首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Praziquantel (Embay 8440, Droncit) a new, effective anti-schistosomal drug, was tested in various short-term assays that have shown a predictive value for the detection of potential carcinogens. Indicator organisms S. typhimurium strains, S. pombe, S. cerevisiae, cultured V79 Chinese hamster cells or human heteroploid cells and Drosophila melanogaster were treated with Praziquantel. The induction of reverse and forward mutations, mitotic gene conversions, X-linked recessive lethals, sister-chromatid exchanges and unscheduled DNA-repair synthesis was scored; rodent-liver microsome-, cell- and host-mediated assays were also performed. Hycanthone, another schistosomicide was included as a positive control. The absence of a genetic activity of Praziquantel uniformly observed in such a battery of tests (i) confirms the assumption that the anti-schistosomal effectiveness of this drug is not related to the mutagenic activity and (ii) should encourage the implementation of extended clinical and field trials.  相似文献   

2.
Schistosomiasis remains one of the most prevalent parasitic infections and has significant public health consequences. Praziquantel (PZQ) is the only drug currently administrated to treat this disease. However, praziquantel-resistant parasites have been identified in endemic areas and can be generated in the laboratory. Therefore, it is essential to find new therapeutics. Herein we report a series of novel 8-hydroxyquinoline-5-sufonyl 1,4-diazepine derivatives, which were synthesized, characterized and tested as anti-schistosomal agents in vitro. Among all tested compounds, compounds 4a, 5b, and 7b at different tested concentrations (50, 100, and 200 μg/mL) showed the highest schistosomicidal activity. Among those 3 compounds, compound 7b was the most potent anti-schistosomal one. Moreover, all tested compound, at 50 μg/mL concentration, significantly reduced oviposition of adult worms in vitro. Furthermore, both compound 4a and 7b, as well as compound 6a, completely diminished egg deposition. To clarify the possible mechanism by which novel 8-hydroxyquinoline-5-sufonyl 1,4-diazepine derivatives act as anti-schistosomal agents, molecular docking of all new compounds was carried out using Molsoft ICM pro 3.5-0a to investigate the binding affinity and binding mode to thioredoxin glutathione reductase enzyme (TGR), a potential drug target for anti-schistosomal agents. The docking results revealed moderate to high affinity of the new compounds towards TGR. Compound 7b scored the highest binding energy (−101.13 kcal/mol) against TGR crystal structure forming eight hydrogen bonds with the amino acid residues at the binding site of the receptor. This result indicates that compound 7b could exert its effect through inhibition of TGR, which is a vital enzyme for schistosome survival.  相似文献   

3.

Background

Schistosomiasis, one of the world’s greatest neglected tropical diseases, is responsible for over 280,000 human deaths per annum. Praziquantel, developed in the 1970s, has high efficacy, excellent tolerability, few and transient side effects, simple administration procedures and competitive cost and it is currently the only recommended drug for treatment of human schistosomiasis. The use of a single drug to treat a population of over 200 million infected people appears particularly alarming when considering the threat of drug resistance. Quantitative, objective and validated methods for the screening of compound collections are needed for the discovery of novel anti-schistosomal drugs.

Methodology/Principal Findings

The present work describes the development and validation of a luminescence-based, medium-throughput assay for the detection of schistosomula viability through quantitation of ATP, a good indicator of metabolically active cells in culture. This validated method is demonstrated to be fast, highly reliable, sensitive and automation-friendly. The optimized assay was used for the screening of a small compound library on S. mansoni schistosomula, showing that the proposed method is suitable for a medium-throughput semi-automated screening. Interestingly, the pilot screening identified hits previously reported to have some anti-parasitic activity, further supporting the validity of this assay for anthelminthic drug discovery.

Conclusions

The developed and validated schistosomula viability luminescence-based assay was shown to be successful and suitable for the identification of novel compounds potentially exploitable in future schistosomiasis therapies.  相似文献   

4.

Background

Schistosomiasis is a major health problem in tropical and sub-tropical areas caused by species of trematode belonging to the genus Schistosoma. The treatment and control of this disease has been relying on the use of a single drug praziquantel. However, the drug resistance concern urged the development of new drugs against schistosoma. Here, we report our systematic biological evaluation of DW-3-15, a new lead compound developed based on our conjugation design rationale as an effective anti-schistosomal agent.

