首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two lines of genetically involved and control chickens were compared with regard to the onset of muscle dystrophy during the early stages of growth ex ovo. Definite structural and functional involvement of pectoralis muscle developed within the first 4–5 weeks. In parallel experiments, microsomal membranes were obtained weekly from pectoralis muscle during the first 14 weeks ex ovo. The microsomes were studied with respect to ultrastructural features, protein composition, Ca2+ uptake and ATPase activity. Microsomal preparations obtained from all newborn chickens contain two types of vesicles: one type reveals an asymmetric distribution and ‘high density’ of particles on freeze-fracture faces which is characteristic of sarcoplasmic reticulum (SR) membrane; the other type reveals a symmetric distribution and ‘low density’ of particles. The yield of ‘low density’ microsomes from muscle of normal birds is very much reduced as the chicks grow from 1 to 4–5 weeks ex ovo. On the contrary, it remains high in chicks developing muscle dystrophy. Ca2+ uptake and coupled ATPase activity are found to be of nearly identical specific activity in control and genetically involved newborn chicks. The specific activity of the control birds, however, increases as the chicks grow from 1 to 4–5 weeks of age, while the specific activity of the dystrophic birds remains low. Such a difference appears to be related to the relative representation of sarcoplasmic reticulum and ‘low density’ vesicles in the microsomal preparations. It is concluded that failure to obtain a normal differentiation of muscle cell membranes is a basic defect noted in the early growth of genetically involved chickens. This defect appears along with the earliest signs of the dystrophic process.  相似文献   

2.
Heterogeneous populations of microsomes obtained from normal and dystrophic chicken pectoralis muscle were separated into two subfractions by an iterative loading technique. The buoyant density of the sarcoplasmic reticulum (SR) microsomes was increased after loading them with calcium oxalate. Several incubations in the transport medium were necessary to load all of the SR. The fraction that did not form a pellet contained microsomes which displayed freeze-fracture faces that had a low density of particles. A stereological analysis was used on membrane fracture faces of intact muscle to generate reference particle density distributions, which were compared with the distributions measured on the microsomal fracture faces. The concave microsomal fracture faces of purified microsomes which did not load calcium oxalate had particle distributions nearly identical to the distributions of intact P-face T tubules. The morphological data suggest that this subfraction is microsomal T system. Biochemical measurements show negligible amounts of specific Na+, K+-ATPase activity, suggesting that there was little contamination from the surface membrane in this subfraction. Furthermore, an active Ca2+-ATPase is demonstrated in both normal and dystrophic T-tubular membranes.  相似文献   

3.
Two lines of genetically involved and control chickens were compared with regard to the onset of muscle dystrophy during the early stages of growth ex ovo. Definite structural and functional involvement of pectoralis muscle developed within the first 4-5 weeks. In parallel experiments, microsomal membranes were obtained weekly from pectoralis muscle during the first 14 weeks ex ovo. The microsomes were studied with respect to ultrastructural features, protein composition, Ca2+ uptake and ATPase activity. Microsomal preparations obtained from all newborn chickens contain two types of vesicles: one type reveals an asymmetric distribution and 'high density' of particles on freeze-fracture faces which is characteristic of sarcoplasmic reticulum (SR) membrane; the other type reveals a symmetric distribution and 'low density' of particles. The yield of 'low density' microsomes from muscle of normal birds is very much reduced as the chicks grow from 1 to 4-5 weeks ex ovo. On the contrary, it remains high in chicks developing muscle dystrophy. Ca2+ uptake and coupled ATPase activity are found to be of nearly identical specific activity in control and genetically involved newborn chicks. The specific activity of the control birds, however, increases as the chicks grow from 1 to 4-5 weeks of age, while the specific activity of the dystrophic birds remains low. Such a difference appears to be related to the relative representation of sarcoplasmic reticulum and 'low density' vesicles in the microsomal preparations. It is concluded that failure to obtain a normal differentiation of muscle cell membranes is a basic defect noted in the early growth of genetically involved chickens. This defect appears along with the earliest signs of the dystrophic process.  相似文献   

