首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Polyamine oxidase, purified 260-fold from maize shoots, was light yellow in colour. Maximum light-absorption was at 450 nm and was decreased by the addition of either sodium dithionite or spermidine, but not by putrescine. Under aerobic conditions, the enzyme could use p-benzoquinone as an electron acceptor. Cu2+ inhibited the enzyme activity, while SO3 was stimulatory. Several metal-binding agents and thiol reagents were without effect.  相似文献   

2.
Seven mutants of Chlorella pyrenoidosa (Emerson strain 3) impaired for sulfate utilization have been isolated after treatment of the wild-type organism with nitrosoguanidine by replica plating on media containing thiosulfate and l-methionine. These mutants fall into three classes based on their ability to grow on sulfate, accumulate compounds labeled from sulfate-35S, and reduce adenosine 3′-phosphate 5′-phosphosulfate-35S (PAPS-35S) to thiosulfate-35S. Mutant Sat2 cannot grow on sulfate, but it accumulates thiosulfate-35S and homocysteic acid-35S from sulfate-35S in vivo. In addition, extracts of mutant Sat2 reduce PAPS-35S to thiosulfate-35S, indicating the possession of enzyme fractions S and A, both of which are required for thiosulfate formation. Mutants Sat1, Sat3, Sat4, Sat5, and Sat6 cannot grow on sulfate, and their extracts lack the ability to reduce PAPS-35S to thiosulfate-35S. Mutant Sat7R1, a probable revertant, can grow on sulfate but still lacks the ability to reduce PAPS-35S to thiosulfate-35S in vitro. Complementation experiments in vitro show that the block in formation of acid-volatile radioactivity in every case is due to the absence of activity associated with fraction S. All mutants can grow on thiosulfate and all possess the activating enzymes which convert sulfate to PAPS. Through a comparison of nutritional and enzymatic characteristics, the first outlines of a branched and complicated pathway for sulfate reduction in Chlorella are beginning to emerge.  相似文献   

3.
Adenosine 5'-phosphosulfate sulfotransferase has been partiallypurified from Chlorella and is shown to catalyze the transferof the sulfate group of adenosine 5'-phosphosulfate to a varietyof thiol acceptors to form the corresponding organic thiosulfate.While the normal acceptor in the sulfate reducing pathway isthought to be a peptide carrier containing a thiol group theenzyme is very non-specific with respect to the thiols to whichit will transfer leading to a large number of side reactionswhich are possible when thiols are added to the system. Usingadenosine 5'-phosphosulfate and the enzyme, monothiols formsulfite and the organic thiosulfate of the thiol, with dithiolswhich readily form intramolecular disulfides, sulfite is theonly product, while with vicinal dithiols, sulfite and finallythiosulfate is formed. The -SO3 sulfur of the thiosulfateoriginates from adenosine 5'-phosphosulfate while the -S-sulfur is supplied by the vicinal dithiol. The same productscan be obtained using glutathione-S-sulfonate in place of adenosine5'-phosphosulfate and the enzyme, in a non-enzymatic reactionwith the same thiols. Thus it appears that the enzymatic reactioncatalyzes the transfer of the sulfate group of adenosine-5'-phosphosulfateto a thiol carrier or to any other thiol. When these other thiolsare present, however, sulfite, thiosulfate or organic thiosulfatesof the thiols are formed in non-enzymatic side reactions. Thetransferase from Chlorella is specific for adenosine 5'-phosphosulfateand will not catalyze the reaction with adenosine-3'-phosphate-5'-phosphosulfate. 1Supported by Grants GB 4321, GB 40856X and BMS 73 00987 AO1from the National Science Foundation. 2Supported by a Gillette Graduate Fellowship. Portions of thispaper formed part of a dissertation presented to the graduatefaculty of Brandeis University in partial fulfillment of thePh.D. Degree. (Received June 30, 1976; )  相似文献   

