首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Matsui  Y Kinuyama  M Hakozaki 《Steroids》1974,24(4):557-573
A mixture of testosterone-4-14C and testosterone-1,2-3H-17-glucosiduronate was intraperitoneally administered into male and female rats with bile fistulas. Biliary metabolites were separated and purififd by a combination of column chromatography, enzymic hydrolysis or solvolysis of the conjugate fractions and identification of the liberated aglycones. The injected steroids were extensively metabolized and excreted predominantly in the blue. 5β-Androstane-3α, 17β-diol was found principally in monoglucosiduronate fraction and was produced preferentially from the injected conjugate in both sexes. Very marked sex differences from the injected conjugate in both sexes. Very marked sex differences were observed in the following metabolites: Androsterone was present only in the female as monoglucosidironate, which was preferentially derived from testosterone. 5α-Androstane-3α,17β-diol was identified in both monoglucosiduronate and diconjugate fractions of the female, which was formed significanrly more from the conjugate than testosterone. These findings provide evidence that testosterone glucosiduronate could be converted directly into 5α-steroids as well as 5β-ones invivo. In marked contrast, the major portion of testosterone was metabolized to polar steroids in the male.  相似文献   

2.
Following the subcutaneous administration of estriol-6,7-3H to rats, biliary metabolites were identified and quantitated. Approximately 70% of the metabolites were excreted in the form of “glucosiduronate” conjugates. 3, 17β-Dihydroxy-2-methoxy-1,3,5(10)-estratrien-16-one was the major metabolite in this conjugate fraction. Significant amounts of 3,17β-dihydroxy-1,3,5(10)-estratrien-16-one and 2,3,17β-trihydroxy-1,3,5(10)-estratrien-16-one, as well as smaller quantities of 1,3,5(10)-estratriene-2,3,16α,17β-tetrol and 2-methoxy-1,3,5(10)-estratriene-3,16α, 17β-triol, were also found. In 17α-ethinylestradiol - treated animals, the rate of excretion of radioactivity and the proportion of 16-oxo-17β-ol metabolites found in the “glucosiduronate” fraction were reduced.  相似文献   

3.
Androgen metabolism by the cytosol fraction of rat skeletal muscle was investigated. Testosterone metabolism was low, the main metabolite being 4-androstene-3α, 17β-diol. In addition, small amounts of 5α-androstane-3a,17β-diol were formed, but no 17β-hydroxy-5α-androstane-3-one could be detected. 4-Androstene-3α,17β-diol was metabolized only to testosterone in this system of incubation. When 17β-hydroxy-5α-androstane-3-one was incubated with muscle cytosol, considerable metabolism to 5α-androstane-3α,17β-diol and to 5α-androstane-3β,17β-diol could be detected. Low 5α-reduction of testosterone and rapid conversion of formed 17α-hydroxy-5α-androstane-3-one to 5α-androstane-3α, 17β-diol and 5α-androstane-3β,17β-diol gave limited ability of the muscle preparation employed to accumulate 17β-hydroxy-5α-androstane-3-one.  相似文献   

4.
From incubations of testosterone with rat testicular homogenates in the presence of a NADPH-generating system, the following 7α-hydroxylated metabolites could be isolated and identified: 7α,17β-dihydroxy-4-androsten-3-one (7α-hydroxy-testosterone), 7α-17β-dihydroxy-5α-androstan-3-one (7α-hydroxy-Dht), 5α-androstan-3α,7α,17β-triol (7α-hydroxy-3α-A'DIOL) and 5α-androstane-3β,7α,l7β-triol (7α-hydroxy-3β-A'DIOL). To our knowledge this is the first demonstration of the formation of 5α-reduced-7α-hydroxylated metabolites of testosterone in the male gonad. These 5α-reduced-7α-hydroxylated metabolites could also be isolated after incubations of 5α-androstane-3α,17β-diol (3α-A'D10L) with testicular homogenates in the presence of a NADPH-generating system.Measured as the sum of 7α-hydroxy-testosterone, 7α-hydroxy-Dht. 7α-hydroxy-3α-A'DIOL and 7α-hydroxy-3β-A'DIOL formed using testosterone as substrate, total 7α-hydroxylase activity was six times higher in testes of mature rats than in testes from animals 23 days old. With 3α-A'DIOL as substrate total 7α-hydroxylase in the mature testis was about three times greater than in the sexually immature testis.  相似文献   

