首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxidation of arachidonic acid by ferrous sulfate provides a useful model to study the role of iron in lipid oxidation reactions. We have employed nitroblue tetrazolium (NBT) in the present investigation to evaluate the mechanism of this reaction. In the presence of arachidonic acid, Fe++, and O2, the yellow dye NBT was rapidly reduced to the blue form, NBTH2. The molar ratio of arachidonic acid to Fe++ in this rapid reaction was 1:1, showing an interaction of one fatty acid molecule per iron molecule. Approximately one molecule of NBT was reduced per four molecules of arachidonic acid and Fe++. Reduction of NBT was accompanied by oxidation of Fe++ to Fe+++, suggesting the transfer of four electrons from the Fe++ to NBT to reduce the dye. Arachidonic acid was found to be unchanged when extracted at the end of the reaction, indicating formation of a complex that could dissociate leaving intact arachidonic acid. Evidence for the presence of such a complex which slowly dissociates during the reaction was obtained after longer incubations with small amounts of arachidonic acid. NBT reduction was not inhibited by agents which hydrolyze superoxide, by catalase or by agents which trap hydroxy radicals. We, therefore, propose a model in which NBT traps a radical generated on the arachidonic acid molecule. The proposed model suggests mechanisms for other fatty acid oxidation reactions such as prostaglandin and hydroperoxy fatty acid synthesis.  相似文献   

2.
The effect of triarachidonin on the synthesis of prostaglandins in rabbit kidney medulla microsomes was examined. Medulla microsomes were incubated with triarachidonin in 0.1 M--Tris/HCl buffer (pH 7.0) containing reduced glutathione and hydroquinone and the formed prostaglandin E2, prostaglandin F2 alpha and prostaglandin D2 were measured by high-pressure liquid chromatography using 9-anthryldiazomethane for derivatization. The addition of triarachidonin (1-10 microM) stimulated prostaglandin formation in a dose-dependent manner. Under our incubation conditions rabbit kidney medulla was found to produce prostaglandin E2 mainly. When arachidonic acid, instead of triarachidonin, was added to the incubation mixture of microsomes, the identical profile of prostaglandin products was obtained. When the pH of the reaction mixture was changed from 7.0 to 8.0, the rate of triarachidonin-induced prostaglandin E2 formation was approximately 60% of that observed at pH 7.0. Studies utilizing Ca2+ and EGTA revealed that triacylglycerol lipase of kidney medulla is independent of Ca2+. The addition of epinephrine made the stimulatory effect of triarachidonin on prostaglandin E2 formation more pronounced. These results suggest that epinephrine-activated triacylglycerol lipase is present in the renomedullary microsomes, and this enzyme activity is a potential mediator of release of arachidonic acid for prostaglandin synthesis in the kidney medulla.  相似文献   

3.
The molecular mechanism by which indomethacin exerts its inhibitory effects on the prostaglandin endoperoxide synthetase enzyme is unknown. In the present study we have explored the possibility that indomethacin might interact with Fe++ in the enzyme to produce its inhibitory effect. For this study we made use of the recent discovery that Fe++ alone can oxidize arachidonic acid, and the interaction of this fatty acid with the metal can be detected by following reduction of nitroblue tetrazolium (NBT) or by conversion of the Fe++ to Fe+++. Indomethacin markedly inhibited NBT reduction in the presence of arachidonic acid and Fe++ when the indomethacin had been preincubated with the Fe++. Indomethacin also inhibited the conversion of Fe++ to Fe+++ by arachidonic acid. Results obtained by varying the concentrations of indomethacin and arachidonic acid and measuring inhibition of the conversion of Fe++ to Fe+++ by the indomethacin are consistent with a one to one complex forming between indomethacin and Fe++. The complex between indomethacin and Fe++ separates on prolonged incubation of the complex with arachidonic acid. The nature of the binding is suggested by a molecular model. Our results suggest that indomethacin may act to inhibit the prostaglandin endoperoxide synthetase enzyme by complexing Fe++ in the enzyme. Ibuprofen and tolmetin, two other prostaglandin synthetase inhibitors, also inhibit the interaction of Fe++ with arachidonic acid suggesting this may be a general mechanism for this type of drug.  相似文献   

