首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phenol is a toxic compound and is one of the major pollutants contained in the waste water from petroleum and its downstream industries. Response surface methodology (RSM) was used to optimize medium composition and culture condition for enhancement of growth of Rhodococcus UKMP-5M and phenol degradation rate in shake flask cultures. Phenol and (NH4)2SO4 concentrations as well as temperature were the most significant factors that influenced growth and phenol degradation. Central composite design (CCD) was used for optimization of these parameters with growth, and degradation rates were used as the responses. Cultivation with 0.5 g/L phenol and 0.3 g/L (NH4)2SO4 and incubation at 36 °C greatly enhanced growth of Rhodococcus UKMP-5M, where the final cell concentration increased from 0.117 g/L to 0.376 g/L. On the other hand, the degradation rate was greatly increased in cultivation with 0.7 g/L phenol and 0.4 g/L (NH4)2SO4 and incubation at 37 °C. In this cultivation, the time taken to degrade 1 g/L phenol in the culture was reduced from 48 h to 27 h. The model for both responses was found significant and the predicted values were found to be in a good agreement with experimental values and subsequently validated. Increases in phenol degradation rate during Rhodococcus UKMP-5M cultivation corresponded well with increasing phenol hydroxylase activity.  相似文献   

2.
Biooxidation of refractory gold-bearing pyrite-arsenopyrite flotation concentrate was optimized and the abundance of predominant groups in the community of thermophilic acidophilic chemolithotrophic microorganisms at various stages of bioleaching was determined. The optimal parameters for growth and leaching/oxidation of the mineral components of the concentrate were pH 1.4–1.8; 47.5°C; and the following salt concentrations in the liquid phase (g/L): K2HPO4 · 3H2O ? 0.53, (NH4)2SO4, 1.6 and MgSO4 · 7H2O, 2.5 (or (NH4)2SO4, 1.23; ammophos, 0.41; KOH, 0.1) with 0.03% yeast extract. The optimal conditions resulted in high growth rate, high levels of iron and arsenic leaching, of Fe2+ and S2?/S0 oxidation, and predominance of Acidithiobacillus caldus, Sulfobacillus spp., and Ferroplasma spp. in the community.  相似文献   

3.
The distribution and lignocellulolytic activity of the microbial community was determined on a large log of Douglas fir (Pseudotsuga menziesii) in a Pacific Northwest stream. Scanning electron microscopy, plate counts, and degradation of [14C]lignocelluloses prepared from Douglas fir and incubated with samples of wood taken from the surface and within the log revealed that most of the microbial colonization and lignocellulose-degrading activity occurred on the surface. Labeled lignocellulose and surface wood samples were incubated in vitro with nutrient supplements to determine potential limiting factors of [14C]lignocellulose degradation. Incubations carried out in a nitrogenless mineral salts and trace elements solution were no more favorable to degradation than those carried out in distilled water alone. Incubations supplemented with either (NH4)2SO4 or organic nitrogen sources showed large increases in the rates of mineralization over incubations with mineral salts and trace elements alone, with the greatest effect being observed from an addition of (NH4)2SO4. Subsequent incubations with (NH4)2SO4, KNO3, and NH4NO3 revealed that KNO3 was the most favorable for lignin degradation, whereas all three supplements were equally favorable for cellulose degradation. Supplementation with glucose repressed both lignin and cellulose mineralization. The results reported in this study indicate that nitrogen limitation of wood decomposition may exist in streams of the Pacific Northwest. The radiotracer technique was shown to be a sensitive and useful tool for assessing relative patterns of lignocellulose decay and microbial activity in wood, along with the importance of thoroughly characterizing the experimental system before its general acceptance.  相似文献   

4.
A synthetic medium for Opercularia coarctata was developed that contains 20 amino acids, 10 vitamins, an 8-component balanced salt solution, Fe2(SO4)3·(NH4)2SO4·24H2O, Tween 80, stigmasterol, a 7-component nucleic acid mixture, phenol red as an indicator, and 2,500 U.S.P. units/ml penicillin to maintain sterility. This medium supported axenic survival for 96 hr. Multiple supplements of thioctic acid, niacin, niacinamide, inositol, PABA, oleic acid, and Fe(NO3)2·9H2O instead of Fe2(SO4)3·(NH4)2SO4·24H2O coverted the survival medium into a growth medium, which permitted 36–45 days continuous cultivation of populations in excess of 4 × 103 cells/3.0 ml final volume. Five generations were produced during the 48 hr logarithmic growth period. Serial transfers at 72 hr and during periods of greatest cell density produced a maximum of 8 generations 96 hr after initiation but the medium failed to sustain growth through more than 6 serial transfers. Extension of this investigation to formulating a minimal axenic medium is discussed.  相似文献   

