首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of cycloheximide on the development of the dorsal longitudinal flight muscle of 3- to 5-day-old puparia of Calliphora vomitoria have been investigated. One μg of cycloheximide injected into the puparia reduced the incorporation of 14C phenylalanine and lysine into protein to 5 and 8 per cent of their normal levels. The cycloheximide was found to have produced its maximum effect within 2 hr of its injection and increasing the concentration did not further depress the amount of amino acid incorporation. The sixth dorsal longitudinal muscles continued to increase in length after the injection of cycloheximide and the elongation of the muscle fibres was accompanied by an increase in protein content in normal and cycloheximide-treated animals. An injection of colchicine (which is believed to disrupt microtubules) immediately halted muscle growth. Electron microscopy of the muscle fibre revealed that fibres from cycloheximide-treated animals contained myofilaments, although there were some differences in myofilament structure between normal and treated animals. The formation of the muscle fibres in the absence of protein synthesis is discussed.  相似文献   

2.
The position of paramyosin in insect flight muscle was determined by labelling myofibrils with antibody to paramyosin and examining them by fluorescent and electron microscopy.Antiserum to dung beetle paramyosin had antibodies to another protein as well as to paramyosin. Specific anti-paramyosin bound to the H-zone of Lethocerus myofibrils showing paramyosin was exposed only in that region. Antibodies to the other protein bound at the ends of the A-band.The exposure of antigenic sites in the two regions of the myofibril depended on the extent of contraction in the myofibril: the sites at the end of the A-band were most exposed in rest-length myofibrils and those at the H-zone in shortened ones.Antibody-labelling in stretched bee muscle showed that the protein at the ends of the sarcomere extended from myosin filaments to Z-line.The high resting elasticity of insect flight muscle and hence its capacity for oscillatory contraction may be due to the protein between myosin filaments and Z-line.  相似文献   

3.
Ultrastructure of muscle cells in Siboglinum fiordicum (Pogonophora)   总被引:1,自引:0,他引:1  
Two different muscle types are found in the body of Siboglinum fiordicum: body wall muscle and blood vessel muscle. Both are of a myomesothelial type. The myofibrils of the body wall muscle are non-striated and consist of thick and thin myofilaments. Scattered dense bodies and attachment plaques are described. The sarcoplasmic reticulum forms a three-dimensional network in the myofibrils and only peripheral couplings are observed. The thick filaments are of a paramyosin type and have a diameter ranging from 400-1500 A. The blood vessels muscle is non-striated, but sometimes a sarcomere-like organization has been observed. Both thick and thin filaments are present. The thick filaments have a diameter of 250-400 A and lack transverse striations. Dense bodies and attachment of plaques are few. The sparse sarcoplasmic reticulum is restricted to the myofibril periphery where it makes peripheral couplings with sarcolemma. The luminal surface of the vessels is lined by a basal lamina with collagen-like inclusions. No endothelium is found. The body wall muscle and the blood vessel muscle are compared with other muscle types described in invertebrates.  相似文献   

4.
群居型和散居型东亚飞蝗雌成虫飞行肌的超微结构   总被引:3,自引:0,他引:3  
刘辉  李克斌  尹姣  杜桂林  曹雅忠 《昆虫学报》2008,51(10):1033-1038
应用电子显微镜对群居型和散居型东亚飞蝗Locusta migratoria manilensis(Meyen)雌成虫背纵肌进行了比较观察。结果表明:群居型和散居型成虫背纵肌具有类似的亚细胞结构,飞行肌的肌原纤维具有1∶3粗细丝比例,每根粗丝由6根细丝环绕排列成六角形结构。飞行肌的发育和线粒体的形成均是渐进的过程,在不同日龄成虫间存在差异。肌节长度为2.1~3.4 μm;7和10日龄时群居型成虫肌节长度小于散居型;7日龄群居型肌原纤维直径显著大于散居型。背纵肌内线粒体含量约占肌纤维的20%~43%,两型飞蝗之间存在着显著的差异,7日龄时群居型线粒体占肌原纤维的比例高达42.96%,而散居型的只有22.45%;10日龄群居型线粒体含量为41.32%,散居型线粒体29.98%。上述差异可能是东亚飞蝗群居型成虫飞行能力显著强于散居型成虫的重要原因之一。  相似文献   