4.
The role of copper in prostaglandin synthesis   总被引:7,自引:0,他引:7  
  相似文献   

5.
Prolonged treatment of quiescent Swiss 3T3 cells with vasopressin induced heterologous desensitization of specific early signals stimulated by platelet-derived growth factor (PDGF). PDGF caused a striking dose-dependent release of [3H]arachidonic acid (EC50 = 2 ng/ml) and prostaglandin E2 (EC50 = 5 ng/ml). These responses are severely attenuated (greater than 85%) by prior exposure to vasopressin in a dose-dependent manner (IC50 = 1.5 nM). Maximal loss of responsiveness occurred after 40 h of vasopressin treatment with a half-maximal desensitization after 11-13 h. The desensitization is dependent upon binding to the V1 receptor, since it can be prevented by the antagonist [Pmp1,O-Me-Tyr2,Arg8]vasopressin. In contrast, stimulation of inositol phosphate accumulation and production of diacylglycerol and phosphatidic acid by PDGF are unchanged. Thus, the observed heterologous desensitization cannot be attributed to an inability to activate phospholipase C. Furthermore, prior exposure to vasopressin did not affect the ability of PDGF to evoke tyrosine phosphorylation of cellular substrates, demonstrating that vasopressin-induced heterologous desensitization causes a block at a point distal to activation of receptor tyrosine kinase activity. Other downstream responses including transient induction of c-fos expression and stimulation of DNA synthesis were attenuated by vasopressin pretreatment. The findings demonstrate a novel mechanism of heterologous cellular desensitization namely, persistent occupancy of a guanine nucleotide-binding protein-coupled receptor, like the V1 type vasopressin receptor, attenuates responsiveness to a polypeptide growth factor like PDGF that initiates responses through a tyrosine kinase receptor.  相似文献   

6.
We investigated whether the mitogenic response induced by local mast-cell secretion in the rat mesentery was affected by suppression of phospholipase A2, lipoxygenase, or cyclooxygenase in arachidonic acid metabolism. Enzyme inhibitor was given in a single intravenous dose 5 min before intraperitoneal injection of the mast-cell secretagogue 48/80. Mepacrine, a phospholipase A2 inhibitor, suppressed the generation of both leukotrienes (SRS) and prostaglandins (PG), whereas the lipoxygenase inhibitor BW 755C reduced the generation of SRS, and the cyclooxygenase inhibitor indomethacin significantly suppressed the generation of PG. None of the enzyme inhibitors affected the basal mesenteric histamine content or histamine release in the mesentery after exposure to 48/80, and none of them affected mast-cell-mediated mitogenesis in the mesentery as judged by specific DNA activity and mitosis counting. The stimulation of DNA synthesis and mitosis initiated by secreting mast cells is apparently not mediated or modulated by synthesis of leukotrienes, prostaglandins, or other known arachidonic acid metabolites.  相似文献   

7.
8.
Many stimulators of prostaglandin production are thought to activate the Ca2+- and phospholipid-dependent protein kinase first described by Nishizuka and his colleagues (Takai, Y., Kishimoto, A., Iwasa, Y., Kawahara, Y., Mori, T., and Nishizuka, Y. (1979) J. Biol. Chem. 254, 3692-3695. In this paper we report evidence that the activation of protein kinase C caused by 12-O-tetradecanoylphorbol-13-acetate (TPA) is involved in the increased prostaglandin production induced by 12-O-tetradecanoylphorbol-13-acetate in Madin-Darby canine kidney (MDCK) cells. We have shown that TPA activates protein kinase C in MDCK cells with similar dose response curve as observed for TPA induction of arachidonic acid release in MDCK cells. Activation of protein kinase C was associated with increased phosphorylation of proteins of 40,000 and 48,000 daltons. We used two compounds (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (ET-18-OMe) and 1-(5-isoquinolinesulfonyl)piperazine) known to inhibit protein kinase C by different mechanisms to further examine if activation of protein kinase C was involved in the increased synthesis of prostaglandins in TPA-treated MDCK cells. We found that both compounds inhibited protein kinase C partially purified from MDCK cells and that ET-18-OMe inhibited the phosphorylation of proteins by protein kinase C in the intact cells. Addition of either compound during or after TPA treatment decreased both release of arachidonic acid from phospholipids and prostaglandin synthesis. Release of [3H]arachidonic acid from phosphatidylethanolamine in TPA-treated cells was blocked by ET-18-OMe or 1-(5-isoquinolinesulfonyl)piperazine addition. However, arachidonic acid release stimulated by A23187 is not blocked by Et-18-OMe. When assayed in vitro, treatment of cells with Et-18-OMe did not prevent the enhanced conversion of arachidonic acid into prostaglandins induced by pretreatment of cells with TPA. Our results suggest that the stimulation of phospholipase A2 activity by TPA occurs via activation of protein kinase C by TPA.  相似文献   

