首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In young females of the black scale, Saissetia oleae, the optimum conditions for invertase activity involve a reaction mixture of pH 5.5 and 2% sucrose at 37°C for 60 min; for amylase, pH 6.0 and 0.5% starch at 37°C for 45 min; and for trehalase, pH 5.5 and 1.5% trehalose at 37°C for 60 min. At optimal conditions and using standard enzyme activity units, both invertase and trehalase activities were much higher (about 8-fold) than that of amylase, indicating the importance of these enzymes in food digestion and energy supply.The enzyme activities were strongly affected by various host plants. Trehalase activity in scales reared on potato sprouts was about 3.5- and 4-fold that obtained in scales reared on oleander and citrus plants, respectively. An increase of about 40% for invertase and 60% amylase activity was obtained in scales reared on potato sprouts as compared with those reared on oleander or citrus plants.A good correlation was observed between enzyme activity-especially of trehalase-and scale development. The duration of one generation of the black scale reared on potato sprouts was 2.5 to 3 months, on oleander 4 to 5 months, and on citrus above 6 months. These results suggest that trehalase and to some extent invertase could be used as parameters to assess the adaptability of the black scale to its host plant.  相似文献   

2.
The soluble trehalase from the phycomycete Lagenidium sp., a parasite of many species of mosquitoes, was purified by acid titration, acetone precipitation, and Sephadex G-200 chromatography to give a 170-fold increase in specific activity over the crude extract. The enzyme was specific for trehalose. A β-glucosidase was copurified with the trehalase, but did not interfere with its characterization. Lagendium trehalase had a Km of 1.43 mm, and Ea of 11.4 kcal/mole, and a pH of optimum activity of 5.5–6.5, and a molecular weight of 72,000. It was denatured by 30 min incubation at temperatures above 50°C, severely inhibited by heavy metals, and competitively inhibited by sucrose. No other reported inhibitors, including mannitol and ATP, were effective. Suggested physiological roles for the enzyme include the breakdown of stored trehalose in the mycelium and zoospores, and the digestion of hemolymph trehalose in infected mosquito larvae.  相似文献   

3.
Nine indigenous cachaça Saccharomyces cerevisiae strains and one wine strain were compared for their trehalose metabolism characteristics under non-lethal (40°C) and lethal (52°C) heat shock, ethanol shock and combined heat and ethanol stresses. The yeast protection mechanism was studied through trehalose concentration, neutral trehalase activity and expression of heat shock proteins Hsp70 and Hsp104. All isolates were able to accumulate trehalose and activate neutral trehalase under stress conditions. No correlation was found between trehalose levels and neutral trehalase activity under heat or ethanol shock. However, when these stresses were combined, a positive relationship was found. After pre-treatment at 40°C for 60 min, and heat shock at 52°C for 8 min, eight strains maintained their trehalose levels and nine strains improved their resistance against lethal heat shock. Among the investigated stresses, heat treatment induced the highest level of trehalose and combined heat and ethanol stresses activated the neutral trehalase most effectively. Hsp70 and Hsp104 were expressed by all strains at 40°C and all of them survived this temperature although a decrease in cell viability was observed at 52°C. The stress imposed by more than 5% ethanol (v/v) represented the best condition to differentiate strains based on trehalose levels and neutral trehalase activity. The investigated S. cerevisiae strains exhibited different characteristics of trehalose metabolism, which could be an important tool to select strains for the cachaça fermentation process.  相似文献   

4.
The rate of cyclic AMP formation by rabbit heart membrane particles decreased at assay temperatures greater than 30 °C. Adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] activity (assayed at 24 °C) decreased exponentially with time of preincubation at 30 or 37 °C, providing evidence for the instability of this enzyme. The half-life, t1/2, of the enzyme at 37 °C was 9.9 min in the absence and 4.4 min in the presence of MgCl2. The activity was most labile in the presence of 50 m m Mg2+ and 1 m m ATP, having t1/2 = 1.3min. Prior incubation of membranes with the GTP analog, guanyl-5′-yl imidodiphosphate [Gpp(NH)p], 0.1 m m, for 30 min at 37 °C produced maximal activation of adenylate cyclase; the rate of activation was temperature dependent and was increased in the presence of isoproterenol. The Gpp(NH)p-activated enzyme had increased thermal stability, t1/2 = 170 min, and was also markedly more stable in the presence of Mg-ATP, t1/2 = 72min, than nonactivated enzyme. Preactivation with F? (30 min at 24 °C) also stabilized the activity; t1/2 > 70 min in the absence or presence of Mg-ATP. The Mg2+ concentration required for maximal activity was reduced from approximately 60 m m for nonactivated enzyme to 10 m m for the Gpp(NH)p- and F?activated enzyme.  相似文献   