5.
Summary Four soils were incubated for 10 weeks at 29°C, without added nitrogen and with 100 ppm N as (NH4)2SO4 at 65% waterholding capacities, either fresh or after water-logged storage for 1 to 4 months. The amounts of ammonium-N in the soils increased with length of storage period. During subsequent incubation the ammonium-N was nitrified in all soils. Nitrification, however, was delayed for one or more weeks in some of these soils, and was further retarded by adding (NH4)2SO4.Water-logging increased the amounts of nitrogen mineralized on subsequent incubation and decreased the amounts of ammonia fixed after adding (NH4)2SO4. Oxidation of nitrite to nitrate was delayed for the first week following water-logging in a humic clay and the numbers of bacteria decreased as the period of water-logging increased. In the soils water-logged for 3 and 4 months the microbiological balance was not completely restored even after 10 weeks incubation.The numbers of nitrifying organisms were markedly decreased by waterlogging for 2, 3, and 4 months and remained fewer during the incubation period compared with untreated soil. Adding (NH4)2SO4 did not increase numbers of nitrifiers.  相似文献   

6.
Mature-embryo derived primary calli of the basmati rice (Oryza sativa L.) cv Karnal Local showed significant enhancement in in vitro green-plantlet regeneration efficiency through modification of nitrogen content of the callusing medium. Using KNO3 as the source of nitrate nitrogen and (NH4)2SO4 as the source of ammonium nitrogen, forty-five media combinations involving 9 levels of KNO3 (0–40 mM) and 5 concentrations (0–6.5 mM) of (NH4)2SO4 were examined. The highest frequency of plantlet regeneration (100%) and a maximum number of green-plantlets (~ 7) per embryo-derived primary callus was obtained in calli derived from the medium having 35 mM KNO3 and 5 mM (NH4)2SO4. Higher concentrations of KNO3 and/or (NH4)2SO4 showed a decline in the regeneration efficiency. It was also observed that although the nitrogen content of the callus induction medium had a profound effect on the regenerability of the callus, the nitrogen composition of the regeneration medium also affected it significantly.  相似文献   

7.
Methods for preparing the following compounds (NH4)7TeW5VO24·5H2O, (NH4)8TeW4V2O24·xH2O, (NH4)9TeV3W3O24·xH2O and (NH4)7TeMo5VO24·8H2O are described. The compounds thus prepared were examined for thermal behavior, IR, Raman, UV, X-ray, NMR and reaction with base.  相似文献   

8.
Triamines produced by an extreme thermophile, Thermus thermophilus, were isolated and their chemical structures were determined. It was found that two novel triamines, norspermidine (1,7-diamino-4-azaheptane, NH2(CH2)3· NH(CH2)3NH2) and sym-homospermidine (1,9-diamino-5-azanonane, NH2(CH2)4NH· (CH2)4NH2) are present in the thermophile cells in addition to spermidine (1,8-diamino-4-azaoctane, NH2(CH2)3NH(CH2)4NH2).  相似文献   

9.
Young plants of brussels sprout, cv. Cambridge Special, growing in pots in a glasshouse, were sprayed on ten occasions with gibberellic acid (GA) at 0, 25, 100 and 400 p.p.m. and ammonium nitrate (NH4NO3) at 0, 0·0125, 0·025 and 0·05 M concentrations in all combinations. In 24 days both GA and NH4NO3 increased leaf area, leaf number, dry weights of leaf, stem and root, and fresh weights of leaf and stem. GA increased stem height and decreased fresh weight/unit leaf area (leaf thickness), whereas NH4NO3 did not affect stem height and increased leaf thickness. Of the GA treatments, 100 p.p.m. gave the largest plants as judged by fresh weight of the whole plant and leaf area, and of the N treatments 0·05 M NH4NO3 increased growth most. The best treatment combination was 0·05 M NH4NO3 with 100 p.p.m. GA, which gave the greatest fresh and dry weights of the whole plant, leaf area and leaf dry weight as well as increasing leaf thickness. Significant interactions were found between GA and N for dry weight of leaf, fresh and dry weight of root, and leaf thickness but not for leaf area or stem growth (fresh weight, dry weight, height). The combination of levels of GA and N that can be expected to increase leaf area, leaf dry weight and leaf thickness simultaneously, may lie within narrow limits for a particular crop. In a second experiment plants were sprayed with all combinations of GA (0 and 100 p.p.m.) seven times under glass in pots and ten times in the field, and three levels of KH2PO4 on twelve occasions in the field. Sprouts (axillary buds) were harvested in October and February. At the first harvest GA did not affect fresh weight or number, but increased both the total number of sprouts picked (with GA = 80·7; without GA = 69·8 per plant) and the total fresh weight of saleable sprouts (with GA = 2·59; without GA = 2·33 lb/plant). KH2PO4 also increased the weight and number of sprouts at the final harvest and the number of small sprouts at the first. There were interactions between GA and KH2PO4 (P= < 0·001) for both tota weight and number of saleable sprouts.  相似文献   

