallel decrease (73%) in the level of poly(A)+ RNA. Inhibition of poly(A) polymerase activity in infected embryos could be due to enzyme inactivation, which in turn brought about a downward shift in the level of poly(A)+ RNA. The crude extract of the cultured pathogen contains a non-dialysable, heat-labile factor, which, along with a ligand, inactivates (65–74%) poly(A) polymerase in vitro. The fungal extracts also contained a dialysable, heat-stable stimulatory effector which activated wheat poly(A) polymerase (3.6–4.0-fold stimulation) in vitro. However, the stimulatory fungal effector was not expressed in vivo, but was detectable after the inhibitory fungal factor had been destroyed by heat-treatment in our in vitro experiments.  相似文献   

9.
10.
CHARACTERIZATION OF POLY(A) SEQUENCES IN BRAIN RNA   总被引:5,自引:5,他引:0  
—Nuclear and polysomal brain RNA from the rabbit bind to Millipore filters and oligo(dT)-cellulose suggesting the presence of poly(A) sequences. The residual polynucleotide produced after RNase digestion of 32P pulse-labelled brain RNA is 95% adenylic acid and 200-250 nucleotides in length. After longer isotope pulses the polysomal poly(A) sequence appears heterodisperse in size and shorter than the nuclear poly (A). Poly(A) sequences of brain RNA are located at the 3′-OH termini as determined by the periodate-[3H]NaBH4 labelling technique. Cordycepin interferes with the processing of brain mRNA as it inhibits in vivo poly(A) synthesis by about 80% and decreases the appearance of rapidly labelled RNA in polysomes by about 45%. A small poly(A) molecule 10-30 nucleotides in length is present in rapidly labelled RNA. It appears to be less sensitive to cordycepin than the larger poly(A) and is not found in polysomal RNA.  相似文献   

11.
Hybridizable ribonucleic acid of rat brain   总被引:5,自引:4,他引:1       下载免费PDF全文
1. Cerebral RNA of adult and newborn rats was labelled in vivo by intracervical injection of [5-3H]uridine or [32P]phosphate. Hepatic RNA of similar animals was labelled by intraperitoneal administration of [6-14C]orotic acid. Nuclear and cytoplasmic fractions were isolated and purified by procedures involving extraction with phenol and repeated precipitation with ethanol. 2. The fraction of pulse-labelled RNA from cerebral nuclei that hybridized to homologous DNA exhibited a wide range of turnover values and was heterogeneous in sucrose density gradients. 3. Base composition of the hybridizable RNA was similar to that of the total pulse-labelled material; both were DNA-like. 4. Pulse-labelled cerebral nuclear RNA hybridized to a greater extent than cytoplasmic RNA for at least a week after administration of labelled precursor. This finding suggested that cerebral nuclei contained a hybridizable component that was not transferred to cytoplasm. 5. The rates of decay of the hybridizable fractions of cerebral nuclei and cytoplasm were faster in the newborn animal than in the adult. Presumably a larger proportion of labile messenger RNA molecules was present in the immature brain. 6. Cerebral nuclear and cytoplasmic RNA fractions from newborn or adult rats, labelled either in vivo for periods varying from 4min. to 7 days or in vitro by exposure to [3H]-dimethyl sulphate, uniformly hybridized more effectively than the corresponding hepatic preparation. These data suggested that a larger proportion of RNA synthesis was oriented towards messenger RNA formation in brain than in liver.  相似文献   

12.
Ribonucleoprotein particles containing heterogeneous nuclear RNA (Pederson, 1974) were isolated from HeLa cells and digested with ribonucleases A and T1 at high ionic strength. The nuclease-resistant material, comprising 9.4% of the initial acid-insoluble [3H]adenosine radioactivity, was further fractionated by poly(U)-Sepharose chromatography. The bound fraction eluted from the column with 50% formamide and banded in cesium sulfate gradients (without aldehyde fixation) at a buoyant density characteristic of ribonucleoprotein (1.45 g/cm3). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of this material revealed two Coomassie blue-stained bands. The major polypeptide had a molecular weight of 74,000 a less prominent band had a molecular weight of 86,000. The RNA components contained 74.4 mol % AMP and 17.7 mol % UMP. Polyacrylamide gel electrophoresis of the RNA, labeled with [3H]adenosine, demonstrated the presence of molecules 150 to 200 nucleotides in length (poly(A)), as well as molecules 20 to 30 nucleotides long (oligo(A)). Both poly(A) and oligo(A) sequences have previously been identified in HeLa heterogeneous nuclear RNA. These data demonstrate that both the poly (A) and oligo(A) sequences in HeLa heterogeneous nuclear RNA exist in vivo tightly complexed with specific proteins.  相似文献   

13.
The fragments of 125I-labelled rabbit globin messenger RNA protected from pancreatic RNAase by initiating 40 S subunits and 80 S ribosomes were analysed using the techniques of RNA sequencing. The fragments were cleaved specifically at cytidine residues generating oligonucleotides labelled in their 3′ terminal residue. Analysis of the partial digestion products of these oligonucleotides after treatment with pancreatic, T1, U2 and T2 RNAase enabled their sequences to be deduced. Sequences were determined from knowledge of the specificities of the ribonucleases and then confirmed in a separate analysis making use of the known electrophoretic mobilities of each base. This combination of methods served to establish that the 40 S- and 80 S-protected fragments are related, and that both contain the initiation codon of the mRNA. The 80 S-protected fragment is about 40 bases in length whilst the 40 S-protected fragments range from 50 to more than 60 bases in length. The most prominent of these 40 S-protected fragments is about 50 bases in length and extends more towards the 5′ end of the mRNA than does the 80 S-protected fragment. It follows that 80 S ribosomes do not protect the 5′ end of the mRNA from nuclease digestion and that the 5′ terminus of rabbit globin mRNA must be at least 15 to 30 bases from the initiation codon.  相似文献   

