首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An ethyl methanesulfonate (EMS) induced dominant lethal dose response experiment was conducted in strain DBA/1J male mice. Two methods of scoring for dominant lethals, the classic method (dissecting females at mid-pregnancy) and an alternative method (inspection of uterine scars after litters were weaned) were compared. Results indicate that strain DBA/1J has a similar sensitivity to EMS-induced dominant lethals as has been previously reported for other mouse genotypes. Of the two methods used to score dominant lethals, the classic method is more sensitive.  相似文献   

2.
In a series of toxicity tests, male mice of three inbred strains were exposed to several doses of orally administered furylfuramide (AF-2). Subsequent to these test the effects of AF-2, as measured by induced dominant lethals, were tested in strain DBA/2J mice. AF-2 at the doses used in this study was relatively non-toxic to the strains of mice tested. No indication of AF-2 induced dominant lethality was observed.  相似文献   

3.
The genetic control of sex-chromosomal univalency was examined in the primary spermatocytes of the mouse. The C57BL/6J strain expresses 3% X-Y univalency and DBA/2J expresses 37% univalency. The reciprocal F1 and the eight types of reciprocal backcross males were examined. In the C57BL/6J--DBA/2J strain pair, X--Y univalency is controlled by three genetic systems. Autosomal factors of unknown number that are dominant in DBA/2J increase the probability of univalency from 3% in C57BL/6J to 12%. The DBA/2J-Y chromosome, in place of the C57BL/6J-Y chromosome, has an additive effect to increase the probability of univalency from 12 to 37% in the DBA/2J strain. Two X-chromosome factors that differ between C57BL/6J and DBA/2J regulate the probability of univalency. The X-chromosome factors appear to be separated by sufficient distance so that, with the DBA/2J-Y chromosome and dominant DBA/2J autosomal factors, there are two recombinant classes of X--Y univalency at 20 and 60%. The genetic factors in the univalency trait may be involved in the regulation or structure of the terminal attachment sites between the X and Y chromosomes.  相似文献   

4.
After treatment of mice with thio-TEPA Malashenko and colleagues found differences among inbred strains in yield of dominant lethals and of chromosome aberrations in bone marrow, which they attributed to genes affecting repair. An attempt was made to confirm this work by comparing yields of dominant lethals in different strains of females mated to the same strain of males. However, no differences were found, all strain combinations giving 42-49% dominant lethals after a dose of 2 mg/kg thio-TEPA to late spermatids. Thus, the existence of genetic differences in repair of thio-TEPA induced lesions between strains CBA and C57BL/6J and between C3H/He and 101/H is not confirmed. Possible reasons for the discrepant results are discussed.  相似文献   

5.
Two antineoplastic agents, chlornaphazine (CN) and chlorambucil (CHL), were tested for the induction of dominant lethal mutations in male mice. Both compounds are nitrogen mustard derivatives and have been shown to be genotoxic in a variety of organisms. CN was administered intraperitoneally to DBA/2J male mice at a dosage of 0, 500, 1000, or 1500 mg/kg body weight (bw). Immediately following treatment, each male was mated at 4-day intervals to two virgin C57BL/6J females. CHL was administered intraperitoneally to C3H/HeJ and DBA/2J males at a dosage of 0, 2.5, or 5.0 mg/kg bw. These males were mated at weekly intervals to two virgin T-stock females. CN and CHL clearly induced dominant lethal mutations. CN induced dominant lethal effects in all post-meiotic germ-cell stages of treated DBA males, with a clear dose-response relationship. The results with CHL-treated DBA males indicated that all post-meiotic germ-cell stages, except late-spermatids, were affected by CHL treatment, while in C3H males, CHL induced dominant lethal effects in all post-meiotic germ-cell stages. A dose-response relationship was also observed with CHL in C3H male mice. In the present experiments, regardless of the agent or the mouse strain used, spermatids appeared to be the germ-cell stage most sensitive to dominant lethal induction.  相似文献   

6.
Fertility and frequency of gamma-induced dominant lethals in female oocytes have been studied in a strain of Drosophila melanogaster carrying rad(2)201G1 mutation and in the wild type strain. It was shown that oocytes of the mutant strain exhibited the higher sensitivity during the whole period of oogenesis, as compared to those of the wild type flies. The strongest influence of rad(2)201G1 mutation on the frequency of dominant lethals and fertility was observed.  相似文献   