4.
Biochemical and physiological properties of adenosine 5′-phosphosulfate sulfotransferase, a key enzyme of assimilatory sulfate reduction, from spruce trees growing under field conditions were studied. The apparent Km for adenosine 5′-phosphosulfate (APS) was 29 ± 5.5μM, its apparent Mr was 115,000. 5′-AMP inhibited the enzyme competitively with a Ki of 1 mM, but also stabilized it. MgS04 at 800 mM increased adenosine 5′-phosphosulfate sulfotransferase activity by a factor of 3, concentrations higher than lOOOmM were inhibitory. Treatment of isolated shoots with nutrient solution containing 1 or 2 mM sulfate, and 3 or 10 mM glutathione, respectively, induced a significant decrease in extractable adenosine 5′-phosphosulfate sulfotransferase activity over 24h, whereas GSH as well as S2- up to 5mM cysteine and up to 200 mM SO32- had no effect on the in vitro activity of the enzyme. As with other enzymes involved in assimilatory sulfate reduction, namely ATP sulfurylase (EC 2.7.7.4), sulfite reductase (EC 1.8.7.1) and O-acetyl-L.-serine sulfhydrylase (EC 4.2.99.8), adenosine 5′-phosphosulfate sulfotransferase was still detected at appreciable activities in 2- and 3-year-old needles. Adenosine 5′-phosphosulfate sulfotransferase activity was low in buds and increased during shoot development, parallel to the chlorophyll content. The enzyme activity was characterized by an annual cycle of seasonal changes with an increase during February and March.  相似文献   

5.
ATP-sulfurylase (EC 2.7.7.4.) catalyzes the first step in assimilatory sulfate reduction, forming adenosine 5′-phosphosulfate (APS) and pyrophosphate from ATP and SO42?. The extractable activity of ATP-sulfurylase was determined in crude extracts from Phaseolus vulgaris by measuring the formation of ATP, produced in the reverse reaction from APS and pyrophosphate, using purified luciferase and luciferin in an ATP meter. One determination can be performed per minute. The rates of ATP-sulfurylase activity determined by this method were about 25 times higher than the ones measured in the forward reaction as AP35S formed from ATP and 35SO42?.  相似文献   

6.
Chlorella pyrenoidosa Chick (Emerson strain 3) utilizes thiosulfate for growth as effectively as sulfate, and more effectively than a variety of organic sulfur compounds containing sulfur in various oxidation states. Thiosulfates, differentially labeled with 35S in either the SH— or SO3 — sulfur moieties, were used to follow the incorporation of thiosulfate-sulfur into constituents of the insoluble fraction and of the soluble pools. Labeled sulfate was also used for purposes of comparison. Label from both sulfur atoms of thiosulfate and from sulfate is incorporated into the cysteine, homocysteine, and glutathione of the soluble pools, and into the methionine and cystine of protein in the insoluble fraction. Label from SO3-sulfur of thiosulfate is incorporated more slowly into protein methionine and cystine than label from the SH-sulfur. Moreover, the SO3-sulfur of thiosulfate is recovered largely as sulfate in both the soluble pools and the insoluble fraction, while only a trace of SH-sulfur is recovered as sulfate in either case. Consistent with this, the metabolism of the SO3-sulfur of thiosulfate more closely resembles the metabolism of sulfate. Thus it would appear that exogenous thiosulfate undergoes early dismutation in which the SO3-sulfur is preferentially oxidized, and the SH-sulfur is preferentially incorporated in a reduced state. These results are discussed in relation to the conversion of sulfate to thiosulfate by cell-free extracts of Chlorella previously described.  相似文献   

7.
Sulfate incorporation into carbohydrate of lutropin (LH) has been studied in sheep pituitary slices using H235SO4. Labeled ovine LH was purified to homogeneity by Sephadex G-100 and carboxymethyl-Sephadex chromatography from both the incubation medium and tissue extract. Autoradiography of the gel showed only two protein bands which comigrated with the α and β subunits of ovine LH in both the purified ovine LH and the immunoprecipitate obtained with LH-specific rabbit antiserum. Furthermore, [35S]sulfate was also incorporated into several other proteins in addition to LH. The location of 35SO42? in the oligosaccharides of ovine LH was evidenced by its presence in the glycopeptides obtained by exhaustive Pronase digestion. The location and the point of attachment of sulfate in the carbohydrate unit were established by the isolation of 4-O-[35S]sulfo-N-acetylhexosaminyl-glycerols and 4-O-[35S]sulfo-N-acetylglucosaminitol from the Smith degradation products and by the release of 35SO42? by chondro-4-sulfatase. Thus, the present line of experimentation indicates the presence of sulfate on both the terminal N-acetylglucosamine and N-acetylgalactosamine in the oligosaccharide chains of the labeled ovine LH.  相似文献   