5.
粘虫蛾飞行肌超微结构的研究   总被引:6,自引:4,他引:2  
罗礼智  李光博 《昆虫学报》1996,39(2):141-148
应用电子显微镜对粘虫雌蛾Mythimna separata(Walker)飞行(背纵)肌的研究结果表明,其肌原纤维由500-700根肌球蛋白丝(粗丝)组成,每根粗丝由6根肌动蛋白丝(细丝)环绕排列成六角形,每根细丝精确地位于两根粗丝间1/2处,从而使粗丝和细丝的比为1:3。肌节较短,长度约2.2-2.6μm。肌原纤维之间充满着线粒体和横管。每个肌节约有线粒体三个,横管二根。线粒体约占肌纤维体积的40%,而横管为7%。每根横管准确地位于肌节的1/4、3/4处,或Z线和中膈的中央,并与肌质网交接形成二位体(dyads)或三位体(triads)。肌质网相当不发达,约占肌纤维体积的2.5%。但其分布很有特色,即除了紧贴于肌原纤维周围的由单层液泡组成的肌质网以外,在中膈处还有一层横穿于肌原纤维的肌质网。和其它同步飞行肌的结构和功能分析比较的结果还表明,粘虫蛾飞行肌具有较善于飞行的结构。  相似文献   

6.
Thick and thin filaments in asynchronous flight muscle overlap nearly completely and thick filaments are attached to the Z-disc by connecting filaments. We have raised antibodies against a fraction of Lethocerus flight muscle myofibrils containing Z-discs and associated filaments and also against a low ionic strength extract of myofibrils. Monoclonal antibodies were obtained to proteins of 800 kd (p800), 700 kd (p700), 400 kd (p400) and alpha-actinin. The positions of the proteins in Lethocerus flight and leg myofibrils were determined by immunofluorescence and electron microscopy. p800 is in connecting filaments of flight myofibrils and in A-bands of leg myofibrils. p700 is in Z-discs of flight myofibrils and an immunologically related protein, p500, is in leg muscle Z-discs. p400 is in M-lines of both flight and leg myofibrils. Preliminary DNA sequencing shows that p800 is related to vertebrate titin and nematode twitchin. Molecules of p800 could extend from the Z-disc a short way along thick filaments, forming a mechanical link between the two structures. All three high molecular weight proteins probably stabilize the structure of the myofibril.  相似文献   

7.
《Biophysical journal》2020,118(8):1921-1929
It has been accepted that the force produced by a skeletal muscle myofibril depends on its cross-sectional area but not on the number of active sarcomeres because they are arranged in series. However, a previous study performed by our group showed that blocking actomyosin interactions within an activated myofibril and depleting the thick filaments in one sarcomere unexpectedly reduced force production. In this study, we examined in detail how consecutive depletion of thick filaments in individual sarcomeres within a myofibril affects force production. Myofibrils isolated from rabbit psoas were activated and relaxed using a perfusion system. An extra microperfusion needle filled with a high-ionic strength solution was used to erase thick filaments in individual sarcomeres in real time before myofibril activation. The isometric forces were measured upon activation. The force produced by myofibrils with intact sarcomeres was significantly higher than the force produced by myofibrils with one or more sarcomeres lacking thick filaments (p < 0.0001) irrespective of the number of contractions imposed on the myofibrils and their initial sarcomere length. Our results suggest that the myofibril force is affected by intersarcomere dynamics and the number of active sarcomeres in series.  相似文献   

8.
Adenosine triphosphatase (ATPase) activity of myofibrils isolated from fresh muscle and the muscle stored at 4°C have been measured.

An increase in Mg-activated ATPase activity of myofibrils was caused by lengthened homogenization.

With the progress of aging of muscle, Mg-activated ATPase activity of myofibrils increased remarkably.

When myofibrils from pre-rigor and rigor muscle in 0.16 m KCl were treated with 0.6 m KCl-18 mm Tris-maleate solution (pH 7.0), Mg-activated ATPase activity of myofibrils at low ionic strength increased markedly. However, the Mg-activated ATPase activity of the myofibril isolated from the muscle stored at 4°C for 8 days (8-myofibril) increased slightly after the similar treatment.

The dependence of myofibrillar ATPase activity on KCl concentration became greater with the progress of aging of muscle.

These results may show that, as long as ATPase activity and the dependence of ATPase activity on KCl concentration are concerned, 8-myofibril is the most similar to the isolated actomyosin among myofibrils, although actomyosin in muscle may exist in a different form from that in solution. It is suggested that, with the progress of aging, the structural alteration of myofibril occurred and the myofibril became more susceptible to ATP-induced transformation.  相似文献   

9.
Striated muscle is a mechanical system that develops force and generates power in serving vital activities in the body. Striated muscle is a complex biological system; a single mammalian muscle fibre contains up to hundred or even more myofibrils in parallel connected via an inter-myofibril filament network. In one single myofibril thousands of sarcomeres are lined up as a series of linear motors. We recently demonstrated that half-sarcomeres (hS) in a single myofibril operate non-uniformly. We outline a mathematical framework based on cross-bridge kinetics for the simulation of the force response and length change of individual hS in a myofibril. The model describes the muscle myofibril in contraction experiments under various conditions. The myofibril is modeled as a multisegmental mechanical system of hS models, which have active and viscoelastic properties. In the first approach, a two-state cross-bridge formalism relates the hS force to the chemical kinetics of ATP hydrolysis, as first described by Huxley [1957. Muscle structure and theories of contraction. Prog. Biophys. Mol. Biol. 7, 255-318]. Two possible types of biological variability are introduced and modeled. Numerical simulations of a myofibril composed of four to eight hS show a non-uniform hS length distribution and complex internal dynamics upon activation. We demonstrate that the steady-state approximation holds only in restricted time zones during activation. Simulations of myofibril contraction experiments that reproduce the classic steady-state force-length and force-velocity relationships, strictly constrained or “clamped” in either end-held isometric or isotonic contraction conditions, reveal a small but conspicuous effect of hS dynamics on force.  相似文献   