9.
10.
The microbiological oxidation of ferrous iron in batch and continuous systems has been investigated in relation to uranium extraction from a low-grade ore by Thiobacillus ferrooxidans. The influence of the parameters, agitation, and aeration on oxygen saturation concentration, rate of oxygen mass transfer, and rate of ferrous iron oxidation was demonstrated. The kinetic values, Vmax and K were determined using an adapted Monod equation for different dilution rates and initial concentrations of ferrous iron. The power requirements for initial leaching conditions were also calculated. Uranium extraction as high as 68% has been realized during nine days of treatment. Regrinding the leach residue and its subsequent leaching yielded 87% uranium solubilization.  相似文献   

11.
The role of arachidonic acid in vasogenic brain edema   总被引:6,自引:0,他引:6  
Arachidonic acid is released rapidly from cellular membrane phospholipids after pathological insults associated with the delayed development of brain edema. Intracerebral injection of arachidonic acid caused significant increases in brain water and sodium content with decreases in potassium content and Na+,K+-ATPase activity. The 125I-labeled bovine serum albumin spaces in brain (a measure of blood-brain barrier permeability) rose threefold 24 h after arachidonic acid injection. There was gross and microscopic evidence of edema. Saturated fatty acids and monounsaturated fatty acids were not effective. These data indicate that the endothelial cells of the blood-brain barrier are target sites for the action of arachidonic acid. It is hypothesized that the increased permeability of endothelial cells to macromolecules and water results from alterations of membrane phospholipids and increased vesicular transport, changes that are responsible for the delayed development of vasogenic edema.  相似文献   

12.
Ferrous iron bio‐oxidation by Acidithiobacillus ferrooxidans immobilized on polyurethane foam was investigated. Cells were immobilized on foams by placing them in a growth environment and fully bacterially activated polyurethane foams (BAPUFs) were prepared by serial subculturing in batches with partially bacterially activated foam (pBAPUFs). The dependence of foam density on cell immobilization process, the effect of pH and BAPUF loading on ferrous oxidation were studied to choose operating parameters for continuous operations. With an objective to have high cell densities both in foam and the liquid phase, pretreated foams of density 50 kg/m3 as cell support and ferrous oxidation at pH 1.5 to moderate the ferric precipitation were preferred. A novel basket‐type bioreactor for continuous ferrous iron oxidation, which features a multiple effect of stirred tank in combination with recirculation, was designed and operated. The results were compared with that of a free cell and a sheet‐type foam immobilized reactors. A fivefold increase in ferric iron productivity at 33.02 g/h/L of free volume in foam was achieved using basket‐type bioreactor when compared to a free cell continuous system. A mathematical model for ferrous iron oxidation by Acidithiobacillus ferrooxidans cells immobilized on polyurethane foam was developed with cell growth in foam accounted by an effectiveness factor. The basic parameters of simulation were estimated using the experimental data on free cell growth as well as from cell attachment to foam under nongrowing conditions. The model predicted the phase of both oxidation of ferrous in shake flasks by pBAPUFs as well as by fully activated BAPUFs for different cell loadings in foam. Model for stirred tank basket bioreactor predicted within 5% both transient and steady state of the experiments closely for the simulated dilution rates. Bio‐oxidation at high Fe2+ concentrations were simulated with experiments when substrate and product inhibition coefficients were factored into cell growth kinetics. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