8.
SO2 inhibited the light-induced increase of extractable adenosine 5′-phosphosulfate sulfotransferase in greening primary leaves of bean seedlings (Phaseolus vulgaris L. cv. Saxa (Radio) Stamm Vatter). In green primary leaves containing appreciable extractable adenosine 5′-phosphosulfate sulfotransferase activity, SO2 treatment for 20 h decreased the activity of the enzyme to between 10 and 20% of the initial level. After removal of SO2 from the air, the extractable adenosine 5′-phosphosulfate sulfotransferase activity increased after a lag, both in green and greening primary leaves, and was back to the control level after about 48 h. The sulfate concentration was increased about fourfold during SO2 treatment. An increase in sulfate sulfur accompanied by a decrease in adenosine 5′-phosphosulfate sulfotransferase was also observed when bean seedlings, after excision of the roots, were transferred to nutrient solutions containing high sulfate concentrations, suggesting that sulfate is involved in the regulation of the enzyme.  相似文献   

9.
Farago S  Brunold C 《Plant physiology》1990,94(4):1808-1812
Effects of the herbicide safeners N,N-diallyl-2,2-dichloroacetamide and 4-dichloroacetyl-3,4-dihydro-3-methyl-2H-1,4-benzooxazin (CGA 154281) on the contents in cysteine and glutathione, on the assimilation of 35SO42−, and on the enzymes of assimilatory sulfate reduction were analyzed in roots and primary leaves of maize (Zea mays) seedlings. Both safeners induced an increase in cysteine and glutathione. In labeling experiments using 35SO42−, roots of plants cultivated in the presence of safeners contained an increased level of radioactivity in glutathione and cysteine as compared with controls. A significant increase in uptake of sulfate was only detected in the presence of CGA 154281. One millimolar N,N-diallyl-2,2-dichloroacetamide applied to the roots for 6 days increased the activity of adenosine 5′-phosphosulfate sulfotransferase about 20- and threefold in the roots and leaves, respectively, compared with controls. CGA 154281 at 10 micromolar caused a sevenfold increase of this enzyme activity in the roots, but did not affect it significantly in the leaves. A significant increase in ATP-sulfurylase (EC 2.7.7.4) activity was only detected in the roots cultivated in the presence of 10 micromolar CGA 154281. Both safeners had no effect on the activity of sulfite reductase (EC 1.8.7.1) and O-acetyl-l-serine sulfhydrylase (EC 4.2.99.8). The herbicide metolachlor alone or combined with the safeners induced levels of adenosine 5′-phosphosulfate sulfotransferase, which were higher than those of the appropriate controls. Taken together these results show that the herbicide safeners increased both the level of adenosine 5′-phosphosulfate sulfotransferase activity and of the thiols cysteine and glutathione. This indicates that these safeners may be involved in eliminating the previously proposed regulatory mechanism, in which increased concentrations of thiols regulate assimilatory sulfate reduction by decreasing the activities of the enzymes involved.  相似文献   

10.
Δ2-Isopentenylpyrophosphate:5′AMP Δ2-isopentenyltransferase, which catalyzes the formation of isopentenyl-AMP from Δ2-isopentenylpyrophosphate and 5′AMP, was purified 6800-fold from the fruiting body of the cellular slime mold Dictyostelium discoideum using several separation procedures including 5′AMPox-redAH-Sepharose 4B affinity column chromatography. The final preparation was very unstable and lost its activity in a day. Various properties of the 1000-fold-purified enzyme preparation were examined. The molecular mass was 40,000 ± 2000 Da, as determined by Sephadex G-100 superfine gel filtration. The divalent metal ions Mn2+, Zn2+, and Mg2+ profoundly affected the enzymatic activity depending on their concentration, and also altered the optimum pH and temperature. Of the compounds tested, 5′AMP was the best acceptor of the isopentenyl group and, interestingly, ADP also served as a substrate, being 60–80% as effective as 5′AMP. Adenine, adenosine, and ATP were not substrates for this enzyme. Under the optimum assay conditions (pH 7.0, 1 mm Zn2+, and 25 °C) the Km values for 5′AMP and Δ2-isopentenylpyrophosphate were 1.0 × 10?7m and 2.2 × 10?6m, respectively.  相似文献   

