首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.

Climate refugia, or places where habitats are expected to remain relatively buffered from regional climate extremes, provide an important focus for science and conservation planning. Within high-priority, multi-jurisdictional landscapes like the Madrean sky islands of the United States and México, efforts to identify and manage climate refugia are hindered by the lack of high-quality and consistent transboundary datasets. To fill these data gaps, we assembled a bi-national field dataset (n?=?1416) for five pine species (Pinus spp.) and used generalized boosted regression to model pine habitats in relation to topographic variability as a basis for identifying potential microrefugia at local scales in the context of current species’ distribution patterns. We developed additional models to quantify climatic refugial attributes using coarse scale bioclimatic variables and finer scale seasonal remote sensing indices. Terrain metrics including ruggedness, slope position, and aspect defined microrefugia for pines within elevation ranges preferred by each species. Response to bioclimatic variables indicated that small shifts in climate were important to some species (e.g., P. chihuahuana, P. strobiformis), but others exhibited a broader tolerance (e.g., P. arizonica). Response to seasonal climate was particularly important in modeling microrefugia for species with open canopy structure and where regular fires occur (e.g., P. engelmannii and P. chihuahuana). Hotspots of microrefugia differed among species and were either limited to northern islands or occurred across central or southern latitudes. Mapping and validation of refugia and their ecological functions are necessary steps in developing regional conservation strategies that cross jurisdictional boundaries. A salient application will be incorporation of climate refugia in management of fire to restore and maintain pine ecology. Una versión en español de este artículo está disponible como descarga.

  相似文献   

6.
7.
8.
9.
We are summarizing the current state of knowledge of the diversity and distribution of oribatid mites in 26 environments in northern Brazil and of a rain forest in Peru. The published studies were mostly concentrated in Central Amazon. Only one report is a result from an agricultural polyculture. We are providing the first lists of species for savannas and for the Brazilian states of Roraima and Pará. Up to date, 146 species are definitively identified from a total of 444 taxa with 188 known genera, reinforcing the notion of a rich biodiverse area. The high number of 298 non-described species (morphospecies) clearly shows the inadequacy of the current taxonomic knowledge for the region. Most of the registers are from forest environments. In the soil from primary forests, we registered the highest diversity (54-155 species/morphospecies). Eighty-nine species were unique to primary forests, followed by 34 for savannas, 32 in trees, 10 in "igapó", 4 in caatinga, 3 in secondary forests, two in "várzea" and one in polyculture. Twenty genera were the most speciose. The species with the largest home ranges were Rostrozetes foveolatus, Scheloribates sp. A, and Galumna sp. A. Our numbers reflect the lack of taxonomists and show that the taxonomic knowledge must be improved for the region or we will continue to work with taxonomic resolution of Order or Family and a high percentage of morphospecies, which will probably be appropriate to the question being asked in each study, but not for a comparison among environments.  相似文献   

10.
11.
12.

Sedimentary environments in the Arctic are known to harbor diverse microbial communities playing a crucial role in the remineralization of organic matter and associated biogeochemical cycles. In this study, we used a combination of culture-dependent and culture-independent approaches to understanding the bacterial community composition associated with the sediments of a terrestrial versus fjord system in the Svalbard Arctic. Community-level metabolic profiling and growth response of retrieved bacterial isolates towards different carbon substrates at varying temperatures were also studied to assess the metabolic response of communities and isolates in the system. Bacterial species belonging to Cryobacterium and Psychrobacter dominated the terrestrial and fjord sediment retrievable fraction. Amplicon sequencing analysis revealed higher bacterial diversity in the terrestrial sediments (Shannon index; 8.135 and 7.935) as compared to the fjord sediments (4.5–5.37). Phylum Proteobacteria and Bacteroidetes dominated both terrestrial and fjord sediments. Phylum Verrucomicrobia and Cyanobacteria were abundant in terrestrial sediments while Epsilonbacteraeota and Fusobacteriia dominated the fjord sediments. Significant differences were observed in the carbon substrate utilization profiles between the terrestrial and fjord sediments at both 4 °C and 20 °C incubations (p?<?0.005). Utilization of N-acetyl-D-glucosamine, D-mannitol and Tween-80 by the sediment communities and bacterial isolates from both systems, irrespective of their temperature incubations implies the affinity of bacteria for such substrates as energy sources and for their survival in cold environments. Our results suggest the ability of sediment bacterial communities to adjust their substrate utilization profiles according to condition changes in the ecosystems and are found to be less influenced by their phylogenetic relatedness.

  相似文献   

13.
Rotifers were collected in the open water of twenty-eight locations (3 rivers, 12 connected lagoons and 13 isolated lagoons) of the upper Paraná River floodplain during the high water (February) and low water (August) period of 2001. Greatest species richness was found in rivers during the high water period. Isolated lagoons had the lowest species richness. Abundance was highest in connected lagoons followed by isolated lagoons and then rivers, but did not show marked spatial or temporal variation. Some species dominated in isolated lagoons during high water and others in connected lagoons during the low water. These results were contrary to our expectations; we expected to observe highest species richness and abundance of rotifers in isolated lagoons during both extremes of the hydrological cycle. Our findings suggest the importance of connectivity among environments to rotifer species richness. The absence of an intense flood during 2001 facilitated development of rotifer populations during the high water period due to lack of dilution and high availability of food resources (phytoplankton).  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号