13.
The effects of 13-hydroperoxyoctadecadienoic acid (13-HPODE) on the cytosolic or microsomal acyl-CoA hydrolase (ACH) activity in rabbit kidney medulla and on the ACH-mediated prostaglandin (PG) formation from arachidonoyl-CoA (AA-CoA) were examined. 13-HPODE (10, 20, and 50 microM) had no effect on the cytosolic ACH activity but significantly inhibited the activity of the microsomal enzyme (43-57% inhibition). PG formation was measured as follows: AA-CoA (20 nmol) was preincubated with the cytosolic or microsomal fraction (as the source of ACH) in the presence or absence of 13-HPODE for 5 min at 37 degrees C, followed by incubation with the microsomal fraction (as the source of PG-synthesizing enzymes), hydroquinone and reduced glutathione for 5 min at 37 degrees C, and the PGs formed were measured by HPLC, with use of 9-anthryldiazomethane for derivatization. 13-HPODE reduced the PG formation when the microsomal fraction, but not the cytosolic fraction, was used as the source of ACH (10, 20, and 50 microM; 28-55% inhibition). These results suggest that 13-HPODE may modulate PG levels in rabbit kidney medulla by inhibiting the microsomal ACH activity.  相似文献   

14.
15.
The role of arachidonic acid in rat heart cell metabolism   总被引:4,自引:0,他引:4  
Although it is known that arachidonic acid accumulates in the ischemic myocardium and that cardiac prostaglandin formation from the precursor arachidonic acid is altered during disease states, the role of arachidonic acid in the myocyte itself is not yet clear. Using isolated Ca-tolerant adult rat heart muscle cells, we were able to study cardiac metabolism of arachidonic acid without the effects induced by endothelial or other non-muscle tissue. Myocytes rapidly incorporate arachidonic acid as well as other fatty acids into their lipid pools, the predominant acceptor being the triacylglycerols at an extracellular fatty acid concentration of 20 microM. As exogenous arachidonic acid is decreased, the distribution pattern shifts to favor phospholipid esterification. Cardiocyte prostaglandin production from arachidonic acid added to the incubation medium was limited (less than 1% conversion of added arachidonic acid) and lipoxygenase pathway activity was not detected. Oxidation rates of arachidonic acid were 3-fold lower than for palmitic acid, indicating that it is of secondary importance in energy-yielding reactions. Our results suggest that arachidonic acid serves primarily as a structural component of myocardial membranes and that its release during ischemia would permit its use as a substrate for prostaglandin production by coronary vascular tissue.  相似文献   

16.
The ESR spin trapping technique was used to study the first detectable radical intermediate in the oxidation of arachidonic acid by purified prostaglandin H synthase. The holoenzyme and the apoenzyme, reconstituted with either hematin or Mn2+ protoporphyrin IX, were investigated. Depending on the different types of enzyme activity present, arachidonic acid was oxidized to at least two free radicals. One of these radicals is thought to be the first ESR detectable radical intermediate in the conversion of arachidonic acid to prostaglandin G2 and was detected previously in incubations of ram seminal vesicle microsomes, which are rich in prostaglandin H synthase. The ESR findings correlated with oxygen incorporation into arachidonic acid and prostaglandin formation, where the spin trap inhibits oxygen incorporation and prostaglandin formation by apparently competing with oxygen for the carbon-centered radical. Substitution of arachidonic acid by octadeuterated (5, 6, 8, 9, 11, 12, 14, 15)-arachidonic acid confirmed that the radical adduct contained arachidonic acid that is bound to the spin trap at one of these eight positions. An attempt was made to explain the apparent time lag between the metabolic activity observed in the oxygraph measurements and the appearance of the trapped radical signals.  相似文献   

17.
Biosynthesis of prostaglandins in ob17 preadipose cells was studied in culture. Dihomo-γ-linolenic acid is exclusively converted to PGE1. Arachidonic acid behaves quantitatively as a more potent precursor, leading to the synthesis of PGE2 and 6-keto-PGF (stable product of prostacyclin). In all cases prostaglandin synthesis was confirmed directly by radioimmunoassay. This synthesis is maximal during the growth phase and decreases dramatically after confluence at a time where adipose conversion occurs, suggesting a possible relationship between both events.  相似文献   