11.
Previous work on adenosine transport has always had problems with the interference of adenosine metabolism, due to its high metabolic rate and because the enzymes involved are consistently present in most tissues. A new experimental model for studying adenosine transport in human erythrocyte ghosts is presented in this work: Human erythrocyte ghosts were sealed in the presence of erythro-3(2-hydroxynonyl)adenine and P1-P5-di(adenosine)5′-pentaphosphate, inhibitors of adenosine deaminase and adenosine kinase, respectively. These ghosts proved to lack adenosine metabolism when incubated in [U-14C]adenosine at 10 μm concentration at 37 °C for 60 min. Ghosts were 99.4% sealed in the correct orientation and had constant intracellular water volume. With these characteristics, the erythrocyte ghost preparation has many advantages for studying adenosine transport without adenosine metabolism interference. Adenosine transport was studied following the technique of 24., 25. Experiments to study Zero-trans influx and efflux, equilibrium exchange, and infinite-trans influx and efflux are presented. Adenosine transport did not behave linearly in any of these experimental procedures. Adenosine basic kinetic constants, calculated according to the procedure of Lieb and Stein, were R1→-2 = 4.1 × 10−4, R2→-1 = 3.97 × 10−4, Ree = 1.94 × 10−4, Roo = 6.08 × 10−4, K1→-2 = 125.67 μm, andK2→-1 = 84.36 μm. Lieb and Stein rejection criteria were used to distinguish a simple pore from a simple carrier. The data accumulated indicate that adenosine transport is carried out by a system that satisfies the criteria used for the simple carrier model. Asymmetric behavior was observed indicating lower affinity of the carrier for adenosine influx, although Vmax values for influx and efflux were similar.  相似文献   

12.
5′-Bromoacetamido-5′-deoxythymidine (BAT), 5′-iodoacetamido-5′-deoxythymidine (IAT), 5′-chloroacetamido-5′-deoxythymidine (CAT) and [14C]BAT were synthesized and their interactions with thymidylate synthase purified from L1210 cells were invesatigated. The inhibitory effects of these compounds on thymidylate synthase were in the order BAT > IAT > CAT, which is in agreement with their cytotoxic effects in L1210 cells. In the presence of substrate during preincubation, the concentration required for 50% inhibition of the enzyme activity by these inhibitors was 4–8 fold higher than it was in the absence of dUMP. The I50 values for BAT were 1·10−5 M and 1.2·10−6 M in the presence and absence, respectively, of dUMP during preincubation. These results were in agreement with the observed inhibition of thynmidylate synthase by BAT in intact L1210 cells. A Lineweaver-Burk plot revealed that BAT behaved as a competitive inhibitor. The Km for the enzyme was 9.2 μM, and the Ki determined for competitive inhibition by BAT was 5.4 μM. Formation of a tight, irreversible compledx is referred from the finding that BAT-inactivation of thymidylate synthase was not reversible on prolonged dialysis and that the enzyme-BAT complex was nondissociable by gel filtration through a Sephadex G-25 column or by TSK-125 column chromatography. Incubation of thymidylate synthase with BAT resulted in time-dependent, irreversible loss of enzyme activity by first-order kinetics. The rate constant for inactivation was 0.4 min−1, and the steady-state constant of inactivation, Ki, was estimated to be 6.6 μM. The 5′-haloacetamido-5′-deoxythymidines provide specific inhibitors of thymidylate synthase that may also serve as reagents for studying the enzyme mechanism.  相似文献   

13.
《Bioorganic chemistry》1987,15(2):100-108
Nonenzymatic rates of hydrolytic deamination of adenosine and cytidine by acids and bases analogous to side chains of naturally occurring amino acids are compared with the rates of uncatalyzed deamination in water and with the rates of the hydroxide- and hydrogen ion-catalyzed reactions. For adenosine, hydroxide ion is an effective catalyst, with a second-order rate constant of 7.5 × 10−6 m−1 s−1 at 85°C and an energy of activation of 19.9 kcal/mol. Acid-catalyzed deamination of adenine proceeds with a second-order rate constant of 1.5 × 10−6 m−1 s−1 at 85°C. At concentrations of 1 m and at pH values corresponding to their respective pKa values, dimethylamine, acetate, selenide, imidazole, phosphate, and zinc(II) do not enhance the rate of deamination of adenosine beyond that observed in water, and 2-mercaptoethanol produces only a modest rate enhancement. The uncatalyzed rate of adenosine deamination in water is 8.6 × 10−9 s−1 at 85°C: extrapolation to 37°C and comparison with kcat for rat hepatoma adenosine deaminase yield a rate enhancement by the enzyme of approximately 2 × 1012-fold. 1,6-Dimethyladenosine, the conjugate acid of which has a pKa value much higher than that of adenosine, is not readily deaminated, suggesting that the uncatalyzed deamination of adenosine does not proceed by hydroxide ion attack on the rare protonated form of adenosine, but rather by attack on the neutral species. Deamination of cytidine is catalyzed most effectively by hydroxide ion, with a second-order rate constant of 4.5 × 10−4 m−1 s−1 at 85°C and an energy of activation of 28.5 kcal/mol. The uncatalyzed rate of deamination of cytidine in water, which also exhibits an energy of activation of 28.5 kcal/mol, is 8.8 × 10−8 s−1 at 85°C. Comparison of the rate extrapolated to 25°C with kcat for bacterial cytidine deaminase gives a rate enhancement for the enzyme of 4 × 1011-fold. The C-5 proton of the pyrimidine ring of cytidine does not exchange with solvent during alkaline hydrolysis, suggesting that deamination under these conditions does not involve prior addition of water across the 5,6 double bond.  相似文献   