10.
Defining optimal mineral-salt concentrations for in vitro plant development is challenging, due to the many chemical interactions in growth media and genotype variability among plants. Statistical approaches that are easier to interpret are needed to make optimization processes practical. Response Surface Methodology (RSM) and the Chi-Squared Automatic Interaction Detection (CHAID) data mining algorithm were used to analyze the growth of shoots in a hazelnut tissue-culture medium optimization experiment. Driver and Kuniyuki Walnut medium (DKW) salts (NH4NO3, Ca(NO3)2·4H2O, CaCl2·2H2O, MgSO4·7H2O, KH2PO4 and K2SO4) were varied from 0.5× to 3× DKW concentrations with 42 combinations in a IV-optimal design. Shoot quality, shoot length, multiplication and callus formation were evaluated and analyzed using the two methods. Both analyses indicated that NH4NO3 was a predominant nutrient factor. RSM projected that low NH4NO3 and high KH2PO4 concentrations were significant for quality, shoot length, multiplication and callus formation in some of the hazelnut genotypes. CHAID analysis indicated that NH4NO3 at ≤1.701× DKW and KH2PO4 at >2.012× DKW were the most critical factors for shoot quality. NH4NO3 at ≤0.5× DKW and Ca(NO3)2 at ≤1.725× DKW were essential for good multiplication. RSM results were genotype dependent while CHAID included genotype as a factor in the analysis, allowing development of a common medium rather than several genotype specific media. Overall, CHAID results were more specific and easier to interpret than RSM graphs. The optimal growth medium for Corylus avellana L. cultivars should include: 0.5× NH4NO3, 3× KH2PO4, 1.5× Ca(NO3)2.  相似文献   

11.
《Biomass》1988,15(4):249-257
An experiment was conducted in the growth chamber to quantify the biomass production, N removal and N2 fixation from a synthetic medium by Chlamydomonas reinhardtii and Anabaena flos-aquae. Nitrogen was supplied at a concentration of 100 mg liter−1 of NO315N and NH4+15 (3·5 atom %), respectively. After 21 days Chlamydomonas reinhardtii removed an average of 83·8 and 78·7 mg N liter−1 as NO3 and NH4+, respectively. Averages of 0·89 and 0·71 g liter−1 (first batch), 1·63 and 0·95 g liter (second batch) algal biomass were collected from NO3 and NH4+ media, respectively. Uptake rates of 0·11 mg 15N g−1 algae day−1 from NO3 medium and 0·10 mg 15N g−1 algae day−1 from NH4+ medium were calculated. Algal cells grown in NO3 and NH4+ medium contained 71 and 65 g N kg−1 (first batch), 39 and 58 g N kg−1 (second batch), respectively. Anabaena flos-aquae produced averages of 0·58 and 0·46 g liter−1 (first batch), 0·55 and 0·48 g liter−1 (second batch) after 14 days of growth from NO3 and NH4+ media, respectively. Blue-green algal biomass contained higher N (81–98 g kg−1) than green algae. Isotope dilution method for determining N2 fixation indicated that 55% and 77% of total N of blue-green algae grown in NO3 and NH4+ media, respectively, was derived from the atmosphere.  相似文献   