5.
Trehalase (α-α′-trehalose 1-d-glucohydrolase, EC 3.2.1.28) was solubilized from myxamoebae of the cellular slime mold Dictyostelium discoideum by a freeze-thaw cycle and was subsequently purified to homogeneity using the techniques of ethanol fractionation, molecular sieve chromatography, DEAE-cellulose ion-exchange chromatography, chromatofocusing, and preparative polyacrylamide disc gel electrophoresis. The 1000-fold purified enzyme had a specific activity of about 104 units/mg, which was accompanied by a net recovery of 5 to 7% of the original activity. The purified enzyme was maximally active at pH 5.5, showed high specificity for trehalose, and exhibited a typical hyperbolic response as a function of trehalose concentration with a Km of 1.2 mm. The enzyme was maximally active at 50 °C and had an energy of activation of 12–13 kcal/mol. Thermal stability studies demonstrated that full enzymatic activity was recovered following a 5-min incubation of trehalase at temperatures up to 45–50 °C. Analysis of various compounds for inhibitory effects indicated that Tris and urea were slightly effective, reducing enzymatic activity by 28 and 6% at concentrations of 100 and 10 mm, respectively. Of five heavy metals tested, HgCl2 was the most inhibitory, reducing activity by 58% when present at a final concentration of 1.0 mm. Enzymatic activity was not affected by any adenine derivative examined (e.g., ATP, ADP, AMP, cAMP, adenosine, and adenine). The molecular weight of the native enzyme was determined by molecular sieve chromatography, pore gradient electrophoresis, and electrophoresis as a function of acrylamide concentration. All three methods yielded a value of about 105 ± 5 × 103. Estimation of the subunit or monomer molecular weight by sodium dodecyl sulfate-gel electrophoresis indicated a value of 95–100 × 103. The isoelectric point as determined in 7.5% polyacrylamide gels with pH 3–10 ampholytes was 7.2–7.3. The purified enzyme adsorbed to concanavalin A-Sepharose in the presence of KCl (0.1 m) and was eluted with α-methylmannoside, thereby suggesting an association between trehalase and carbohydrate. In agreement with this conclusion was the observation that trehalase could be specifically stained for carbohydrate with the Alcian blue and periodic acid-Schiff's reagents following polyacrylamide disc gel electrophoresis.  相似文献   

6.
Trehalases play a central role in the metabolism of trehalose and can be found in a wide variety of organisms. A periplasmic trehalase (α,α-trehalose glucohydrolase, EC 3.2.1.28) from the thermophilic bacterium Rhodothermus marinus was purified and the respective encoding gene was identified, cloned and overexpressed in Escherichia coli. The recombinant trehalase is a monomeric protein with a molecular mass of 59 kDa. Maximum activity was observed at 88°C and pH 6.5. The recombinant trehalase exhibited a K m of 0.16 mM and a V max of 81 μmol of trehalose (min)−1 (mg of protein)−1 at the optimal temperature for growth of R. marinus (65°C) and pH 6.5. The enzyme was highly specific for trehalose and was inhibited by glucose with a K i of 7 mM. This is the most thermostable trehalase ever characterized. Moreover, this is the first report on the identification and characterization of a trehalase from a thermophilic bacterium.  相似文献   