Methodology/Principal Findings

The antischistosomal activity of DW-3-15 was systematically evaluated in S. japonicum infected mouse model for its stage-sensitivity and dose response. The results revealed that DW-3-15 exhibited 60–85% worm reduction rate against different development stage of worm. Scanning electron microscopy (SEM) observation indicated that DW-3-15 may damage to the tegument of male schistosomes.

Conclusions/Significance

Our results demonstrated that DW-3-15 showed potent anti-schistosomal activities in vivo. The results strongly support our conjugation design strategy of artemisinin analogs and further development of DW-3-15 as a new lead compound as anti-schistosomal agent.  相似文献   

5.
BackgroundAnthelminthic treatment options against schistosomiasis are limited. The current treatment relies almost exclusively on a single drug, praziquantel (PZQ). As a consequence, the development of resistance to PZQ and limited activity of PZQ against earlier development stages are respectively a risk and a limitation to achieving the goals of the new WHO roadmap towards elimination. For the discovery of new chemical starting points, the in vitro drug screening on Schistosoma mansoni (S. mansoni) against newly transformed schistosomula (NTS) is still the most predominant approach. The use of only NTS in the initial screening limits sensitivity to potential new compounds which are predominantly active in later developmental stages. Using our recently described highly standardized, straightforward and reliable culture method that generates high rates of juvenile worms, we aimed to repurpose a subset of the National Center for Advancing Translational Sciences (NCATS) Pharmaceutical Collection (340 compounds) to identify new hits with an in vitro worm culture assay.Methodology/Principal findingsCercariae were mechanically transformed into skin-stage (SkS) schistosomula and continuously cultured for 3–6 weeks to the liver stage (LiS). A commercial source of serum was identified, and decrease of NTS/well along with optimal drug testing conditions was established to test compounds on early and late LiS worms. The library was screened in 96-well format assays using praziquantel (PZQ) as a positive control. Primary screening allowed a 5.9% hit rate and generated two confirmed hits on adult worms; a prophylactic antianginal agent and an antihistaminic drug.ConclusionWith this standardized and reliable in vitro assay, important S. mansoni developmental stages up to LiS worms can be generated and cultured over an extended period. When exposed to a subset of the NCATS Pharmaceutical Collection, 3 compounds yielded a defined anti-schistosomal phenotype on juvenile worms. Translation of activity on perfused adult S. mansoni worms was achieved only for perhexiline (a prophylactic antianginal agent) and astemizole (an antihistaminic drug).  相似文献   

6.
Analogues of pyrrolo-[1,2,5]benzothiadiazepine were prepared and evaluated against Schistosoma japonica. The biological data revealed that most benzothiazepine derivatives show anti-schistosomal activity to some extent, while α-chloronation of the title compound and another bioisosteric derivative pyrrolo-[1,2,5]benzodiazepine displayed the most distinct worm killing activity. This study proved that benzodiazepine may serve as a novel structural skeleton for the development of anti-schistosomal agents.  相似文献   

7.

Background

Schistosomiasis, caused by infection with the blood fluke Schistosoma, is responsible for greater than 200,000 human deaths per annum. Objective high-throughput screens for detecting novel anti-schistosomal targets will drive ‘genome to drug’ lead translational science at an unprecedented rate. Current methods for detecting schistosome viability rely on qualitative microscopic criteria, which require an understanding of parasite morphology, and most importantly, must be subjectively interpreted. These limitations, in the current state of the art, have significantly impeded progress into whole schistosome screening for next generation chemotherapies.

Methodology/Principal Findings

We present here a microtiter plate-based method for reproducibly detecting schistosomula viability that takes advantage of the differential uptake of fluorophores (propidium iodide and fluorescein diacetate) by living organisms. We validate this high-throughput system in detecting schistosomula viability using auranofin (a known inhibitor of thioredoxin glutathione reductase), praziquantel and a range of small compounds with previously-described (gambogic acid, sodium salinomycin, ethinyl estradiol, fluoxetidine hydrochloride, miconazole nitrate, chlorpromazine hydrochloride, amphotericin b, niclosamide) or suggested (bepridil, ciclopirox, rescinnamine, flucytosine, vinblastine and carbidopa) anti-schistosomal activities. This developed method is sensitive (200 schistosomula/well can be assayed), relevant to industrial (384-well microtiter plate compatibility) and academic (96-well microtiter plate compatibility) settings, translatable to functional genomics screens and drug assays, does not require a priori knowledge of schistosome biology and is quantitative.