4.
Summary Avian muscular dystrophy is an autosomal recessive genetic disease characterized by early hypertrophy and loss of function of the pectoralis major. The disease is progressive, ultimately resulting in atrophy and heavy lipid deposition.Previous investigators have noted a decrease in the ability of the dystrophic sarcoplasmic reticulum to concentrate Ca2+. More recently, other investigators have shown an abnormal calcium uptake in avian dystrophic sarcoplasmic reticulum. They indicated, using freeze-fracture techniques, that a 90 Å particle of the vesicle membrane exhibited a decreased population and suggested that they might be the ATPase involved in calcium transport.Our studies confirm the earlier observations of a decreased rate of Ca2+ uptake and Ca2+ binding capacity of dystrophic fragmented sarcoplasmic reticulum vesicles which are isolated from both embryonic and adult pectoralis. These observations correlate in turn with a 75% drop in the Ca: ATP transport efficiency of the dystrophic sarcoplasmic reticulum determined by measuring the rate of32Pi liberation from -ATP32 during active calcium transport by the isolated sarcoplasmic reticulum SR.In addition, we have found a quantitative deficiency in a 65,000 dalton component of the dystrophic fragmented SR at the time of myoblast fusion by measuring35S-Methionine incorporation into the SR, coupled to high resolution polyacrylamide gel electrophoresis and radioautography. Analysis of total tissue calcium by atomic absorption spectroscopy revealed a decrease in the total calcium content of dystrophic muscle.  相似文献   

5.
We have isolated sarcoplasmic reticulum from normal and dystrophic chicken muscle, using an improved isolation procedure. Dystrophic sarcoplasmic reticulum has a reduced level of calcium-sensitive ATPase activity, phosphoenzyme formation, and steady-state calcium transport. Anion-stimulated calcium transport by dystrophic sarcoplasmic reticulum is also reduced when measured under the proper conditions, and dystrophic sarcoplasmic reticulum shows no alteration in calcium efflux rate. Active calcium phosphate loading of the normal and dystrophic sarcoplasmic reticulum preparations indicates that a reduced percentage jof the dystrophic vesicles are capable of active calcium transport. The loaded dystrophic sarcoplasmic reticulum vesicles exhibit the same relative reductions in enzymatic activity as the starting sarcoplasmic reticulum preparations. However, the enzyme activities of normal and dystrophic sarcoplasmic reticulum are similar in the presence of detergent and exogenous phospholipid. On the basis of these results, we suggest that the lipid microenvironment of the dystrophic enzyme is altered.  相似文献   

6.
Light and heavy sarcoplasmic reticulum vesicles were isolated from rabbit leg muscle using a combination of differential centrifugation and isophycnic zonal ultracentrifugation. Light sarcoplasmic reticulum vesicles obtained from the 30–32.5% and heavy sarcoplasmic reticulum vesicles obtained from the 38.5–42% sucrose regions of the linear sucrose gradient were determined to be free of surface and mitochondrial membrane contamination by marker enzyme analysis and electron microscopy. Thin sections of the light vesicles revealed empty vesicles of various sizes and shapes. Freeze-fracture replicas of the light vesicles showed an asymmetric distribution of intramembranous particles with the same orientation and distribution as the longitudinal sarcoplasmic reticulum in vivo. Heavy vesicles appeared as rounded vesicles of uniform size filled with electron dense material, similar to that seen in the terminal cisternae of the sarcoplasmic reticulum. The cytoplasmic surface of the membrane was decorated by membrane projections, closely resembling the ‘feet’ which join the sarcoplasmic reticulum to the transverse tubules in the intact muscle fiber. Freeze-fracture replicas of the heavy vesicles revealed an asymmetric distribution of particles which in some areas of the vesicle's surface are larger and less densely aggregated than those of the light vesicles. In the best quality replicas, some regions of the luminal leaflet were not smooth but showed evidence of pits. These structural details are characteristic of the area of sarcoplasmic reticulum membrane which is covered by the ‘feet’ in the intact muscle.Heavy vesicles contained greater than six times the calcium content of light vesicles, 54 vs. 9 nmol Ca2+/μl of water space. After KCl washing both contained less than 4 nmol Ca2+/μl of water space. Although they transported at the same rate and the same total amount of calcium, the rate of passive Ca2+ efflux from the heavy vesicles was double that of light vesicles. The higher rate of calcium efflux from the heavy vesicles was inhibited by dantrolene, an inhibitor of Ca2+ release. High resolution sodium dodecyl sulfate gel electrophoresis showed that the light vesicles contained predominantly Ca2+-ATPase along with several approx. 55 000-dalton proteins and a 5000-dalton proteolipid, while the heavy vesicles contained Ca2+-ATPase and calsequestrin along with several approx. 55 000-dalton proteins, extrinsic 34 000- and 38 000-dalton proteins, intrinsic 30 000- and 33 000-dalton proteins and two proteolipids of 5000 and 9000 daltons. KCl washing of the heavy vesicles removed both the approx. 34 000- and 38 000-dalton proteins, and the ‘sarcoplasmic reticulum feet’ were no longer seen on the heavy vesicles. The KCl supernatant was enriched in the 34 000- and 38 000-dalton proteins, indicating that these proteins are possible components of the sarcoplasmic reticulum feet. The biochemical and morphological data strongly support the view that the light vesicles are derived from the longitudinal sarcoplasmic reticulum and that the heavy vesicles are derived from the terminal cisternae containing junctional sarcoplasmic reticulum membrane with the intact ‘sarcoplasmic reticulum feet’.  相似文献   