5.
Fabregat A  Pozo OJ  Marcos J  Segura J  Ventura R 《Steroids》2011,76(12):1367-1376
The screening of testosterone misuse in the doping control field is normally performed by the measurement of the ratio between the concentrations of testosterone and epitestosterone excreted as glucuronides (T/E). Despite the satisfactory results obtained with this approach, the measurement of T/E presents some limitations like the long-term detection of oral testosterone administration. Recently, several testosterone metabolites released after basic treatment of the urine have been reported (androsta-1,4-dien-3,17-dione, androsta-4,6-dien-3,17-dione, 17β-hydroxy-androsta-4,6-dien-3-one and 15-androsten-3,17-dione). In the present work, the usefulness of these metabolites for the detection of oral testosterone misuse has been evaluated and compared with the conventional T/E measurement. For this purpose, 173 urine samples collected from healthy volunteers were analysed in order to obtain reference concentrations for the four metabolites released after alkaline treatment. On the other hand, urine samples collected from five volunteers before and after testosterone undecanoate administration were also analysed. Concentrations of androsta-4,6-dien-3,17-dione and 17β-hydroxy-androsta-4,6-dien-3-one showed a similar behaviour as the T/E, allowing the detection of the misuse for several hours after administration. More promising results were obtained by quantifying androsta-1,4-dien-3,17-dione and 15-androsten-3,17-dione. The time in which the concentrations of these analytes could be differentiated from the basal level was between 3 and 6 times longer than the obtained with T/E, as a result, an improvement in the detection of testosterone abuse can be achieved. Moreover, several ratios between these compounds were evaluated. Some of them improved the detection of testosterone misuse when comparing with T/E. The best results were obtained with those ratios involving androsta-1,4-dien-3,17-dione.  相似文献   

6.
Sertoli cells isolated from 17 day old rats were maintained in culture and incubated with [14C]-progesterone for 20 h. The cells and media were extracted with ether/chloroform and the extracts chromatographed two-dimensionally on TLC and the radioactive metabolites visualized by autoradiography. Nine of the metabolites (constituting about 88% of total metabolite radioactivity) were identified by relative mobilities of the compounds and their derivatives in TLC and GC systems and by recrystallizations with authentic steroids as the following: 20α-hydroxypregn-4-en-3-one, 3α-hydroxy-5α-pregnan-20-one, 5α-pregnane3α,20α-diol, 17β-hydroxy-5α-androstan-3-one, 5α-pregnane-3,20-dione, 17-hydroxypregn-4-ene-3,20-dione, testosterone, 5α-androstane-3α,17β-diol and androst-4-ene-3,17-dione. Over 71% of the metabolite radioactivity was due to 20α-hydroxypregn-4-en-3-one, the major metabolite. 5α-reduced pregnanes constituted about 12% and C19 steroids comprised about 2.9% of the radioactivity of the metabolites. Calculation of relative steroidogenic enzyme activities from initial reaction rates suggested the following activities in μunits/mg Sertoli cell protein: 20α-hydroxysteroid oxidoreductase (20α-HS0; 7.71), 5α-reductase (4.77), 3α-HS0 (3.57), 17α-hydroxylase (0.93), 17β-HS0 (0.34) and C17-C20 lyase (0.34). The relatively high rate of steroidogenic enzyme activities in the Sertoli cells of young rats may indicate that Sertoli cells are less dependent on Leydig cell steroidogenesis than has been assumed. Since nearly all the metabolites of progesterone and testosterone are now identified, it is possible to construct a picture of Sertoli cell steroidogenic activity.  相似文献   