Conclusions/Significance

The wide-scale application of this fluorescence-based bioassay will greatly accelerate the objective identification of novel therapeutic lead targets/compounds to combat schistosomiasis. Adapting this bioassay for use with other parasitic worm species further offers an opportunity for great strides to be made against additional neglected tropical diseases of biomedical and veterinary importance.  相似文献   

8.
《Phytomedicine》2014,21(3):323-332
The Pterogyne nitens (Fabaceae) tree, native to South America, has been found to produce guanidine alkaloids as well as bioactive flavonols such as kaempferol, quercetin, and rutin. In the present study, we examined the possibility of interaction between human ATP-binding cassette (ABC) transporter ABCB1 and four guanidine alkaloids isolated from P. nitens (i.e., galegine, nitensidine A, pterogynidine, and pterogynine) using human T cell lymphoblast-like leukemia cell line CCRF-CEM and its multi-drug resistant (MDR) counterpart CEM/ADR5000. In XTT assays, CEM/ADR5000 cells were resistant to the four guanidine alkaloids compared to CCRF-CEM cells, although the four guanidine alkaloids exhibited some level of cytotoxicity against both CCRF-CEM and CEM/ADR5000 cells. In ATPase assays, three of the four guanidine alkaloids were found to stimulate the ATPase activity of ABCB1. Notably, nitensidine A was clearly found to stimulate the ATPase activity of ABCB1 as strongly as the control drug, verapamil. Furthermore, the cytotoxic effect of nitensidine A on CEM/ADR5000 cells was synergistically enhanced by verapamil. Nitensidine A inhibited the extrusion of calcein by ABCB1. In the present study, the possibility of interaction between ABCB1 and two synthetic nitensidine A analogs (nitensidine AT and AU) were examined to gain insight into the mechanism by which nitensidine A stimulates the ATPase activity of ABCB1. The ABCB1-dependent ATPase activity stimulated by nitensidine A was greatly reduced by substituting sulfur (S) or oxygen (O) for the imino nitrogen atom (N) in nitensidine A. Molecular docking studies on human ABCB1 showed that, guanidine alkaloids from P. nitens dock to the same binding pocket as verapamil. Nitensidine A and its analogs exhibit similar binding energies to verapamil. Taken together, this research clearly indicates that nitensidine A is a novel substrate for ABCB1. The present results also suggest that the number, binding site, and polymerization degree of the isoprenyl moiety in the guanidine alkaloids and the imino nitrogen atom cooperatively contribute to their stimulation of ABCB1's ATPase activity.  相似文献   

9.

Background

Schistosomiasis is a neglected disease caused by a trematode of the genus Schistosoma that is second only to malaria in public health significance in Africa, South America, and Asia. Praziquantel (PZQ) is the drug of choice to treat this disease due to its high cure rates and no significant side effects. However, in the last years increasingly cases of tolerance to PZQ have been reported, which has caused growing concerns regarding the emergency of resistance to this drug.

Methodology/Principal Findings

Here we describe the selection of a parasitic strain that has a stable resistance phenotype to PZQ. It has been reported that drug resistance in helminths might involve efflux pumps such as members of ATP-binding cassette transport proteins, including P-glycoprotein and multidrug resistance-associated protein families. Here we evaluate the role of efflux pumps in Schistosoma mansoni resistance to PZQ, by comparing the efflux pumps activity in susceptible and resistant strains. The evaluation of the efflux activity was performed by an ethidium bromide accumulation assay in presence and absence of Verapamil. The role of efflux pumps in resistance to PZQ was further investigated comparing the response of susceptible and resistant parasites in the absence and presence of different doses of Verapamil, in an ex vivo assay, and these results were further reinforced through the comparison of the expression levels of SmMDR2 RNA by RT-PCR.