14.
We have extracted and purified a nucleotide from cells of Chlorella, pyrenoidose Chick which shares the following properties with adenosine 5′ phosphoramidate; electrophoretic mobility in sodium bicarbonate and in sodium borate buffer (pH 8.0); retention time on high performance liquid chromatography; ultraviolet absorption spectrum at pH 1–2 and 7–9; a yield of one mole each of adenine, ribose, total phosphate and ammonia released at low pH; and formation of adenosine 5′ monophosphate on acidification or treatment with 3′:5′-cyclic-nucleotide phosphodiesterase (EC3.1.4.17). Although formation of APA from its precursor adenosine 5′ phosphosulfate during extraction and purification is not expected this appears to be excluded by the use of low temperature throughout purification and the finding that [14C] APS added before extraction does not significantly label the adenosine 5′ phosphoramidate isolated. Thus adenosine 5′ phosphoramidate appears to be a normal constituent of Chlorella cells like the enzyme which forms it: adenylyl sulfate: ammonia adenylyl transferase.  相似文献   

15.
《Plant Science Letters》1976,6(2):103-110
[35S]Adenosine-5′-phosphosulphate ([35S]APS) and [35S]adenosine-3′-phosphate-5′-phosphasulphate ([35S]PAPS) were rapidly degraded by extracts of Anabaena cylindrica. The loss of radioactivity from these sulphur nucleotides resulted in a corresponding increase of free 35SO4 in the incubation mixture. The soluble fraction of the broken cells (S75) hydrolysed both PAPS and APS, whereas the pellet fractions (P20 and P75) hydrolysed PAPS only. The degradation of [35S]PAPS was almost completely suppressed by various 5′-adenine nucleotides, 3′-AMP, nucleotide triphosphates or pyrophosphate, while glucose-6-phosphate, phosphate ions and sodium sulphite were less effective. The hydrolysis of [35S]APS was prevented by sodium fluoride and 5′-AMP, but 3′-AMP was ineffective.  相似文献   

16.
《Phytochemistry》1986,25(7):1545-1551
The extraction, partial purification and properties of a 3′,5′-cyclic nucleotide phosphodiesterase from lettuce cotyledons is described. Purification involved fractional precipation with (NH4)2SO4, chromatography on Sephadex G-200, affinity chromatography on Affi-Gel Blue and non-denaturing polyacrylamide gel electrophoresis. The behaviour of the final enzyme preparation on SDS-polyacrylamide gel electrophoresis was examined and inidcated an M, of ca 62 000. The enzyme from 3′,5′-cyclic nucleotide phosphodiesterases previously isolated from plant tissues in that it exhibits activity towards pyrimidine as well as purine cyclic nucleotides. Furthermore, it hydrolyses cyclic CMP at a comparable rate to that with which it hydrolyses cyclic AMP and cyclic GMP. Both 3′- and 5′-AMP were released, with the 5′-nucleotide being the major product. Whereas the Km with all three substrates remained constant during the purification procedure, Vmax with cyclic AMP was lower than that for cyclic CMP but increased as purification proceeded. The effects were examined of a range of di- and trivalent metal ions on the enzyme activity. Fe3+ significantly stimulated the activity, more so when cyclic GMP was the substrate. Cu2+ inhibited the activity.  相似文献   