7.
The metabolic fate of the bile add analogs, 3α,7α-dihydroxy-7β-methyl-5β-cholanoic acid and 3α,7β-dihydroxy-7α-methyl-5β-cholanoic acid, was investigated and compared with that of chenodeoxycholic acid in hamsters. Both bile acid analogs were absorbed rapidly from the intestine and excreted into bile at similar to that of chenodeoxycholic acid. In the strain of hamster studied, the biliary bile were conjugated with both glycine and taurine. After continuous intravenous infusion, chenodeoxycholic acid the analogs became the major bile acid constituents in bile. After oral administration of a single dose of these compounds, fecal analysis revealed the existence of unchanged material (25–35%) as well as considerable amounts of metabolites (65–75%). The major metabolites excreted into feces were more polar than the starting material and were tentatively identified as trifaydroxy-7-methyl compounds by radioactive thin-layer chromatography. However, monohydroxy compounds were also found in the fecal extracts. These results show that chenodeoxycholic acid and ursodeoxycholic acid with a methyl group at the 7-position are resistant to bacterial 7-dehydroxylation than the normally occurring bile acids and that a certain proportion of these analogs is hydroxylated to give the corespondiag trihydroxy compound(s), In a control experiment, about 5% of administered chenodeoxychoulic acid was metabolized to a trihydroxy feile acid, but most of the compound (95%) was transformed into lithocholic acid.  相似文献   

8.
Testosterone-1,2-3H was injected intravenously into a male dog with a bile fistula and bile and urine collected. The radioactivity was excreted preponderantly in bile (52% of the injected dose) in 6 hours; only 12% appeared in the urine. Methods to study the biliary metabolites of testosterone in this and other animals were developed. Satisfactory conjugate patterns were obtained by fractionation on DEAE-Sephadex A-25 columns using two different elution systems. In addition to an unchanged fraction, six different monoglucuronide fractions were separated. No other conjugates were isolated. Lipidex 5000 column chromatography, TLC and paper chromatography were used for the isolation and purification of aglycone metabolites, which were further identified by co-crystallization methods. The biliary metabolites of testosterone were epiandrosterone (3beta-hydroxy-5alpha-androstan-17-one), etiocholanlone (3alpha-hydroxy-5beta-androstan-17-one), 5alpha-androstan-3beta, 17beta-diol, 5beta-androstan-3alpha, 17beta-diol and 5beta-androstan-3beta,17beta-diol.  相似文献   

9.
Sertoli cells from 10 day old rats convert androstenedione to testosterone and 5α-androstane-3α,17β-diol, testosterone to 17β-hydroxy-5α-androstan-3-one and 5α-androstane-3α,17β-diol, and 17β-hydroxy-5α-androstan-3-one to 5α-andro-stane-3α,17β-diol after 72 hours in vitro. Conversions of androstenedione to testosterone and 5α-androstane-3α,17β-diol, and testosterone to 5α-androstane-3α,17β-diol were 2 to 3 times greater in FSH treated cultures. Steroid conversion was not stimulated significantly by LH or TSH. The results are interpreted as evidence that in young rats Sertoli steroid metabolism is stimulated by FSH, that Sertoli cells are an androgen target and that FSH may induce or facilitate Sertoli androgen responsiveness.  相似文献   

10.
It has been shown that the cultured cells of Nicotiana tabacum “Bright Yellow” are capable of transforming testosterone to Δ4-androstene-3, 17-dione, 5α-androstan-17β-ol-3-one, 5α-androstane-3β, 17β-diol, its dipalmitate and 3- and 17-monoglucosides, epiandrosterone, its palmitate and glucoside, testosterone glucoside. 5α-Androstane-3β, 17β-diol dipalmitate and 3- and 17-monoglucosides, epiandrosterone palmitate and glucoside, and testosterone glucoside have been found for the first time as metabolites of testosterone in plant systems. Δ4-Androstene-3,17-dione was converted to testosterone. 5α-Androstan-17β-ol-3-one, which has been recognized as an active form of testosterone in mammals, was also detected. It has also been demonstrated that [4-14C]testosterone is actively incorporated in these transformations.  相似文献   