Conclusions/Significance

This work strongly suggests the involvement of Pgp-like transporters SMDR2 in Praziquantel drug resistance in S. mansoni. Low doses of Verapamil successfully reverted drug resistance. Our results might give an indication that a combination therapy with PZQ and natural or synthetic Pgp modulators can be an effective strategy for the treatment of confirmed cases of resistance to PZQ in S. mansoni.  相似文献   

10.
A series of novel oxazaphosphorine prodrugs of 9-(2-phosphonomethoxyethyl)adenine (PMEA, adefovir) were synthesized and their anti-hepatitis B virus (HBV) activity was evaluated in HepG2 2.2.15 cells, with adefovir dipivoxil as a reference drug. In the cell assays, compounds 7b and 7d exhibited anti-HBV activity comparable to that of adefovir dipivoxil, while compound 7c, with an IC50 value of 0.12 μM, was found to be three times more potent than the reference compound. In vitro stability studies showed that (SP,S)-7c, the diastereomer of compound 7c, was stable in human blood plasma but underwent rapid metabolism to release the parent drug PMEA in liver microsomes. The possible metabolic pathway of (SP,S)-7c in human liver microsomes was described. These findings suggest that compound (SP,S)-7c is a promising anti-HBV drug candidate for further development.  相似文献   

11.

Background

Gain-of-function mutations of tyrosine kinase FLT3 are frequently found in acute myeloid leukemia (AML). This has made FLT3 an important marker for disease diagnosis and a highly attractive target for therapeutic drug development. This study is intended to generate a sensitive substrate for assays of the FLT3 enzymatic activity.

Methods

We expressed in Escherichia coli cells a glutathione S-transferase (GST) fusion protein designated GST-FLT3S, which contains a peptide sequence derived from an autophosphorylation site of FLT3. The protein was used to analyze tyrosine kinase activity of baculovirus-expressed FLT3 and crude cell extracts of bone marrow cells from AML patients. It was also employed to perform FLT3 kinase assays for FLT3 inhibitor screening.

Results

GST-FLT3S in solution or on beads was strongly phosphorylated by recombinant proteins carrying the catalytic domain of wild type FLT3 and FLT3D835 mutants, with the latter exhibiting much higher activity and efficiency. GST-FLT3S was also able to detect elevated tyrosine kinase activity in bone marrow cell extracts from AML patients. A small-scale inhibitor screening led to identification of several potent inhibitors of wild type and mutant forms of FLT3.

Conclusions

GST-FLT3S is a sensitive protein substrate for FLT3 assays. It may find applications in diagnosis of diseases related to abnormal FLT3 activity and in inhibitor screening for drug development.  相似文献   

12.
《Phytomedicine》2015,22(10):921-928
Background: Schistosomiasis is one of the world's major public health problems, and praziquantel (PZQ) is the only available drug to treat this neglected disease with an urgent demand for new drugs. Recent studies indicated that extracts from Piper aduncum L. (Piperaceae) are active against adult worms of Schistosoma mansoni, the major etiological agent of human schistosomiasis.Purpose: We investigated the in vitro schistosomicidal activity of cardamonin, a chalcone isolated from the crude extract of P. aduncum. Also, this present work describes, for the first time, the S. mansoni ATP diphosphohydrolase inhibitory activity of cardamonin, as well as, its molecular docking with S. mansoni ATPDase1, in order to investigate its mode of inhibition.Methods: In vitro schistosomicidal assays and confocal laser scanning microscopy were used to evaluate the effects of cardamonin on adult schistosomes. Cell viability was measured by MTT assay, and the S. mansoni ATPase activity was determined spectrophotometrically. Identification of the cardamonin binding site and its interactions on S. mansoni ATPDase1 were made by molecular docking experiments.Results: A bioguided fractionation of the crude extract of P. aduncum was carried out, leading to identification of cardamonin as the active compound, along with pinocembrin and uvangoletin. Cardamonin (25, 50, and 100 µM) caused 100% mortality, tegumental alterations, and reduction of oviposition and motor activity of all adult worms of S. mansoni, without affecting mammalian cells. Confocal laser scanning microscopy showed tegumental morphological alterations and changes on the numbers of tubercles of S. mansoni worms in a dose-dependent manner. Cardamonin also inhibited S. mansoni ATP diphosphohydrolase (IC50 of 23.54 µM). Molecular docking studies revealed that cardamonin interacts with the Nucleotide-Binding of SmATPDase 1. The nature of SmATPDase 1–cardamonin interactions is mainly hydrophobic and hydrogen bonding.Conclusion: This report provides evidence for the in vitro schistosomicidal activity of cardamonin and demonstrated, for the first time, that this chalcone is highly effective in inhibiting S. mansoni ATP diphosphohydrolase, opening the route to further studies of chalcones as prototypes for new S. mansoni ATP diphosphohydrolase inhibitors.  相似文献   