12.
A five year study was conducted in a 100–120 year old even-aged sugar maple stand in southern Quebec (46°07N 73° 56W; 305 m altitude) to explore the effect of different fertilization formulations aimed at 1) correcting the most common nutrient deficiencies observed in declining maple stands (K and Mg), 2) decreasing soil acidity, and 3) simulating enrichment with atmospheric N. Seven fertilizer mixtures were applied in the spring of 1987: 400 kg ha-1 of K2SO4, CaCO3, CaMg(CO3)2, (NH4)2SO4, complete fertilizer (Maplegro) and 800 kg ha-1 of an equal mixture of K2SO4+CaCO3 or K2SO4+CaMg(CO3)2. The site was divided into twenty-four 25×25 m plots and treatments including control were replicated three times. Leaves and soils (organic and mineral) were sampled in 1987, 1988 and 1991. Trees were cored at 1.2 m to measure their response in diameter growth. The application of K2SO4+CaMg(CO3)2 was the only treatment that significantly increased (+13%) the average growth rate over the five year period after fertilization. The application of (NH4)2SO4, Maplegro, CaMg(CO3)2 and K2SO4 reduced growth relative to the control for the five year period by 29, 24, 20 and 12 %, respectively. Positive and negative effects on growth can be explained mainly in terms of changes in leaf K. Both the application of Maplegro and (NH4)2SO4 increased soil P availability. Overall, the rate of growth showed a cubic pattern of change over the 5 year period with peaks in 1988 and 1991. Trees in control plots went from a limiting foliar status of Ca and Mg, and surplus N in 1987 to a surplus of Ca and Mg, and lower N concentration in 1991. Our results suggest that nutrient deficiencies observed at our site were associated with a disturbance of the biogeochemical cycle of nutrients rather than soil nutrient depletion.Abbreviations BS base saturation - CEC cation exchange capacity - DRIS diagnosis and recommendation integrated system  相似文献   

13.
RNA polymerase has been solubilized from sugar beet chromatin. With calf thmus or sugar beet DNA as template enzyme activity was linear with respect to protein concentration and required the presence of all four nucleoside triphospahates, added DNA and divalent metal ions. The enzyme exhibited a sharp Mn2+ optimum of 1·25 mM and a Mg2+ optimum at 10mM. The Mn2+/Mg2+ activity ratio (activity at optimum concentrations) was 2·0 with an optimum salt concentration of 50 mM. Based on data including inhibition with α-amanitin (0·025 μg/ml), the majority of the total activity appeared to be RNA polymerase I. Subsequent fractionation by DEAE-Sephadex column chromatography resulted in one peak of activity eluted with 0·18 M (NH4)2SO4.  相似文献   

14.
The extensive use of synthetic plastics has caused serious waste disposal problems in our environment. Poly-3-hydroxybutyrates (PHB) are eco-friendly bacterial polyesters which are produced under unbalanced nutrient conditions. Few reports are available on PHB production by solid state fermentation (SSF). We have developed a novel SSF bioprocess in which polyurethane foam (PUF) is used as a physical inert support for the production of PHB by Bacillus sphaericus NII 0838. Media engineering for optimal PHB production was carried out using response surface methodology (RSM) adopting a Box–Behnken design. The factors optimized by RSM were inoculum size, pH and (NH4)2SO4 concentration. Under optimized conditions—6.5 % inoculum size, 1.7 % (w/v) (NH4)2SO4 and pH 9.0—PHB production and biomass were 0.169?±?0.03 and 0.4?±?0.002 g/g PUF, respectively. This is the first report on PHB production by SSF using PUF as an inert support. Our results demonstrate that SSF can be used as an alternative strategy for the production of PHB.  相似文献   

15.
Lactate dehydrogenase (LDH) was isolated from pea seedlings by means of protamine sulphate and (NH4)2SO4 fractionation and chromatography on DEAE-cellulose and Sephadex G-150. The enzyme had a MW of ca 145 500. The kinetic properties studied were the lactate oxidation pH optimum (9·1) and the pyruvate reduction pH optimum (7·1). Km values were determined for four natural substrates (Lactate, pyruvate, NAD+ and NADH) and for other acids (glycollate, α-ketoglutarate and glyoxylate). The Ki value was determined for p-chloromercuribenzoate (PCMB) which is a noncompetitive inhibitor of LDH from pea plants, and the course of irreversible inhibition of the enzyme by iodoacetamide (IA) and n-ethylmaleimide (NEMI) was studied. Preincubation of LDH with the coenzyme protects against PCMB inhibition, indicating the important role of the sulfhydryl group in the active site.  相似文献   