7.
Lengthened circadian period of locomotor activity is a characteristic of a congenic strain of mice carrying a nonsense mutation in exon 5 of the carbonic anhydrase II gene, car2. The null mutation in car2 is located on a DBA/2J inbred strain insert on proximal chromosome 3, on an otherwise C57BL/6J genomic background. Since reducing the size of the congenic region would narrow the possible candidate genes for period, two recombinant congenic strains (R1 and R2) were developed from the original congenic strain. These new congenic strains were assessed for period, genetic composition, and the presence of immunoreactive carbonic anhydrase II. R1 mice were homozygous DBA/2J for the distal portion of the original DBA/2J insert, while R2 mice were homozygous DBA/2J for the proximal portion. R1 mice had a significantly lengthened period compared to R2 mice and wild-type C57BL/6J mice, indicating that the gene(s) affecting period is likely found within the reduced DBA/2J insert (~1 cM) in the R1 mice. The R1 mice also possessed the null mutation in car2. This study confirmed the presence of a gene(s) affecting period on proximal chromosome 3 and significantly reduced the size of the congenic region and the number of candidate genes. Future studies will focus on identifying the gene influencing period.  相似文献   

8.
Lengthened circadian period of locomotor activity is a characteristic of a congenic strain of mice carrying a nonsense mutation in exon 5 of the carbonic anhydrase II gene, car2. The null mutation in car2 is located on a DBA/2J inbred strain insert on proximal chromosome 3, on an otherwise C57BL/6J genomic background. Since reducing the size of the congenic region would narrow the possible candidate genes for period, two recombinant congenic strains (R1 and R2) were developed from the original congenic strain. These new congenic strains were assessed for period, genetic composition, and the presence of immunoreactive carbonic anhydrase II. R1 mice were homozygous DBA/2J for the distal portion of the original DBA/2J insert, while R2 mice were homozygous DBA/2J for the proximal portion. R1 mice had a significantly lengthened period compared to R2 mice and wild-type C57BL/6J mice, indicating that the gene(s) affecting period is likely found within the reduced DBA/2J insert (?1 cM) in the R1 mice. The R1 mice also possessed the null mutation in car2. This study confirmed the presence of a gene(s) affecting period on proximal chromosome 3 and significantly reduced the size of the congenic region and the number of candidate genes. Future studies will focus on identifying the gene influencing period.  相似文献   

9.
Inbred mouse strains exhibit differences in susceptibility to influenza A infections. However, the molecular mechanisms underlying these differences are unknown. Therefore, we infected a highly susceptible mouse strain (DBA/2J) and a resistant strain (C57BL/6J) with influenza A H1N1 (PR8) and performed genome-wide expression analysis. We found genes expressed in lung epithelium that were specifically down-regulated in DBA/2J mice, whereas a cluster of genes on chromosome 3 was only down-regulated in C57BL/6J. In both mouse strains, chemokines, cytokines and interferon-response genes were up-regulated, indicating that the main innate immune defense pathways were activated. However, many immune response genes were up-regulated in DBA/2J much stronger than in C57BL/6J, and several immune response genes were exclusively regulated in DBA/2J. Thus, susceptible DBA/2J mice showed a hyper-inflammatory response. This response is similar to infections with highly pathogenic influenza virus and may serve as a paradigm for a hyper-inflammatory host response to influenza A virus.  相似文献   

10.
The DBA/2J mouse strain is a standard laboratory strain that is widely used for biomedical research. This strain, however, suffers from poor reproductive performance. In addition, the conditions for reliable embryo transfer (ET) of this strain have not been elucidated. The intention of this study was to determine the optimal number of embryos for transfer that allow the effective production of DBA/2J offspring. In the experiment, 7 to 15 embryos per oviduct were transferred into pseudopregnant ICR females. A relatively high success rate for pup production was observed when a large number of DBA/2J embryos (30 embryos per female) were transferred. This result shows that the ET efficiency of the DBA/2J strain can be improved by increasing the number of transferred embryos.  相似文献   

11.
Three different routes of administration of ethyl methanesulphonate (EMS) (i.p., oral, i.t.) were compared for their relative efficiencies in the induction of dominant lethal effects. Included in the comparisons between oral and i.p. injections, was a preliminary study into the existence of strain differences in sensitivity to EMS between C3D2 F1 hybrid mice and strain DBA/2J mice. No route of administration dependent effects were found between oral and i.p. injections regardless of the test animal used. I.t. injections of EMS did not induce dominant lethal effects. One treatment related strain difference was observed.  相似文献   