13.
Evaluation of the fate and transport of biological warfare (BW) agents in landfills requires the development of specific and sensitive detection assays. The objective of the current study was to develop and validate SYBR green quantitative real-time PCR (Q-PCR) assays for the specific detection and quantification of surrogate BW agents in synthetic building debris (SBD) and leachate. Bacillus atrophaeus (vegetative cells and spores) and Serratia marcescens were used as surrogates for Bacillus anthracis (anthrax) and Yersinia pestis (plague), respectively. The targets for SYBR green Q-PCR assays were the 16S-23S rRNA intergenic transcribed spacer (ITS) region and recA gene for B. atrophaeus and the gyrB, wzm, and recA genes for S. marcescens. All assays showed high specificity when tested against 5 ng of closely related Bacillus and Serratia nontarget DNA from 21 organisms. Several spore lysis methods that include a combination of one or more of freeze-thaw cycles, chemical lysis, hot detergent treatment, bead beat homogenization, and sonication were evaluated. All methods tested showed similar threshold cycle values. The limit of detection of the developed Q-PCR assays was determined using DNA extracted from a pure bacterial culture and DNA extracted from sterile water, leachate, and SBD samples spiked with increasing quantities of surrogates. The limit of detection for B. atrophaeus genomic DNA using the ITS and B. atrophaeus recA Q-PCR assays was 7.5 fg per PCR. The limits of detection of S. marcescens genomic DNA using the gyrB, wzm, and S. marcescens recA Q-PCR assays were 7.5 fg, 75 fg, and 7.5 fg per PCR, respectively. Quantification of B. atrophaeus vegetative cells and spores was linear (R2 > 0.98) over a 7-log-unit dynamic range down to 101 B. atrophaeus cells or spores. Quantification of S. marcescens (R2 > 0.98) was linear over a 6-log-unit dynamic range down to 102 S. marcescens cells. The developed Q-PCR assays are highly specific and sensitive and can be used for monitoring the fate and transport of the BW surrogates B. atrophaeus and S. marcescens in building debris and leachate.  相似文献   

14.
The almost empty armamentarium to treat schistosomiasis, a neglected parasitic disorder caused by trematode flatworms of the genus Schistosoma, except Praziquantel (PZQ), urged to find new alternatives to fight this infection. Carbonic Anhydrase from Schistosoma mansoni (SmCA) is a possible new target against this nematode. Here, we propose new PZQ derivatives bearing a primary sulphonamide group in order to obtain hybrid drugs. All compounds were evaluated for their inhibition profiles on both humans and Schistosoma CAs, X-ray crystal data of SmCA and hCA II in adduct with some inhibitors were obtained allowing the understanding of the main structural factors responsible of activity. The compounds showed in vitro inhibition of immature and adult S. mansoni, but further optimisation is required for improved activity.  相似文献   