11.
The use of “nutritional supplements” containing unapproved substances has become a regular practice in amateur and professional athletes. This represents a dangerous habit for their health once no data about toxicological or pharmacological effects of these supplements are available. Most of them are freely commercialized online and any person can buy them without medical surveillance. Usually, the steroids intentionally added to the “nutritional supplements” are testosterone analogues with some structural modifications.In this study, the analyzed product was bought online and a new anabolic steroid known as methylstenbolone (2,17α-dimethyl-17β-hydroxy-5α-androst-1-en-3-one) was detected, as described on label. Generally, anabolic steroids are extensively metabolized, thus in-depth knowledge of their metabolism is mandatory for doping control purposes. For this reason, a human excretion study was carried out with four volunteers after a single oral dose to determine the urinary metabolites of the steroid. Urine samples were submitted to enzymatic hydrolysis of glucuconjugated metabolites followed by liquid–liquid extraction and analysis of the trimethylsilyl derivatives by gas chromatography coupled to tandem mass spectrometry. Mass spectrometric data allowed the proposal of two plausible metabolites: 2,17α-dimethyl-16ξ,17β-dihydroxy-5α-androst-1-en-3-one (S1), 2,17α-dimethyl-3α,16ξ,17β-trihydroxy-5α-androst-1-ene (S2). Their electron impact mass spectra are compatible with 16-hydroxylated steroids O-TMS derivatives presenting diagnostic ions such as m/z 231 and m/z 218. These metabolites were detectable after one week post administration while unchanged methylstenbolone was only detectable in a brief period of 45 h.  相似文献   

12.
M B Hodgins  J B Hay 《Steroids》1973,21(2):307-322
The metabolism of testosterone, androstenedione and dehydroepiandrosterone in the rat preputial gland has been studied. A high activity of 5α-reductase is present as shown by the formation of 17β hydroxy-5α-androstan-3-one and 5α-androstan-3, 17-dione as the major products from testosterone and androstenedione respectively. Other enzyme activities are present including 17β-hydroxy steroid dehydrogenase, but the amounts of testosterone and 17β-hydroxy-5α-androstan-3-one formed from androstenedione and dehydroepiandrosterone are low. The main product of dehydroepiandrosterone metabolism was androstenedione indicating a high level of 3β-hydroxy steroid dehydrogenase 4-5 isomerase activity. The metabolism was compared with that in rat skin where it was found that the extent of metabolism was much less. The possible significance of the various products formed and of differences between skin and preputial gland metabolism is discussed. Some differences were noted between the metabolism of androgens by rat skin and preputial gland and the metabolism of androgens by human skin.  相似文献   

13.
The present study was performed to investigate the influence of the intake of selective oestrogen receptor modulators on the urinary endogenous steroids profile. For this purpose the circadian variability of luteinizing hormone, follicle-stimulating hormone, testosterone, 5α-androstan-3α,17β-diol, 5β-androstan-3α,17β-diol, epitestosterone, 4-androstenedione, androsterone and etiocholanolone were measured on eight subjects (four males and four females) by gas chromatography–mass spectrometry and chemiluminescent immunometric assay techniques before and after oral administration of multiple doses of either tamoxifen (80 mg for 2 days) or toremifene (120 mg for 2 days) or clomiphene (100 mg for 2 days). The individual baseline variability of the steroids studied was set up by collecting the urine samples every 3 h, for 3 days prior to the treatment; whereas the evaluation of the effects of the oral administration of multiple doses of selective oestrogen receptor modulators on the steroid urinary profile was assessed by collecting urine samples every three hours for at least five days from the first administration.The results of our measurements showed that, only in male subjects, the relative urinary concentrations of testosterone, epitestosterone and 4-androstenedione were significantly altered generally after the second day of drug administration. While no significant effects were recorded in both sexes on the luteinizing hormone, follicle-stimulating hormone, androsterone, etiocholanolone, 5α-androstan-3α,17β-diol and 5β-androstan-3α,17β-diol urinary levels and on testosterone/epitestosterone, 5α-androstan-3α,17β-diol/5β-androstan-3α,17β-diol and androsterone/etiocholanolone ratios.  相似文献   