7.
An agar-degrading archaeon Halococcus sp. 197A was isolated from a solar salt sample. The agarase was purified by hydrophobic column chromatography using a column of TOYOPEARL Phenyl-650 M. The molecular mass of the purified enzyme, designated as Aga-HC, was ~55 kDa on both SDS-PAGE and gel-filtration chromatography. Aga-HC released degradation products in the order of neoagarohexose, neoagarotetraose and small quantity of neoagarobiose, indicating that Aga-HC was a β-type agarase. Aga-HC showed a salt requirement for both stability and activity, being active from 0.3 M NaCl, with maximal activity at 3.5 M NaCl. KCl supported similar activities as NaCl up to 3.5 M, and LiCl up to 2.5 M. These monovalent salts could not be substituted by 3.5 M divalent cations, CaCl2 or MgCl2. The optimal pH was 6.0. Aga-HC was thermophilic, with optimum temperature of 70 °C. Aga-HC retained approximately 90 % of the initial activity after incubation for 1 hour at 65–80 °C, and retained 50 % activity after 1 hour at 95 °C. In the presence of additional 10 mM CaCl2, approximately 17 % remaining activity was detected after 30 min at 100 °C. This is the first report on agarase purified from Archaea.  相似文献   

8.
Summary The trehalase content of different yeasts varies widely. A strain ofCandida tropicalis was found to be the best source of this enzyme among the yeasts tested. The trehalase activity in this yeast could be increased 8.5 times by growing it on trehalose rather than glucose. Thus trehalase is an adaptive enzyme inC. tropicalis. It was found that the amount of trehalase which could be solubilized increased with increasing pH during autolysis of the cells, none being released from the cell debris at pH 4.5 and most at pH 6.3. Some evidence was obtained to show that the solubilization was caused by an enzyme. The stability of trehalase under various conditions was studied. A partial purification was achieved by precipitation with 40% ethanol at a temperature of −18°C. The maximum temperature of the enzyme was 48°C., and the optimum pH ranged from 4.1 to 5.3  相似文献   

9.
Two different trehalose-hydrolysing activities, known as acid or non-regulatory trehalases, and neutral or regulatory trehalases, have been recognised in a number of fungal species. The true role of these apparently redundant hydrolases remained obscure for many years. However, recent evidence suggests that neutral trehalases would be specialised in the mobilisation of cytosolic trehalose, while acid trehalases would only hydrolyse extracellular trehalose. Results obtained with Mucor rouxii, a Zygomycete initially thought to posses only neutral trehalase activity, reinforced this hypothesis. M. rouxii grows efficiently in trehalose as the sole carbon source. Trehalose-grown or carbon-starved cells exhibit a high trehalase activity of optimum pH 4.5, bound to the external surface of the cell wall, in contrast with the neutral (pH 6.5) trehalase, which occurs in the cytosol. Other differences between the neutral and the acid trehalases are the temperature optimum (35°C and 45°C, respectively) and thermal stability (half-life of 2.5 min and 12 min at 45°C, respectively). The neutral trehalase, but not the acid trehalase, is activated in vitro by cAMP-dependent phosphorylation, stimulated by Ca2+, and inhibited by EDTA. It shows maximal activity at germination and decreases as growth proceeds. In contrast the activity of the acid trehalase is totally repressed in glucose-grown cultures and increases upon exhaustion of the carbon source, and is strongly induced by extracellular trehalose.  相似文献   

10.
Thirty-six proteolytic bacteria were isolated from the Jakhau coast, Kutch, India, amongst which isolate P15 identified as Bacillus tequilensis (JQ904626) was found to produce an extracellular solvent-- and detergent-tolerant protease (116.69?±?0.48 U/ml) and was selected for further investigation. Deoiled Jatropha seedcake (JSC) was found to be a suitable substrate for protease production under submerged condition. Upon optimization of process parameters following one-factor-at-a-time approach, an overall 6.4-fold (860.27?±?18.48 U/ml) increase in protease production was achieved. The maximum protease yield was obtained using a medium containing 2 % (w/v) deoiled JSC as substrate (pH of 8.0) upon 36 h of fermentation at 30 °C. The optimum temperature and pH for activity of B. tequilensis P15 protease was found to be 50 °C and 8.0, respectively. The enzyme exhibited a half-life of 190 min at 50 °C, which was enhanced to 270 min in presence of 5 mM Ca2+. The enzyme exhibited significant stability in almost all the solvents tested in the range of log P ow varying from 8.8 to ?0.76. The enzyme activity was strongly inhibited by PMSF at 5 mM concentration, whereas the presence of EDTA (5 mM) and pCMB (5 mM) enhanced enzyme activity by 20.9 and 13.7 %, respectively. The enzyme was also found to be stable in the presence of surfactants, commercial detergents and bleach-oxidant (H2O2). This protease was demonstrated to be effective in removal of blood stains from fabrics, dehairing of hide, and stripping off the gelatin from used photographic films.  相似文献   