18.
We found previously that stimulation of c-fos and c-myc mRNA expression are early events in hydrogen peroxide-induced growth in rat aortic smooth muscle (RASM) cells. In the present study, we investigated the role of phospholipase A2 (PLA2) and protein kinase C (PKC) in mediating hydrogen peroxide-induced c-fos mRNA expression in RASM cells. Mepacrine and p-bromophenacylbromide, potent inhibitors of PLA2 activity, blocked hydrogen peroxide-induced c-fos mRNA expression. Arachidonic acid, a product of PLA2 activity, stimulated the expression of c-fos mRNA with a time course similar to that of hydrogen peroxide. PKC down-regulation attenuated both hydrogen peroxide and arachidonic acid-induced c-fos mRNA expression by 50%. Nordihydroguaiaretic acid (a lipoxygenase-cytochrome P450 monooxygenase inhibitor) significantly inhibited both hydrogen peroxide and arachidonic acid-induced c-fos mRNA expression, whereas indomethacin (a cyclooxygenase inhibitor) had no effect. Together, these findings indicate that 1) hydrogen peroxide-induced c-fos mRNA expression is mediated by PLA2-dependent arachidonic acid release, 2) both PKC-dependent and independent mechanisms are involved in hydrogen peroxide-induced expression of c-fos mRNA and 3) arachidonic acid metabolism via the lipoxygenase-cytochrome P450 monooxygenase pathway appears to be required for hydrogen peroxide-induced expression of c-fos mRNA.  相似文献   

19.
Poly(L-lysine) hydrobromide stimulates arachidonic acid release with concomitant synthesis and release of prostaglandins and lipoxygenase-mediated metabolites (hydroxyeicosatetraenoic acids) in cultures of 3T3 Swiss mouse fibroblasts biosynthetically labeled with [3H]arachidonic acid. The response is rapid, reversible with trypsin and persists for at least 50 min. An evaluation of the calcium dependence of the hydrolytic process was consistent with the rate-limiting step involving a cell-surface, calcium-dependent enzyme. The response involves stimulated hydrolysis of arachidonic acid-containing phospholipids, implying the activation of a phospholipase. Arachidonic acid release is stimulated only by poly(L-lysine) hydrobromide preparations with a molecular weight greater than 30 000, which corresponds to a polypeptide chain of more than 140 lysine hydrobromide residues. A variety of other polycations (Mr greater than 30 000), but not polyanions or neutral polymers, stimulated arachidonic acid release and prostaglandin synthesis. The results are consistent with an activation mechanism involving cross-linking of anionic sites on the cell surface. Poly(L-lysine) hydrobromide is also cytotoxic, but the cytotoxic response occurs at 10-fold higher concentrations than arachidonic acid release.  相似文献   

20.
The role of iron in the peroxidation of polyunsaturated fatty acids is reviewed, especially with respect to the involvement of oxygen radicals. The hydroxyl radical can be generated by a superoxide-driven Haber-Weiss reaction or by Fenton's reaction; and the hydroxyl radical can initiate lipid peroxidation. However, lipid peroxidation is frequently insensitive to hydroxyl radical scavengers or superoxide dismutase. We propose that the hydroxyl radical may not be involved in the peroxidation of membrane lipids, but instead lipid peroxidation requires both Fe2+ and Fe3+. The inability of superoxide dismutase to affect lipid peroxidation can be explained by the fact that the direct reduction of iron can occur, exemplified by rat liver microsomal NADPH-dependent lipid peroxidation. Catalase can be stimulatory, inhibitory or without affect because H2O2 may oxidize some Fe2+ to form the required Fe3+, or, alternatively, excess H2O2 may inhibit by excessive oxidation of the Fe2+. In an analogous manner reductants can form the initiating complex by reduction of Fe3+, but complete reduction would inhibit lipid peroxidation. All of these redox reactions would be influenced by iron chelation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号