16.
The effect of nitrogen forms on photosynthesis and anti-oxidative systems of barley plants under chromium stress was studied in a hydroponic experiment. The treatments comprised three chromium concentrations (0, 75, and 100 μM) and three N forms (NH4)2SO4, urea, and Ca(NO3)2. In comparison with the urea or (NH4)2SO4 fed plants, the Ca(NO3)2 fed plants had higher net photosynthetic rate, intercellular CO2 concentration, stomatal conductance, transpiration rate, photosynthetically active radiation utilization efficiency, variable to maximum chlorophyll fluorescence ratio, and the content of chlorophylls and carotenoids. Cr toxicity caused oxidative stress in all plants but the Ca(NO3)2 fed plants had the least oxidative stress. Moreover, the Ca(NO3)2 fed plants had higher activities of anti-oxidative enzymes and content of non-enzymatic antioxidants than the urea or (NH4)2SO4 fed plants. In addition, the Ca(NO3)2 fed plants had higher N and lower Cr content in all plant tissues than the urea or (NH4)2SO4 fed plants. The current results indicate that the reasonable choice of N fertilizer is important for barley production on the Cr-contaminated soils.  相似文献   

17.
Summary Nitrogen application increased Zn contents of flooded rice on two calcareous soils. Urea and (NH4)2SO4 being better N carriers than NH4NO3 resulted in higher increase. Nitrogen enhanced Zn contents partly through growth promotion but mainly by increasing soil Zn solubility and root efficiency for Zn absorption. Zinc solubility rose by an enigmatic mechanism and not from pH reduction or soluble Zn-HN3 complex formation as occurs for upland plants. Nitrogen aggravated Zn retention in upland plant roots as immobile Zn-protein complex was not important for rice. Bicarbonate inhibition of Zn uptake by rice from CO(NH2)2 application or its stimulation by lower redox potential from NH4NO3 addition were not involved.No. V in the series Micronutrient availability to cereals from calcareous soils.  相似文献   

18.
The possibility of application of the Pleurotus ostreatus D1-soil microflora to bioremediation of oil-polluted soils was studied. The fungus degraded mainly the aromatic fractions, whereas soil microflora intensely degraded paraffin and naphthene oil fractions. Introduction of the fungus Pleurotus ostreatus D1 to soil induces degradation of a wider range of oil hydrocarbons. It is reasonable to further investigate the discovered phenomenon in order to improve procedures of remediation of oil-polluted soils.  相似文献   

19.
Toxic Effect of Cadmium on Rice as Affected by Nitrogen Fertilizer Form   总被引:1,自引:0,他引:1  
A nutrient solution experiment was conducted to determine the influence of N forms on growth, oxidative stress, and Cd and N uptake in rice plants. The treatments were consisted of two Cd levels (0 and 1 μmol) and three N forms (NH4)2SO4, NH4NO3 and Ca(NO3)2. The results indicated that without Cd addition in the culture solution, the N forms had no significant effect on all measured parameters, including plant growth, photosynthetic traits, malondialdehyde (MDA) concentration, superoxide dismutase (SOD) activity, and Cd and N concentration, while Cd addition in the medium resulted in significant differences in measured parameters among the three forms of N fertilizers. The least inhibition of growth was noted in (NH4)2SO4-fed plants, and the largest in Ca(NO3)2-fed plants, when plants were exposed to Cd stress. The highest photosynthetic rate and chlorophyll content was also recorded in (NH4)2SO4-fed plants. Addition of Cd caused a remarkable increase in SOD activity and MDA content in plants, and the extent of increase varied with N form, with (NH4)2SO4-fed plants being smallest. In comparison with the control plants, the N concentration in roots and shoots was not significantly affected in (NH4)2SO4-fed plants, but significant decrease in root N concentration was found for the NH4NO3 and Ca(NO3)2-fed plants under Cd stress. Moreover, the significant differences were also noted among the three N forms in both root and shoot Cd concentrations, with (NH4)2SO4-fed plants being the lowest. The results indicated that the toxic effect of Cd on rice varied with the form of N fertilizer.  相似文献   

20.
Maize seeds were allowed to germinate in the presence of different nitrogenous salts for 72 h. Changes in the ethanol soluble and insoluble nitrogen were studied in the embryo and in the endosperm. Supply of Ca(NC3)2 enhanced germination and protease activity in the endosperm resulting in greater solubilisation of protein to soluble nitrogen in the seeds. NH4NO3 and (NH4)2SO4 were less effective as compared to Ca(NO3)2. Cycloheximide inhibited germination and protease activity. Pretreatment also resulted in increase in growth, soluble and insoluble nitrogen, and nitrate reductase activity in the primary leaves. Ca(NO3)2 was more effective than NH4NO3 and (NH4)2SO4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号