12.
Cranial base growth plates are important centers of longitudinal growth in the skull and are responsible for the proper anterior placement of the face and the stimulation of normal cranial vault development. We report that the presphenoidal synchondrosis (PSS), a midline growth plate of the cranial base, closes in the DBA/2J mouse strain but not in other common inbred strains. We investigated the genetics of PSS closure in DBA/2J mice by evaluating F1, F1 backcross, and/or F1 intercross offspring from matings with C57BL/6J and DBA/1J mice, whose PSS remain open. We observed that PSS closure is genetically determined, but not inherited as a simple Mendelian trait. Employing a genome-wide SNP array, we identified a region on chromosome 11 in the C57BL/6J strain that affected the frequency of PSS closure in F1 backcross and F1 intercross offspring. The equivalent region in the DBA/1J strain did not affect PSS closure in F1 intercross offspring. We conclude that PSS closure in the DBA/2J strain is complex and modified by different loci when outcrossed with C57BL/6J and DBA/1J mice.  相似文献   

13.
Genetic background is important in determining susceptibility to metabolic abnormalities such as insulin resistance and beta-cell dysfunction. Islet amyloid is associated with reduced beta-cell mass and function and develops in the majority of our C57BL/6J x DBA/2J (F(1)) male human islet amyloid polypeptide (hIAPP) transgenic mice after 1 yr of increased fat feeding. To determine the relative contribution of each parental strain, C57BL/6J (BL6) and DBA/2J (DBA2), to islet amyloid formation, we studied male hIAPP mice on each background strain (BL6, n = 13; and DBA2 n = 11) and C57BL/6J x DBA/2J F(1) mice (n = 17) on a 9% (wt/wt) fat diet for 1 yr. At the end of 12 mo, islet amyloid deposition was quantified from thioflavin S-stained pancreas sections. The majority of mice in all groups developed islet amyloid (BL6: 91%, F(1): 76%, DBA2: 100%). However, the prevalence (%amyloid-positive islets; BL6: 14 +/- 3%, F(1): 44 +/- 8%, DBA2: 49 +/- 9%, P < 0.05) and severity (%islet area occupied by amyloid; BL6: 0.03 +/- 0.01%, F(1): 9.2 +/- 2.9%, DBA2: 5.7 +/- 2.3%, p < or = 0.01) were significantly lower in BL6 than F(1) and DBA2 mice. Increased islet amyloid severity was negatively correlated with insulin-positive area per islet, in F(1) (r(2) = 0.75, P < 0.001) and DBA2 (r(2) = 0.87, P < 0.001) mice but not BL6 mice (r(2) = 0.07). In summary, the extent of islet amyloid formation in hIAPP transgenic mice is determined by background strain, with mice expressing DBA/2J genes (F(1) and DBA2 mice) being more susceptible to amyloid deposition that replaces beta-cell mass. These findings underscore the importance of genetic and environmental factors in studying metabolic disease.  相似文献   

14.
Variations in maternal behavior, either occurring naturally or in response to experimental manipulations, have been shown to exert long-lasting consequences on offspring behavior and physiology. Despite previous research examining the effects of developmental manipulations on drug-related phenotypes, few studies have specifically investigated the influence of strain-based differences in maternal behavior on drug responses in mice. The current experiments used reciprocal F1 hybrids of two inbred mouse strains (i.e. DBA/2J and C57BL/6J) that differ in both ethanol (EtOH) responses and maternal behavior to assess the effects of maternal environment on EtOH-related phenotypes. Male and female DBA/2J and C57BL/6J mice and their reciprocal F1 hybrids reared by either DBA/2J or C57BL/6J dams were tested in adulthood for EtOH intake (choice, forced), EtOH-induced hypothermia, EtOH-induced activity and EtOH-induced conditioned place preference (CPP). C57BL/6J and DBA/2J mice showed differences on all EtOH responses. Consistent with previous reports that maternal strain can influence EtOH intake, F1 hybrids reared by C57BL/6J dams consumed more EtOH during forced exposure than did F1 hybrids reared by DBA/2J dams. Maternal strain also influenced EtOH-induced hypothermic responses in F1 hybrids, producing differences in hybrid mice that paralleled those of the inbred strains. In contrast, maternal strain did not influence EtOH-induced activity or CPP in hybrid mice. The current findings indicate that maternal environment may contribute to variance in EtOH-induced hypothermia and EtOH intake, although effects on EtOH intake appear to be dependent upon the type of EtOH exposure.  相似文献   