11.
A gene encoding extracellular lipase was cloned and characterized from metagenomic DNA extracted from hot spring soil. The recombinant gene was expressed in E. coli and expressed protein was purified to homogeneity using hydrophobic interactions chromatography. The mature polypeptide consists of 388 amino acids with apparent molecular weight of 43 kDa. The enzyme displayed maximum activity at 50°C and pH 9.0. It showed thermal stability up to 40°C without any loss of enzyme activity. Nearly 80% enzyme activity was retained at 50°C even after incubation for 75 min. However above 50°C the enzyme displayed thermal instability. The half life of the enzyme was determined to be 5 min at 60°C. Interestingly the CD spectroscopic study carried out in the temperature range of 25–95°C revealed distortion in solution structure above 35°C. However the intrinsic tryptophan fluorescence spectroscopic study revealed that even with the loss of secondary structure at 35°C and above the tertiary structure was retained. With p-nitrophenyl laurate as a substrate, the enzyme exhibited a K m , V max and K cat of 0.73 ± 0.18 μM, 239 ± 16 μmol/ml/min and 569 s−1 respectively. Enzyme activity was strongly inhibited by CuCl2, HgCl2 and DEPC but not by PMSF, eserine and SDS. The protein retained significant activity (~70%) with Triton X-100. The enzyme displayed 100% activity in presence of 30% n-Hexane and acetone.  相似文献   

12.
An improved assay method of a pseudomurein-degrading enzyme and its properties are described. The pseudomurein-degrading enzyme purified from Methanobacterium wolfei autolysate under an anoxic condition was assayed with the cell wall of Methanobacterium thermoautotrophicum as a substrate. By this improved method the enzyme activity was measured quantitatively and reproducibly. Moreover, the cell wall substrate can be stored in a freezer and used as needed, and the time required for an assay was as short as 1 h. The optimum pH and temperature of the enzyme was pH 6.8-7.4 and 75°C, respectively. Although the enzyme lost 50% of the activity upon heating at 75°C for 10 min in the absence of the cell wall substrate, it was more stable against heat inactivation in the presence of the substrate. Furthermore the inactivated enzyme recovered some of the activity by incubating with the substrate. Although the enzyme lost most of the activity under aerobic conditions, the activity was recovered under reducing conditions with Na2S·9H2O or DTT (dithiothreitol). The enzyme was also purified under aerobic conditions retaining the same specific activity as the anoxically purified enzyme. Using the partially purified enzyme the conditions preparing protoplasts of M. thermoautotrophicum was established.  相似文献   

13.
Higher activity and stability at neutral pH and tolerance toward anions have made bilirubin oxidases (BODs) proper candidates for industrial utilizations. A putative BOD from Thermosediminibacter oceani (ToBOD) exhibited high stability over a pH range of 3.5–10.0 after heterologous expression and purification. The optimal temperature for the enzyme activity was 75 °C. ToBOD displayed a high thermostability with a half-life of 180 min at 70 °C and 120 min at 80 °C, respectively. Km and Kcat values were 126.5 μM and 130.9 S−1 for ABTS, 19.6 μM and 72.5 S−1 for SGZ, and 31.2 μM and 76.2 S−1 for unconjugated bilirubin, respectively. ToBOD showed tolerance to 10% and 50% (v/v) of water-miscible organic solvents and Triton X-100 as a non-ionic surfactant. In the presence of ABTS as the mediator, ToBOD decolorized malachite green (MG) and Congo red (CR) dyes at a rate of about 63% and 71%, respectively in 2 h. Decolorization was improved within 4 h at a rate of 86% and 89% for MG and CR, respectively. Structural analyses of ToBOD showed that lower folding heat capacity, folding enthalpy, folding free energy, and side-chain hydrogen bonds have a correlation with in vitro biochemical properties.  相似文献   