15.
Antibiotic resistance is a serious threat to global public health, and methicillin-resistant Staphylococcus aureus (MRSA) is a poignant example. The macrolactone natural product albocycline, derived from various Streptomyces strains, was recently identified as a promising antibiotic candidate for the treatment of both MRSA and vancomycin-resistant S. aureus (VRSA), which is another clinically relevant and antibiotic resistant strain. Moreover, it was hypothesized that albocycline’s antimicrobial activity was derived from the inhibition of peptidoglycan (i.e., bacterial cell wall) biosynthesis. Herein, preliminary mechanistic studies are performed to test the hypothesis that albocycline inhibits MurA, the enzyme that catalyzes the first step of peptidoglycan biosynthesis, using a combination of biological assays alongside molecular modeling and simulation studies. Computational modeling suggests albocycline exists as two conformations in solution, and computational docking of these conformations to an ensemble of simulated receptor structures correctly predicted preferential binding to S. aureus MurA—the enzyme that catalyzes the first step of peptidoglycan biosynthesis—over Escherichia coli (E. coli) MurA. Albocycline isolated from the producing organism (Streptomyces maizeus) weakly inhibited S. aureus MurA (IC50 of 480?μM) but did not inhibit E. coli MurA. The antimicrobial activity of albocycline against resistant S. aureus strains was superior to that of vancomycin, preferentially inhibiting Gram-positive organisms. Albocycline was not toxic to human HepG2 cells in MTT assays. While these studies demonstrate that albocycline is a promising lead candidate against resistant S. aureus, taken together they suggest that MurA is not the primary target, and further work is necessary to identify the major biological target.  相似文献   

16.
The rapid spread on multidrug-resistant strains of Staphylococcus aureus requires not just novel treatment options, but the development of faster methods for the identification of new hits for drug development. The exponentially increasing speed of computational methods makes a more extensive use in the early stages of drug discovery attractive if sufficient accuracy can be achieved. Computational target identification using systems-level methods suggested the histidine biosynthesis pathway as an attractive target against S. aureus. Potential inhibitors for the pathway were identified through docking, followed by ensemble rescoring, that is sufficiently accurate to justify immediate testing of the identified compounds by whole-cell assays, avoiding the need for time-consuming and often difficult intermediary enzyme assays. This novel strategy is demonstrated for three key enzymes of the S. aureus histidine biosynthesis pathway, which is predicted to be essential for bacterial biomass productions. Virtual screening of a library of ~106 compounds identified 49 potential inhibitors of three enzymes of this pathway. Eighteen representative compounds were directly tested on three S. aureus- and two Escherichia coli strains in standard disk inhibition assays. Thirteen compounds are inhibitors of some or all of the S. aureus strains, while 14 compounds weakly inhibit growth in one or both E. coli strains. The high hit rate obtained from a fast virtual screen demonstrates the applicability of this novel strategy to the histidine biosynthesis pathway.  相似文献   

17.
Introduction: Praziquantel (PZQ) is the only commercially available drug for schistosomiasis. The current shortage of alternative effective drugs and the lack of successful preventive measures enhance its value. The increase in the prevalence of PZQ resistance under sustained drug pressure is, therefore, an upcoming issue.Objective: To overcome the tolerance to PZQ using nanotechnology after laboratory induction of a Schistosoma mansoni isolate with reduced sensitivity to the drug during the intramolluscan phase.Materials and methods: Shedding snails were treated with PZQ doses of 200 mg/kg twice/ week followed by an interval of one week and then repeated twice in the same manner. The success of inducing reduced sensitivity was confirmed in vitro via the reduction of cercarial response to PZQ regarding their swimming activity and death percentage at different examination times.Results: Oral treatment with a single PZQ dose of 500 mg/kg in mice infected with cercariae with reduced sensitivity to PZQ revealed a non-significant reduction (35.1%) of total worm burden compared to non-treated control mice. Orally inoculated PZQ- encapsulated niosomes against S. mansoni with reduced sensitivity to PZQ successfully regained the pathogen’s sensitivity to PZQ as evidenced by measuring different parameters in comparison to the non-treated infected animals with parasites with reduced sensitivity to PZQ. The mean total worm load was 1.33 ± 0.52 with a statistically significant reduction of 94.09% and complete eradication of male worms. We obtained a remarkable increase in the percentage reduction of tissue egg counts in the liver and intestine (97.68% and 98.56%, respectively) associated with a massive increase in dead eggs and the complete absence of immature stages.Conclusion: PZQ-encapsulated niosomes restored the drug sensitivity against laboratory- induced S. mansoni adult worms with reduced sensitivity to PZQ.  相似文献   