7.
Contraction of skeletal muscle is triggered by release of calcium from the sarcoplasmic reticulum. In this study, highly purified normal and dystrophic mouse sarcoplasmic reticulum vesicles were compared with respect to calcium release characteristics. Sarcoplasmic reticulum vesicles were actively loaded with calcium in the presence of an ATP-regenerating system. Calcium fluxes were followed by dual wavelength spectrophotometry using the metallochromic indicators antipyrylazo III and arsenazo III, and by isotopic techniques. Calcium release from sarcoplasmic reticulum vesicles was elicited by (a) changing the free calcium concentration of the assay medium (calcium-induced calcium release); (b) addition of a permeant anion to the assay medium, following calcium loading in the presence of a relatively impermeant anion (depolarization-induced calcium release); (c) addition of the lipophilic anion tetraphenylboron (TPB?) to the assay medium and (d) using specific experimental conditions, i.e. high phosphate levels and low magnesium (spontaneous calcium release). Drugs known to influence Ca2+ release were shown to differentially affect the various types of calcium release. Caffeine (10 mM) was found to enhance calcium-induced calcium release from isolated sarcoplasmic reticulum. Ruthenium red (20 μM) inhibited both calcium-induced calcium release and tetraphenylboron-induced calcium release, and partially inhibited spontaneous calcium release and depolarization-induced calcium release. Local anesthetics inhibited spontaneous calcium release in a time-dependent manner, and inhibited calcium-induced calcium release instantaneously, but did not inhibit depolarization-induced calcium release. Use of pharmacological agents indicates that several types of calcium release operate in vitro. No significant differences were found between normal and dystrophic sarcoplasmic reticulum in calcium release kinetics or drug sensitivities.  相似文献   

8.
The membrane systems of skeletal muscle were examined after tannic acid fixation. A new structure consisting of bridges spanning the junctional gap is described, and a model is proposed in which the cytoplasmic but not the luminal membrane leaflets of the transverse tubule and of the junctional sarcoplasmic reticulum (SR) are continuous. The globular particles (presumably the Ca-binding proteins) within the terminal cisternae were arranged in longitudinal rows and appeared adherent to the junctional membrane. The junctional gap was present in negatively stained, frozen thin sections of fixed muscles. Negatively staining material occured within the junctional gap. The cytoplasmic leaflets of the longitudinal, intermediate, and terminal cisterna regions of the SR exhibited a thick coat of densely staining material compatible with the presence of the Ca-ATPase. Similar bridges were also observed at the surface membrane-SR close coupling sites of vascular smooth muscle.  相似文献   

9.
The structure, chemical composition and function of the microsomal fraction, isolated by differential centrifugation and purified on sucrose gradients, from muscle of fetal, newborn and young rabbits were characterized and compared with those of sarcoplasmic reticulum vesicles from adult muscle. Negative staining shows that the microsomal vesicles isolated from muscles of embryos and newborn animals are smooth, in contrast to vesicles obtained from adult muscle which contain 4-nm particles on their surface. The particles appear first in the microsomal vesicles from muscles of 5--8-day-old rabbits. Their number increases with the age of the animals. Ca2+-pump protein, with molecular weight about 100000, accounts for 10% of the total protein content in sarcoplasmic reticulum membrane, isolated at the earliest stages of development analysed. Its amount increases continuously with the rabbit's age to the adult value of about 70% of total sarcoplasmic reticulum protein. The low amount of 100000-dalton protein and lack of 4-nm surface particles in sarcoplasmic reticulum vesicles obtained from fetal and newborn rabbits are strictly correlated with the low activity of Ca2+-dependent ATPase and the ability to take up Ca2+. These activities rise in parallel with the age of the rabbits. On the other hand, Mg2+-dependent ATPase activity is very high at the early stages of development and declines continuously to a low value in sarcoplasmic reticulum from adult muscle. The sarcoplasmic reticulum membrane from fetal and newborn rabbits contains a higher amount of lipids as compared with the membrane present in the muscle of adult animals. The ratio of both phospholipid to protein and neutral lipid to protein decreases with the age of the rabbits. The composition of sarcoplasmic reticulum phospholipids also changes during development.  相似文献   