14.
James C. Coffey 《Steroids》1973,22(2):247-257
Tritiated 4-androstene-3,17-dione and testosterone were incubated with submaxillary gland homogenates of 6 month old male mice. In 15 and 180 minute incubations fortified with NADPH, submaxillary tissue converted 4-androstene-3,17-dione predominantly to androsterone and, to a lesser extent, testosterone, 17β-hydroxy-5α-androstan-3-one and 5α-androstane-3α, 17β-diol. Testosterone was converted primarily to 5α-androstane-3α, 17β-diol when exogenous NADPH was available; trace amounts of 4-androstene-3,17-dione, 17β-hydroxy-5α-androstan-3-one and androsterone were also formed. When a NADPH-generating system was omitted from the incubation medium both 4-androstene-3,17-dione and testosterone were poorly metabolized by submaxillary tissue; the amounts of reduced metabolites accumulating were markedly reduced.  相似文献   

15.
Five alpha-androstane-3α,17β-diol (3α-diol) an active metabolite of testosterone (T) was measured in the spermatic and peripheral venous blood of 6 normal males using mass-fragmentography. Using this method 3α-diol was clearly separated from the following isomers: 5α-androstane-3β,17β-diol, 5β-androstane-3α,17β-diol and 5β-androstane-3β,17β-diol. The mean concentrations (±SE) of 3α-diol in spermatic and peripheral venous blood were respectively 100 ± 38 ng/100 ml and 7.7 ± 1.9 ng/100 ml. The existence of a significant (P < 0.01) gradient between spermatic and peripheral vein clearly demonstrates that the human testis secretes 3α-diol.  相似文献   

16.
The capability of granulosa and theca interna cells, from preovulatory follicles of the domestic hen, to metabolize steroid precursors was evaluated. Granulosa and theca interna cells were isolated from ovarian preovulatory follicles at three different developmental stages: F1, F3 and F5. Tritiated pregnenolone (P5), progesterone (P4), dehydroepiandrosterone (DHEA), androstenedione (A4) and testosterone (T) were employed as precursors and their metabolic products were evaluated. The major metabolite of P5 by granulosa cells was P4, but we also observed low amounts of 5β-pregnandione. DHEA metabolism by granulosa cells yielded mainly A4, and minute quantities of 5β-androstan-3,17-dione (5β-dione) were detected. The only significant metabolite obtained in granulosa cells from A4 was 5β-dione, whereas T was only transformed into A4. On the other hand, P5 metabolism by theca interna cells yielded A4 as the main product, also P4, 17α-OHP4, 17α-OHP5, 5β-pregnandione, and DHEA, were found. When DHEA was the precursor A4 was produced in higher amounts than 5β-dione. A4 was mainly transformed into 5β-dione. In similar conditions, T was transformed into A4. These results show that granulosa cells have enzymatic activities of 3β-hydroxysteroid dehydrogenase/5-4 isomerase (3β-HSD from P5 and DHEA), 17β-hydroxysteroid dehydrogenase (17β-HSD from T) and 5β-reductase (from P5, DHEA and A4). Whereas theca interna cells have enzymatic activities of cytochrome P450c17 (from P5 and P4), 3β-HSD (from P5 and DHEA), 17β-HSD (from T) and 5β-reductase (from P4, DHEA and A4). These data support the concept that theca interna cells have the ability to synthesize androgens from progestins produced in granulosa cells. In addition, since theca interna cells did not show the capacity to aromatize androgens suggests that interaction between theca interna and theca externa cells occurs in vivo, thus confirming the three cell model for estrogen production. Furthermore, the fact that other metabolites were produced both in granulosa and theca interna cells, but in a different extent, suggests that complex mechanisms are participating in the regulation of steroid synthesis in avian ovary follicles.  相似文献   

17.
Metabolism of intravenously administered testosterone trans-4-n-butylcyclohexanoate (T bucyclate), a potent, long-acting androgen, was studied in cynomolgus monkeys (Macaca fascicularis). About 5% of the radioactivity of a dose of doubly labeled ester (14C, 3H) was excreted via the gastrointestinal tract. Most of the administered radioactivity was excreted in the urine within 120 h. No intact T bucyclate was recovered from either compartment. Tritium attributed to bucyclic acid and its metabolites was excreted rapidly (peak excretion was at 6 h after injection), while 14C excretion, attributed to testosterone and its metabolites, extended over 4 days. Testosterone metabolites were excreted predominantly as sulfate esters. Analysis of urinary products derived from the bucyclic acid moiety of T bucyclate showed no products susceptible to glucuronidase treatment, and showed a mixture of unidentified solvolyzable and unconjugated products. No unmetabolized trans-4-n-butylcyclohexanoic acid was detected in urine or feces. It is concluded that metabolism of testosterone bucyclate is initiated in vivo in cynomolgus monkeys by hydrolysis of ester to testosterone and bucyclic acid. The bucyclate side chain is rapidly cleared, and the testosterone is retained in the circulation.  相似文献   