18.
Nanomedicine is one of the most important methods used to treat human diseases including parasitic diseases. Schistosomiasis is a major parasitic disease that affects human health in tropical regions. Whilst Praziquantel is the main classic antischistosomal drug, new drugs are required due to the poor effect of the drug on the parasite juveniles and immature worms, and the emergence of drug resistant strains of Schistosoma. The present study aimed to examine the curative roles of both gold and selenium nanoparticles on jejunal tissues of mice infected with Schistosoma mansoni. Transmission electron microscopy was used for characterization of nanoparticles. Gold nanoparticles of 1 mg/kg mice body weight and selenium nanoparticles 0.5 mg/kg body weight were inoculated separately into mice infected with S. mansoni. The parasite induced a significant decrease in glutathione levels; however, the levels of nitric oxide and malondialdehyde were significantly increased. Additionally, the parasite introduced deteriorations in histological architecture of the jejunal tissue. Treatment of mice with metal nanoparticles reduced the levels of body weight changes, oxidative stress and histological impairment in the jejunal tissue significantly. Therefore, our results revealed the protective role of both selenium and gold nanoparticles against jejunal injury in mice infected with S. mansoni.  相似文献   

19.
Plants have natural products which use to possess antiproliferative potential against many cancers. In the present study, six isolated fractions (ethyl acetate, petroleum ether, chloroform, n-butanol, ethanol and aqueous) from Solanum nigrum were evaluated for their cytotoxic effect on different cell lines. Hepatic carcinoma cell line (HepG2), cervical cancer cell line (HeLa) and baby hamster kidney (BHK) used as normal non-cancerous cells were evaluated for cytotoxicity against isolated fractions. Cell viability assay was performed to evaluate the cytotoxicity of all fractions on different cell lines followed by the lactate dehydrogenase and vascular endothelial growth factor assays of most active fraction among all screened for cytotoxic analysis. HPLC analysis of most active fractions against cytotoxicity was performed to check the biological activity of compounds. Results displayed the potent cytotoxic activity of ethyl acetate fraction of S. nigrum against HepG2 cells with IC50 value of 7.89 μg/ml. Other fractions exhibited potent anticancer activity against HepG2 cells followed by HeLa cells. Fractions in our study showed no cytotoxicity in BHK cells. Cytotoxic activity observed in our current study exposed high antiproliferative potential and activity of ethyl acetate fraction against HepG2 cells. The results demonstrated that S. nigrum fractions exhibited anticancer activity against hepatic and cervical cancer cell lines with non-toxic effect in normal cells. These results reveal significant potential of S. nigrum for the therapeutic of cancers across the globe in future.  相似文献   

20.
MYOGENIN is a member of the muscle regulatory factor family that orchestrates an obligatory step in myogenesis, the terminal differentiation of skeletal muscle cells. A paradoxical feature of alveolar rhabdomyosarcoma (ARMS), a prevalent soft tissue sarcoma in children arising from cells with a myogenic phenotype, is the inability of these cells to undergo terminal differentiation despite the expression of MYOGENIN. The chimeric PAX3-FOXO1 fusion protein which results from a chromosomal translocation in ARMS has been implicated in blocking cell cycle arrest, preventing myogenesis from occurring. We report here that PAX3-FOXO1 enhances glycogen synthase kinase 3β (GSK3β) activity which in turn represses MYOGENIN activity. MYOGENIN is a GSK3β substrate in vitro on the basis of in vitro kinase assays and MYOGENIN is phosphorylated in ARMS-derived RH30 cells. Constitutively active GSK3β(S9A) increased the level of a phosphorylated form of MYOGENIN on the basis of western blot analysis and this effect was reversed by neutralization of the single consensus GSK3β phosphoacceptor site by mutation (S160/164A). Congruently, GSK3β inhibited the trans-activation of an E-box reporter gene by wild-type MYOGENIN, but not MYOGENIN with the S160/164A mutations. Functionally, GSK3β repressed muscle creatine kinase (MCK) promoter activity, an effect which was reversed by the S160/164A mutated MYOGENIN. Importantly, GSK3β inhibition or exogenous expression of the S160/164A mutated MYOGENIN in ARMS reduced the anchorage independent growth of RH30 cells in colony-formation assays. Thus, sustained GSK3β activity represses a critical regulatory step in the myogenic cascade, contributing to the undifferentiated, proliferative phenotype in alveolar rhabdomyosarcoma (ARMS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号