14.
Two lines of evidence were obtained which indicate that inhibition of mRNA formation does not require the detectable accumulation of 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB), a halogenated analog of adenosine. First, the extent of inhibition by DRB of the formation of cytoplasmic poly(A)+ RNA was as rapid and severe (>90% inhibition) in wild-type mouse lymphoma cells (S49) as in mutant cells (AE1), derived from S49, which were deficient in the transport of purine and pyrimidine nucleosides. Second, the accumulation of [3H]DRB was measured directly and compared to the accumulation of [3H]adenosine. Whereas S49 cells accumulated [3H]adenosine in a linear manner, neither S49 nor AE1 cells accumulated [3H]DRB to a significant extent. This suggests that inhibition of mRNA synthesis by DRB may (1) require the transport and intracellular accumulation of only minute amounts of DRB, or (2) result from secondary event(s) triggered by interaction of DRB with a surface membrane component.  相似文献   

15.
16.
The size of pulse-labeled globin messenger RNA nucleotide sequences was investigated, to determine whether newly transcribed globin mRNA molecules are larger than steady-state globin mRNA. Molecular hybridization techniques were used to compare directly the sedimentation of steady-state (unlabeled) and pulse-labeled (radioactive) globin mRNA sequences in the same analytical sucrose gradient. In gradients containing 98% formamide, radioactive globin mRNA sequences from mouse fetal liver cells labeled for 15 to 20 minutes with [3H]uridine sediment in a broad band with a peak at approximately 14 S, while steady-state globin mRNA sediments at 10 S. The large radioactive RNA can be recovered from one gradient and recentrifuged in a second gradient, in which it again sediments in a broad band with a peak at 14 S. The large radioactive RNA is cleaved to 10 S during a 75-minute “chase” with either actinomycin D or unlabeled uridine plus cytidine. The estimated half-life of the precursor is 45 minutes or less under these conditions. A covalent RNA precursor larger than 18 S with a similar turnover rate is not observed.  相似文献   

17.
Yeast cells growing in a low phosphate medium were labeled with a pulse of 32Pi or [3H]adenine and harvested after 15 minutes. Total RNA was extracted and digested with ribonuclease T1. Poly(A)-rich fragments were isolated from the digest by hybridization to poly(U) impregnated fiberglass filters. Gel filtration showed the fragments to have a uniform chain length of about sixteen. Analysis of the composition gave (A11, C4, U). Complete pancreatic ribonuclease and partial spleen phosphodiesterase digests gave the sequence of the 5′ end of the fragment as CpApApUp-. Since the fragment was a ribonuclease T1 product, the data points to a unique sequence of at least five residues, -GpCpApApUp-, adjacent to the poly(A)-rich terminus of pulse-labeled yeast mRNA. The remainder of the poly(A)-rich fragment consists of A residues with a few randomly interspaced C residues. The known specificity of yeast poly(A) polymerase can account for the presence of C residues in poly(A) tracts.  相似文献   

18.
Chick embryo fibroblasts in monolayer culture were synchronized by contact inhibition and serum starvation. Nuclear DNA isolated from the [3H] thymidine pulse-labelled cells throughout the period of DNA synthesis (S phase) was analysed by hydroxylapatite chromatography after renaturation at different C0t values. It is shown that repeated sequences having different frequencies of reassociation, replicate differently throughout the S period. In order to study the distribution of the repeated sequences, DNA isolated during the S period was fractionated according to its buoyant density. It is shown that only some of the highly reiterated sequences which are included in the high buoyant density DNA fractions, replicate equally well during the early and the late S periods. By contrast, reiterated sequences of the low buoyant density DNA fractions replicate mainly during the late S period.  相似文献   

19.
Maternal RNA of sea urchin eggs and embryos was analyzed for short poly(A) sequences by digesting hybrids formed between [3H]poly(U) and poly(A) with RNase at 4°C. When the undigested [3H]poly(U) is precipitated with CTAB, all (A)n tracts longer than 6 nucleotides are detected. This assay revealed a poly(A) content severalfold higher than is obtained with a similar assay using RNase at higher temperatures. On polyacrylamide gel electrophoresis, most of the previously undetected (A)n tracts ran as a peak of oligo(A) of less than 20 nucleotides which accumulated at the dye front. The oligo(A) sequences were resolved into a single peak of (A)10 when sized on Sephadex G100. These (A)10 sequences were associated with large mRNA-sized molecules of about 3000 nucloetides average length which comprised 0.5 to 2% of the total maternal RNA. However, the (A)10 sequences were not in mRNA molecules containing 3′-terminal poly(A) of 50–120 nucleotides nor did they remain in RNA that entered polysomes upon fertilization. However, hybridization studies showed that all sequences represented in the maternal poly(A)-containing RNA appeared to be present in the RNA molecules containing only (A)10 sequences. The results suggest that the (A)10-containing RNA might be incompletely processed mRNA precursor-like molecules.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号