10.
I have recently reported the isolation and characterization of sarcoplasmic reticulum from normal and dystrophic mice. These sarcoplasmic reticulum fractions were similar in calcium pump function, calcium release properties, and lipid composition. In this report, I describe the isolation of mouse muscle transverse tubule membranes using a calcium phosphate-loading technique. When the relative purity of normal and dystrophic preparations was considered, transverse tubule from normal and dystrophic mice were similar in calcium-insensitive ATPase activity, cholesterol content, and membrane microviscosity (as estimated by fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene); transverse tubule yield from dystrophic muscle, however, was twice that from normal muscle, while sarcoplasmic reticulum yield from these same dystrophic muscles was only 60% that from normal muscle. This result may reflect a difference in the relative quantities of these membranes in situ.  相似文献   

11.
Duchenne muscular dystrophy represents one of the most common hereditary diseases. Abnormal ion handling is believed to render dystrophin-deficient muscle fibres more susceptible to necrosis. Although a reduced Ca(2+) buffering capacity has been shown to exist in the dystrophic sarcoplasmic reticulum, surprisingly no changes in the abundance of the main luminal Ca(2+) reservoir protein calsequestrin have been observed in microsomal preparations. To address this unexpected finding and eliminate potential technical artefacts of subcellular fractionation protocols, we employed a comparative subproteomics approach with total mouse skeletal muscle extracts. Immunoblotting, mass spectrometry and labelling of the entire muscle protein complement with the cationic carbocyanine dye 'Stains-All' was performed in order to evaluate the fate of major Ca(2+)-binding proteins in dystrophin-deficient skeletal muscle fibres. In contrast to a relatively comparable expression pattern of the main protein population in normal vs. dystrophic fibres, our analysis showed that the expression of key Ca(2+)-binding proteins of the luminal sarcoplasmic reticulum is drastically reduced. This included the main terminal cisternae constituent, calsequestrin, and the previously implicated Ca(2+)-shuttle element, sarcalumenin. In contrast, the 'Stains-All'-positive protein spot, representing the cytosolic Ca(2+)-binding component, calmodulin, was not changed in dystrophin-deficient fibres. The reduced 2D 'Stains-All' pattern of luminal Ca(2+)-binding proteins in mdx preparations supports the calcium hypothesis of muscular dystrophy. The previously described impaired Ca(2+) buffering capacity of the dystrophic sarcoplasmic reticulum is probably caused by a reduction in luminal Ca(2+)-binding proteins, including calsequestrin.  相似文献   

12.
A skeletal muscle membrane fraction enriched in sarcoplasmic reticulum (SR) contained Ca2+-ATPase activity which was stimulated in vitro in normal chickens (line 412) by 6 nM purified bovine calmodulin (33% increase over control, P less than 0.001). In contrast, striated muscle from chickens (line 413) affected with an inherited form of muscular dystrophy, but otherwise genetically similar to line 412, contained SR-enriched Ca2+-ATPase activity which was resistant to stimulation in vitro by calmodulin. Basal levels of Ca2+-ATPase activity (no added calmodulin) were comparable in muscles of unaffected and affected animals, and the Ca2+ optima of the enzymes in normal and dystrophic muscle were identical. Purified SR vesicles, obtained by calcium phosphate loading and sucrose density gradient centrifugation, showed the same resistance of dystrophic Ca2+-ATPase to exogenous calmodulin as the SR-enriched muscle membrane fraction. Dystrophic muscle had increased Ca2+ content compared to that of normal animals (P less than 0.04) and has been previously shown to contain increased levels of immuno- and bioactive calmodulin and of calmodulin mRNA. The calmodulin resistance of the Ca2+-ATPase in dystrophic muscle reflects a defect in regulation of cell Ca2+ metabolism associated with elevated cellular Ca2+ and calmodulin concentrations.  相似文献   