14.
Lyophilized cells of the non-pathogenic yeast Saccharomyces boulardii are used in many countries for the treatment of several types of diarrhoea and other gastrointestinal diseases. Although the cells must be viable, their mechanism of action is unknown. The disaccharide trehalose is a protectant against several forms of environmental stress in yeast and is involved in maintaining cell viability. There is no information on the enzymes involved in degradation of trehalose in S. boulardii. The aim of the present study was to characterize trehalase activity in this yeast. Cells of S. boulardii grown in glucose exhibited neutral trehalase activity only in the exponential phase. Acidic trehalase was not detected in glucose medium. Cells grown in trehalose exhibited acid and neutral trehalase activities at all growth stages, particularly in the exponential phase. The optimum pH and temperature values for neutral trehalase activity were determined as 6.5 and 30 °C respectively, the half-life being approximately 3 min at 45 °C. The relative molecular mass of neutral trehalase is 80 kDa and the K m 6.4 mM (±0.6). Neutral trehalase activity at pH 6.5 was weakly inhibited by 5 mM EDTA and strongly inhibited by ATP, as well as the divalent ions Cu++, Fe++ and Zn++. Enzyme activity was stimulated by Mg++ and Ca++ only in the absence of cAMP. The presence of cAMP with no ion additions increased activity by 40%. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Enzyme stabilization via immobilization is one of the preferred processes as it provides the advantages of recovery and reusability. In this study, Thermomyces lanuginosus lipase has been immobilized through crosslinking using 2% glutaraldehyde and hen egg white, as an approach towards CLEA preparation. The immobilization efficiency and the properties of the immobilized enzyme in terms of stability to pH, temperature, and denaturants was studied and compared with the free enzyme. Immobilization efficiency of 56% was achieved with hen egg white. The immobilized enzyme displayed a shift in optimum pH towards the acidic side with an optimum at pH 4.0 whereas the pH optimum for free enzyme was at pH 6.0. The immobilized enzyme was stable at higher temperature retaining about 83% of its maximum activity as compared to the free enzyme retaining only 41% activity at 70 °C. The denaturation of lipase in free form was rapid with a half-life of 2 h at 60 °C and 58 min at 70 °C as compared to 12 h at 60 °C and 2 h at 70 °C for the immobilized enzyme. The effect of denaturants, urea and guanidine hydrochloride on the free and immobilized enzyme was studied and the immobilized enzyme was found to be more stable towards denaturants retaining 74% activity in 8 M urea and 98% in 6 M GndHCl as compared to 42% and 33% respectively in the case of free enzyme. The apparent Km (2.08 mM) and apparent Vmax (0.95 μmol/min) of immobilized enzyme was lower as compared to free enzyme; Km (8.0 mM) and Vmax (2.857 μmol/min). The immobilized enzyme was reused several times for the hydrolysis of olive oil.  相似文献   

16.
A novel gene (amyZ) encoding a cold-active and salt-tolerant α-amylase (AmyZ) was cloned from marine bacterium Zunongwangia profunda (MCCC 1A01486) and the protein was expressed in Escherichia coli. The gene has a length of 1785 bp and encodes an α-amylase of 594 amino acids with an estimated molecular mass of 66 kDa by SDS-PAGE. The enzyme belongs to glycoside hydrolase family 13 and shows the highest identity (25 %) to the characterized α-amylase TVA II from thermoactinomyces vulgaris R-47. The recombinant α-amylase showed the maximum activity at 35 °C and pH 7.0, and retained about 39 % activity at 0 °C. AmyZ displayed extreme salt tolerance, with the highest activity at 1.5 M NaCl and 93 % activity even at 4 M NaCl. The catalytic efficiency (k cat/K m) of AmyZ increased from 115.51 (with 0 M NaCl) to 143.30 ml mg?1 s?1 (with 1.5 M NaCl) at 35 °C and pH 7.0, using soluble starch as substrate. Besides, the thermostability of the enzyme was significantly improved in the presence of 1.5 M NaCl or 1 mM CaCl2. AmyZ is one of the very few α-amylases that tolerate both high salinity and low temperatures, making it a potential candidate for research in basic and applied biology.  相似文献   