17.
《Inorganica chimica acta》1986,121(2):207-212
The IR and Raman spectra of Cs(SO2), K(SO2) and Na(SO2) molecules were studied by 32S/34S and 16O/18O isotopic substitution technique. These molecules have a planar ring configuration of C2v symmetry with the OSO angle equal to 109°±5° and the SO bond length of 0.149±0.001 nm. The alkali metal atom interacts symmetrically with the oxygen atoms of the SO2 group. The doubling observed for the vibrations of Cs(S16O18O) was attributed to a matrix effect.  相似文献   

18.
Although different routes for the S-nitrosation of cysteinyl residues have been proposed, the main in vivo pathway is unknown. We recently demonstrated that direct (as opposed to autoxidation-mediated) aerobic nitrosation of glutathione is surprisingly efficient, especially in the presence of Mg2+. In the present study we investigated this reaction in greater detail. From the rates of NO decay and the yields of nitrosoglutathione (GSNO) we estimated values for the apparent rate constants of 8.9±0.4 and 0.55±0.06 M−1 s−1 in the presence and absence of Mg2+. The maximum yield of GSNO was close to 100% in the presence of Mg2+ but only about half as high in its absence. From this observation we conclude that, in the absence of Mg2+, nitrosation starts by formation of a complex between NO and O2, which then reacts with the thiol. Omission of superoxide dismutase (SOD) reduced by half the GSNO yield in the absence of Mg2+, demonstrating O2 formation. The reaction in the presence of Mg2+ seems to involve formation of a Mg2+•glutathione (GSH) complex. SOD did not affect Mg2+-stimulated nitrosation, suggesting that no O2 is formed in that reaction. Replacing GSH with other thiols revealed that reaction rates increased with the pKa of the thiol, suggesting that the nucleophilicity of the thiol is crucial for the reaction, but that the thiol need not be deprotonated. We propose that in cells Mg2+-stimulated NO/O2-induced nitrosothiol formation may be a physiologically relevant reaction.  相似文献   

19.
Polarized Raman scattering measurements have been made of a single crystal of uridylyl(3′–5′)adenosine (UpA) by the use of a Raman microscope with 488.0 nm excitation. The UpA crystal belongs to space group P21 (monoclinic), and Raman intensities Iaa, Ibb, and Ic′c′, have been determined for each Raman band. These intensities correspond to the aa, bb, and c′c′ components of the crystal Raman tensor, where c′ is defined as an axis perpendicular to the crystallographic a axis in the ac plane. From these experimental data, and by taking the known crystal structure into account, anisotropic and isotropic molecular Raman tensors have been calculated for the following 11 normal modes: ring stretching modes of the adenine residue (protonated) at 1560, 1516, 1330, and 715 cm−1; ring stretching modes of the uracil residue at 1696, 1657, 1615, 1228, and 790 cm−1; PO2 symmetric stretching mode at 1080 cm−1; P(—)O single bond stretching mode at 801 cm−1. These pieces of information of the Raman tensors are considered to be useful for estimating the orientations of the DNA and RNA strands in a biological complex from a polarized Raman spectroscopic measurement of such a complex. © 1998 John Wiley & Sons, Inc. Biopoly 45: 135–147, 1998  相似文献   

20.
The distribution of S to sulfate, glucosinolates, glutathione, and the insoluble fraction within oilseed rape (Brassica napus L.) leaves of different ages was investigated during vegetative growth. The concentrations of glutathione and glucosinolates increased from the oldest to the youngest leaves, whereas the opposite was observed for SO42−. The concentration of insoluble S was similar among all of the leaves. At sufficient S supply and in the youngest leaves, 2% of total S was allocated to glutathione, 6% to glucosinolates, 50% to the insoluble fraction, and the remainder accumulated as SO42−. In the middle and oldest leaves, 70% to 90% of total S accumulated as SO42−, whereas glutathione and glucosinolates together accounted for less than 1% of S. When the S supply was withdrawn (minus S), the concentrations of all S-containing compounds, particularly SO42−, decreased in the youngest and middle leaves. Neither glucosinolates nor glutathione were major sources of S during S deficiency. Plants grown on nutrient solution containing minus S and low N were less deficient than plants grown on solution containing minus S and high N. The effect of N was explained by differences in growth rate. The different responses of leaves of different ages to S deficiency have to be taken into account for the development of field diagnostic tests to determine whether plants are S deficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号