15.
Graft-vs-host disease (GVHD) is a common occurrence after bone marrow transplantation despite the use of MHC-matched donors and recipients. This indicates that non-MHC loci play an important role in the regulation and development of GVHD. Non-MHC loci have been shown to regulate GVHD in a murine model where acute GVHD results from i.v. injection of C57BL/6J spleen cells into B6D2F1/J [C57BL/6J X DBA/2J)F1) recipients while chronic GVHD results from injection of DBA/2J spleen cells. In contrast to the hyperproduction of Ig and auto-antibodies that is characteristic of the chronic GVHD that occurs after injection of DBA/2J cells, injection of DBA/2Ha cells was found to induce CTL and suppressor cells characteristic of the acute GVHD that results from injection of C57BL/6 cells into B6D2F1/J recipients. Genetic analysis indicated that one autosomal locus is responsible for the different GVHD responses of DBA/2J and DBA/2Ha cells and that the DBA/2Ha allele is dominant. Further studies indicate that the different responses by DBA/2J and DBA/2Ha cells is not due to functional differences between the two sets of cells but by a radiosensitive B6D2F1 recipient immune response which discriminates between the DBA/2J and DBA/2Ha spleen cells.  相似文献   

16.
Studies in C57BL/6J, DBA/2J and C3H/HeJ mice and in two F1 hybrid strains (B6D2F1 and B6C3HF1) 2-5 months old revealed marked genotypic differences among inbred strains. C57 mice had three times as many regular (3-6 days) cycles as DBA and C3H mice, due largely to fewer pseudopregnant-like (7-14 day) cycles. C57 had longer regular cycles than DBA and C3H mice. Although the frequencies of regular cycles of DBA and C3H mice were similar, the cycles of C3H mice were shorter than those of DBA mice. The results indicated that the genetic determinants of the frequency of regular cycles differ from those specifying cycle length. Frequency of regular cycles of F1 hybrids was either intermediate between the parent strains (B6D2F1) or similar to the C57 strain (B6C3HF1), suggesting that regular cycle frequency shows additive genetic variation in the former crosses, but mostly dominant variance in the latter background. Regular cycles were either shorter than in both parent strains (B6D2F1) or similar to one of them (B6C3HF1), indicating heterosis and dominance for genes specifying short cycles. Although the lack of reciprocal crosses meant that maternal effects and possible genomic imprinting effects could not be assessed, these results reveal marked genetic influences on cycle length and frequency and suggest that some of the genes specifying these two traits differ.  相似文献   

17.
Yegorova and colleagues (1978) showed that a mutant strain of Drosophila melanogaster (ebony) was more sensitive to UV-induced killing of embryos and also less proficient in photoreactivating (PR) ability than a wild-type (Canton-S) strain and that the genes governing UV sensitivity and PR ability were different and presumably located on the autosomes. The experiments reported in the present paper were designed to compare the patterns of sensitivity of these 2 strains and their hybrids to X-irradiation. The sensitivity of the larvae to the killing effects of X-irradiation, and of male and female germ-cell stages to the X-ray induction of genetic damage was studied.It was found that the larvae of the ebony strain are more sensitive to X-ray-induced killing than those of the Canton-S strain. The frequencies of radiation-induced dominant lethals and sex-linked recessive lethals are higher in spermatozoa sampled from ebony males than in those of Canton-S males. In spermatozoa sampled from hybrid males, the yields of dominant lethals are no higher than in those sampled from Canton-S males and do not seem to depend on the origin of the X-chromosome. There are no statistically significant differences between the ebony and Canton-S strains in the sensitivity of their spermatozoa to the induction of autosomal translocations.Stage-7 oocytes sampled from ebony females are more sensitive to the X-ray induction of dominant lethality than are those from Canton-S females; oocytes sampled from hybrid females manifest a level of sensitivity that is significantly lower than that in either parental strain. The frequencies of X-chromosome losses induced in in this germ-cell stage are significantly lower in ebony than in Canton-S females at least at the exposure level of 3000 R at which 3 experiments were carried out. There are no measurable differences in the amount of dominant lethality induced in stage-14 oocytes of ebony, Canton-S and hybrid females.When X-irradiated Berlin-K males are mated to ebony or Canton-S females, the yields of dominant lethals are higher when ebony females are used, showing that there is a “maternal effect” for this kind of damage. Such a maternal effect is also found for sex-linked recessive lethals (irradiated Muller-5 males mated to ebony or Canton-S females). However, when irradiated ring-X-chromosome-carrying males are mated to ebony or Canton-S females, the frequencies of paternal sex-chromosome losses (scored as XO males) are lower when ebony females are used.These results have been interpreted on the assumption that the ebony strain is homozygous for recessive, autosomal genes that confer increased radiosensitivity and that the Canton-S strain carries the normal, wild-type alleles for these genes. The higher yields of dominant and recessive lethals in mature spermatozoa and of dominant lethals in stage-7 oocytes are a consequence of an enhanced sensitivity to the mutagenic (in particular, to the chromosome-breaking) effects of X-irradiation and/or of defective repair of radiation-induced genetic damage. The lower yield of XO males from irradiated stage-7 oocytes of ebony females is probably a consequence of a defect in the repair of chromosome-breakage effects, resulting in the conversion of potential X losses in females into dominant lethals. The “maternal effects” for dominant lethals, sex-linked recessive lethals and for the loss of ring-X chromosomes are assumed to have a common causal basis, namely, a defective repair of chromosome-breakage events in the females of the ebony strain.  相似文献   