13.
The ultrastructural localization of the Ca2+ + Mg2+-dependent ATPase of sarcoplasmic reticulum in rat gracilis muscle was determined by indirect immunoferritin labeling of ultrathin frozen sections. Simultaneous visualization of ferritin particles and of adsorption- stained cellular membranes showed that the Ca2+ + Mg2+-ATPase was concentrated in the longitudinal sarcoplasmic reticulum and in the nonjunctional regions of the terminal cisternae membrane but was virtually absent from mitochondria, plasma membranes, transverse tubules, and junctional sarcoplasmic reticulum. Ferritin particles were found preponderantly on the cytoplasmic surface of the membrane, in agreement with published data showing an asymmetry of the Ca2+ + Mg2+- ATPase within the sarcoplasmic reticulum membrane. Comparison of the density of ferritin particles in fast and slow myofibers suggested that the density of the Ca2+ + Mg2+-ATPase in the sarcoplasmic reticulum membrane in a fast myofiber is approximately two times higher than in a slow myofiber.  相似文献   

14.
FINE STRUCTURE OF RAT INTRAFUSAL MUSCLE FIBERS : The Polar Region   总被引:2,自引:1,他引:1       下载免费PDF全文
An ultrastructural comparison of the two types of intrafusal muscle fibers in muscle spindles of the rat was undertaken. Discrete myofibrils with abundant interfibrillar sarcoplasm and organelles characterize the nuclear chain muscle fiber, while a continuous myofibril-like bundle with sparse interfibrillar sarcoplasm distinguishes the nuclear bag muscle fiber. Nuclear chain fibers possess well-defined and typical M bands in the center of each sarcomere, while nuclear bag fibers contain ill-defined M bands composed of two parallel thin densities in the center of the pseudo-H zone of each sarcomere. Mitochondria of nuclear chain fibers are larger and more numerous than they are in nuclear bag fibers. Mitochondria of chain fibers, in addition, often contain conspicuous dense granules, and they are frequently intimately related to elements of the sarcoplasmic reticulum (SR). Striking differences are noted in the organization and degree of development of the sarcotubular system. Nuclear bag fibers contain a poorly developed SR and T system with only occasional junctional couplings (dyads and triads). Nuclear chain fibers, in contrast, possess an unusually well-developed SR and T system and a variety of multiple junctional couplings (dyads, triads, quatrads, pentads, septads). Greatly dilated SR cisternae are common features of nuclear chain fibers, often forming intimate associations with T tubules, mitochondria, and the sarcolemma. Such dilatations of the SR were not encountered in nuclear bag fibers. The functional significance of these structural findings is discussed.  相似文献   

15.
An electron microscope study has been made of the distribution of membrane couplings between the sarcoplasmic reticulum (SR) and either the plasmalemma or the T tubules in fetal and neonatal rat intercostal muscle. Within primitive muscle cells at 12 days of gestation, the SR forms both simple and specialized membrane junctions with the plasmalemma; caveolae are very few, and T tubules are not detected. Undifferentiated cells neighbor muscle cells. Occasionally these cells contain subsurface couplings between the endoplasmic reticulum and plasmalemmae. Possible relationships between these couplings and the peripheral couplings of muscle cells are discussed. By 15–18 days of gestation, caveolae and beaded T tubules, comparable to those of cultured muscle, develop; T tubules lie along-side myofibrils and are rarely transverse. SR couples both to T tubules and to plasmalemmae during this period. T tubules with lineal profiles appear after further development and their orientation transverse to A–I junctions becomes increasingly evident. Membrane couplings between SR and T tubules also increase in number, whereas the incidence of peripheral coupling declines rapidly Evidence suggests that peripheral couplings are swept into myotubes as caveolae proliferate and T tubules form. SR thus appears to initially couple with the plasmalemma and then to await T tubular growth. This contrasts with the developmental pattern described in cultured chick muscle in which peripheral couplings are not reported and T tubules with diads and triads occur at very primitive stages of muscle differentiation.  相似文献   