17.
《Phytochemistry》1987,26(7):1859-1862
Modification of maize leaf NADP-malic enzyme by diethylpyrocarbonate (DEP) caused rapid and complete inactivation of the enzyme. The inactivation followed pseudo-first-order reaction kinetics. The inactivation of the enzyme showed saturation kinetics with a half inactivation time, at saturating DEP, equal to 0.15 min and KDEP = 20 mM. The rate of inactivation was faster at 25° as compared to 0° (t0.5 0.75 min at 25° as against 5.6 min at 4° at 5 mM DEP). The enzyme was partially protected against DEP inactivation by NADP and complete protection was seen in the presence of NADP + Mg2+ + malate or its analogues, thereby indicating that DEP modifies the active site. The modified enzyme showed an increase in absorbance at 240 nm which was lost upon treatment with 0.25 M NH2OH and almost complete recovery of the enzyme activity was also observed. The results suggest that DEP modifies 3.0 residues per subunit and of these at least two residue per subunit can be modified without loss of activity in the presence of substrate. Modification of about one histidine residue is correlated with the loss of enzyme activity.  相似文献   

18.
Candida albicans yeast cells growing exponentially on glucose are extremely sensitive to severe heat shock treatments (52.5°C for 5 min). When these cultures were subjected to a mild temperature preincubation (42°C), they became thermotolerant and displayed higher resistance to further heat stress. The intracellular content of trehalose was very low in exponential cells, but underwent a marked increase upon non-lethal heat exposure. The accumulation of trehalose is likely due to heat-induced activation of the trehalose-6-phosphate synthase complex, whereas the external trehalase remained practically unmodified. After a temperature reversion shift (from 42°C to 28°C), the pool of trehalose was rapidly mobilized without any concomitant change in trehalase activity. These results support an important role of trehalose in the mechanism of acquired thermotolerance in C. albicans and seem to exclude the external trehalase as a key enzyme in this process.  相似文献   

19.
Terence A. Smith 《Phytochemistry》1977,16(11):1647-1649
After purification, the polyamine oxidase from the leaves of oat seedlings grown in the dark appeared to be homogeneous on electrophoresis. The MW determined by density gradient centrifugation was 119 000. The enzyme would not oxidise diaminodipropylamine and neither diaminodipropylamine nor diaminopropane were inhibitors at concentrations up to 1 mM. With spermidine as substrate, the energy of activation was 19.7 kJ/mol and activity was reduced to 50% on heating for 10 min at 50°. With spermine as substrate, activity was increased up to 3-fold in the presence of M sodium chloride. This stimulation was not observed with spermidine as substrate The enzyme was also stimulated by sodium phosphate and sodium citrate at high concentrations. The pH for optimal stability was 6.5, the same as the pH for maximum activity with both spermidine and spermine as substrates. For spermidine and spermine the Kms were 8 × 10 ?6 M and 2 × 10 ?6 M respectively. Loss of activity on storage of leaves at ? 15° was ca 5 % per week and in extracts the loss was ca 10 % per week.  相似文献   

20.
Halobacterium sodomense, a halophilic bacterium from the Dead Sea, degraded starch to glucose by means of an extracellular amyloglucosidase with a temperature optimum of around 65°C in the presence of 1.4 M NaCl, and around 75°C in the presence of 3.9 M NaCl. The enzyme required salt concentrations higher than 1 M for optimal activity, NaCl, KCl, and MgCl2 being equally suitable as activators. The optimum pH was 7.5.H. sodomense culture supernatants showed only a very low maltose degrading activity. H. sodomense excreted amyloglucosidase constitutively, and relatively high activities were found in cultures grown in the absence of starch; when glucose was added to the growth medium, the amount of enzyme excreted into the medium decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号