18.
A Sattin 《Life sciences》1975,16(6):903-913
Large strain differences in neurohumorally induced increases in cyclic AMP can be observed in chopped cerebral cortex of genetically uniform strains of mice. Data from F1 hybrids of C57BL/6J × DBA/2J and preliminary data from C57BL/6J × SEC/1ReJ suggests dominant transmission by C57 of a chemical factor favoring low accumulation of cyclic AMP in the first cross and recessive transmission of this factor in the second cross. These chemical observations correlate with previously observed transmission of “low active avoidance learning” in the same hybrid strains. Results of determinations of cyclic nucleotide phosphodiesterase activity in supernatant fractions from C57, DBA and the C57 × DBA cross provide a possible explanation for the accumulation differences in those strains.  相似文献   

19.
Epilepsy is one of the most common but genetically complex neurological disorders in humans. Identifying animal models that recapitulate human epilepsies is important for pharmacological studies of anticonvulsants, dissection of molecular and biochemical pathogenesis of epilepsy, and discovery of epilepsy susceptibility genes. We discovered that the PL/J inbred mouse strain is susceptible to handling- and rhythmic tossing–induced seizure. The tonic–clonic and generalized seizures observed after induction were accompanied by abnormal EEGs, similar to seizures observed in EL and SWXL-4 mice. PL/J mice also had an extremely low threshold to electroconvulsive seizures compared to other strains and showed variable sensitivity to pentylenetetrazole-induced seizures. Gross neurostructural abnormalities were not found in PL/J mice. Crosses with the seizure-resistant C57BL/6 J strain revealed semidominant inheritance of the rhythmic tossing seizure trait with low penetrance. F2 progeny indicated that the genetic inheritance of seizure susceptibility in PL/J is non-Mendelian. We crossed DBA/2 J mice, which are resistant to rhythmic tossing seizure but susceptible to audiogenic seizures, to PL/J. We found that seizure penetrance in (DBA/2 J × PL/J)F1 mice was similar to the penetrance in (C57BL/6 J × PL/J)F1 mice but the severity and frequency of seizure were higher in (DBA/2 J × PL/J)F1 mice. The PL/J strain serves as an interesting new model for studying the genetics, neurobiology, and pharmacology of epilepsy.  相似文献   

20.
V. K. Mohl  G. D. Bennett    R. H. Finnell 《Genetics》1990,124(4):949-955
Lymphocytes from adult mice bearing a known difference in genetic susceptibility to teratogen-induced exencephaly (SWV/SD, and DBA/2J) were evaluated for changes in protein synthesis following an in vivo heat treatment. Particular attention was paid to changes indicative of the heat shock response, a highly conserved response to environmental insult consisting of induction of a few, highly conserved proteins with simultaneous decreases in normal protein synthesis. The duration of heat shock protein induction in lymphocytes was found to be increased by 1 hr in the teratogen-sensitive SWV/SD strain as compared to the resistant DBA/2J strain. Densitometric analysis revealed a significant decrease in the relative synthesis of at least two non-heat shock proteins (36 kD and 45 kD) in the SWV/SD lymphocytes as compared to DBA/2J cells. The increased sensitivity of protein synthesis to hyperthermia in the SWV/SD lymphocytes were lost in the F1 progeny of reciprocal crosses between SWV/SD and DBA/2J mouse strains. Sensitivity to hyperthermia-induced exencephaly is recessive to resistance in these crosses. The relationship between altered protein synthesis and teratogen susceptibility is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号