16.
The development and maturation of transverse (T) tubules and sarcoplasmic reticulum (SR) have been studied in pre- and postnatal mouse muscle, using selective "staining" of these membrane systems. As previously reported in the literature, orderly transverse orientation of the T tubules occurs late in development and early T-SR junctions (triads and dyads) are located at random along the T tubules in a predominantly longitudinal orientation. We find that initial appearance of transverse tubules occurs fairly abruptly, and that all early T tubules have a longitudinal orientation. Transverse orientation of the T tubule network, location of triads at the A-I junction, and development of differentiated regions of the SR are coordinated events which occur gradually over a period of about 3 weeks for leg muscle.s The timing of triad development coincides with that reported for the increase in slow calcium current and dihydropyridine binding. Differences in T tubule patterns between muscle fibers of EDL and soleus are apparent only at relatively late stages.  相似文献   

17.
Electron microscopic evidence is presented that the early response to denervation ("simple atrophy") of the semitendinosus m. of the frog is characterized by a greater prominence of the sarcoplasmic reticulum and by the presence, in the interfibrillar spaces, of mitochondria which are more numerous and smaller than in normal muscle. In contrast with the dynamic changes of the sarcoplasmic structural components, the myofibrils showed a progressive decrease in diameter after denervation and throughout the period studied. By carrying out tissue fractionation experiments, the yield of microsome-protein was found significantly greater in the denervated muscles, as compared with the contralateral controls, in this initial stage. Under the conditions attending the overdevelopment of the sarcoplasmic reticulum (SR), denervated semitendinosus m. incorporated valine-C14 into proteins more actively than the control pairs. The denervated muscles also showed an increase in the number of freely scattered and membrane-bound ribosomes and of polyribosomes, suggesting a more active synthesis of the SR membranes. Pronounced atrophy of the myofibrils, disorganization of the SR, and an increased number of ribonucleoprotein particles lying in the enlarged interfibrillar spaces were the main ultrastructural features of "degenerative atrophy" in frog muscle in the late periods after denervation. The probably adaptive character of the early changes occurring on denervation of frog muscle is discussed.  相似文献   

18.
The structure of the membranes of sarcoplasmic reticulum (SR), tubular (T) system, and sarcolemma has been studied by freeze fracture in leg muscles of the Tarantula spider. Two regions of the sarcoplasmic reticulum can be differentiated by the distribution of particles on the fracture faces: a junctional SR, at the dyads, and a longitudinal SR, elsewhere. The dyads are asymmetric junctions, the disposition of particles in the apposed membranes of SR and T tubules being different from one another and from the regular arrangement of feet in the junctional gap. It is concluded that no channels can be visualized to directly connect SR- and T-system lumina.  相似文献   

19.
Vesicular fragments of sarcoplasmic reticulum were isolated from pectoralis muscle of normal and dystrophic chicken. Purification of both preparations was equally satisfactory, as shown by a prominent ATPase band in electrophoresis gels. Measurements of ATPase phosphorylation, Ca2+ transport and Pi cleavage by rapid quench methods revealed a lower specific activity of the dystrophic vesicles with respect to all of these functions. On the other hand, Ca2+-independent ATPase activity was found to be increased in dystrophic vesicles. It is suggested that a fraction of ATPase units of dystrophic sarcoplasmic reticulum is not activated by Ca2+, owing to an altered protein assembly within the membrane bilayer. In fact, when the membrane structure is perturbed by detergents normal and dystropic preparations acquire an equally high Ca2+-dependent ATPase.  相似文献   

20.
Summary— Post-ER membranous structures are clearly observed in pancreases fixed with aldehydes and subsequently with reduced osmium. Close to the transitional rough ER, clusters of vesicles of ≈ 56 nm diameter are consistently present. In some cells, tortuous tubules appear enmeshed by the ≈ 56 nm vesicles and by irregular, vesicular formations. In freeze-fracture replicas, the membranes of the bulges and tubules that protrude from the transitional rough ER differ from those of the donor compartment. These protrusions are herein designated as the budding chamber of the transitional rough ER. Quantitative and qualitative observations performed previously and in the present study show that the P and E freeze-fracture faces of the outermost Golgi cisternal membrane possess patterns of texture that are unique among membranes. The P-face exhibits a very high density of intramembranous particles of dimensions among the smallest yet described; E-faces show rugosities and an unusually high density of intramembranous particles of normal size. The membranes of the budding chamber, the putative transport vesicles of ≈ 56 nm diameter, the sinuous tubules and the vesicles of irregular size and shape exhibit P and E fracture faces with textures indistinguishable from those of the corresponding P and E faces of the outermost Golgi cisterna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号