18.
Androstenedione was metabolized in vitro by human endometrium, myometrium and leiomyoma, to its 5α-reduced metabolites: 5α-androstan-3,17-dione (5α-androstanedione) and androsterone as well as to testosterone, 17β-hydroxy-5α-androstan-2-one(5α-DHT) and 5α-androstan-3α, 17β-diol (3α-diol). Uterine tissue showed a similar enzymatic profile to the androgen responsive tissues; these data suggest that androgens may have a functional role in the uterine pathophysiology.  相似文献   

19.
Male hamster kidney cytosol exhibited strong 5β-reductase activity. Incubation of cytosol with [4-14C]-testosterone at pH 6.7 yielded 5β-DHT with minor quantities of 5β-androstane-3α,17β-diol and 5β-androstane-3β,17β-diol. Incubation with [4-14C]-androstendione yielded 5β-androstanedione and smaller quantities of testosterone, 5β-DHT, 3α-hydroxy-5β-androstan-17-one, 3β-hydroxy-5β-androstan-17-one and 5β-androstane-3α,17β-diol. The two major metabolites were progressively increased with increase in the concentration of the respective substrates but the other metabolites showed very little change. The metabolism of the respective substrates was progressively decreased with changes in pH of the incubation mixture from 6.0–7.5 accompanied by a parallel decrease in the formation of the respective major metabolites. NADPH was much more effective than NADH as coenzyme. The microsomes exhibited a trace of 5β-reductase activity only with NADPH and androstenedione.The kidney homogenate at pH 10.1 effectively converted [4-14C]-testosterone to [4-14C]-androstenedione. The dehydrogenase activity was present in the cytosol and microsomes. NAD+ was more effective than NADP+ in the cytosol and the reverse was indicated for the microsomes. Spectrophotometric assay revealed not only NADP+-linked Hβ-dehydrogenase activity but also a lower 3α-dehydrogenase activity but no detectable 3β- or 17α-dehydrogenase activity. NAD+-linked activity was not explored because of the interference by the very high endogenous NAD+-reduetase activity.  相似文献   

20.
C. Gómez  O.J. Pozo  L. Garrostas  J. Segura  R. Ventura 《Steroids》2013,78(12-13):1245-1253
Metandienone is one of the most frequently detected anabolic androgenic steroids in sports drug testing. Metandienone misuse is commonly detected by monitoring different metabolites excreted free or conjugated with glucuronic acid using gas chromatography mass spectrometry (GC–MS) and liquid chromatography tandem mass spectrometry (LC–MS/MS) after hydrolysis with β-glucuronidase and liquid–liquid extraction. It is known that several metabolites are the result of the formation of sulphate conjugates in C17, which are converted to their 17-epimers in urine. Therefore, sulphation is an important phase II metabolic pathway of metandienone that has not been comprehensively studied. The aim of this work was to evaluate the sulphate fraction of metandienone metabolism by LC–MS/MS. Seven sulphate metabolites were detected after the analysis of excretion study samples by applying different neutral loss scan, precursor ion scan and SRM methods. One of the metabolites (M1) was identified and characterised by GC–MS/MS and LC–MS/MS as 18-nor-17β-hydroxymethyl-17α-methylandrost-1,4,13-triene-3-one sulphate. M1 could be detected up to 26 days after the administration of a single dose of metandienone (5 mg), thus improving the period in which the misuse can be reported with respect to the last long-term metandienone metabolite described (18-nor-17β-hydroxymethyl-17α-methylandrost-1,4,13-triene-3-one excreted in the glucuronide fraction).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号