10.
The mechanisms of myofibril growth proliferation were investigated in the red and white muscles of fish. In both types of muscle the ratio of lattice filament spacings between the Z disk and M line was found to be greater than that required for perfect transformation of a square into a hexagonal lattice. This mismatch was considered to result in the thin filaments being pulled obliquely instead of at right angles to the Z disk. The angle of pull of the thin filaments was measured in longitudinal sections. The splitting process was found to decrease the degree of pull. Splitting was also observed in transverse sections of the peripheral myofibrils. In both red and white fibres these myofibrils were found to commence splitting when they reached a size of approximately 1-2 mum diameter. Evidence from ultrastructural and autoradiographical studies suggested that growth of the myofibrils within the fibres is centrifugal. The outermost myofibrils appear to be the ones which are being built up and which split. The data indicated that in fish muscle a considerable number of filaments may be added to the daughter regions whilst splitting of the myofibril is still continuing.  相似文献   

11.
L Wells  K A Edwards    S I Bernstein 《The EMBO journal》1996,15(17):4454-4459
Myosin heavy chain (MHC) is the motor protein of muscle thick filaments. Most organisms produce many muscle MHC isoforms with temporally and spatially regulated expression patterns. This suggests that isoforms of MHC have different characteristics necessary for defining specific muscle properties. The single Drosophila muscle Mhc gene yields various isoforms as a result of alternative RNA splicing. To determine whether this multiplicity of MHC isoforms is critical to myofibril assembly and function, we introduced a gene encoding only an embryonic MHC into Drosophila melanogaster. The embryonic transgene acts in a dominant antimorphic manner to disrupt flight muscle function. The transgene was genetically crossed into an MHC null background. Unexpectedly, transformed flies expressing only the embryonic isoform are viable. Adult muscles containing embryonic MHC assemble normally, indicating that the isoform of MHC does not determine the dramatic ultrastructural variation among different muscle types. However, transformed flies are flightless and show reduced jumping and mating ability. Their indirect flight muscle myofibrils progressively deteriorate. Our data show that the proper MHC isoform is critical for specialized muscle function and myofibril stability.  相似文献   

12.
《The Journal of cell biology》1989,108(6):2355-2367
Successive stages in the disassembly of myofibrils and the subsequent assembly of new myofibrils have been studied in cultures of dissociated chick cardiac myocytes. The myofibrils in trypsinized and dispersed myocytes are sequentially disassembled during the first 3 d of culture. They split longitudinally and then assemble into transitory polygons. Multiples of single sarcomeres, the cardiac polygons, are analogous to the transitory polygonal configurations assumed by stress fibers in spreading fibroblasts. They differ from their counterparts in fibroblasts in that they consist of muscle alpha-actinin vertices and muscle myosin heavy chain struts, rather than of the nonmuscle contractile protein isoforms of stress fiber polygons. EM sections reveal the vertices and struts in cardiac polygons to be typical Z and A bands. Most cardiac polygons are eliminated by day 5 of culture. Concurrent with the disassembly and elimination of the original myofibrils new myofibrils are rapidly assembled elsewhere in the same myocyte. Without exception both distal tips of each nascent myofibril terminate in adhesion plaques. The morphology and composition of the adhesion plaques capping each end of each myofibril are similar to those of the termini of stress fibers in fibroblasts. However, whereas the adhesion complexes involving stress fibers in fibroblasts consist of vinculin/nonmuscle alpha-actinin/beta- and gamma-actins, the analogous structures in myocytes involving myofibrils consist of vinculin/muscle alpha-actinin/alpha-actin. The addition of 1.7-2.0 microns sarcomeres to the distal tips of an elongating myofibril, irrespective of whether the myofibril consists of 1, 10, or several hundred tandem sarcomeres, occurs while the myofibril appears to remain linked to its respective adhesion plaques. The adhesion plaques in vitro are the equivalent of the in vivo intercalated discs, both in terms of their molecular composition and with respect to their functioning as initiating sites for the assembly of new sarcomeres. How 1.7-2.0 microns nascent sarcomeres can be added distally during elongation while the tips of the myofibrils remain inserted into submembranous adhesion plaques is unknown.  相似文献   

13.
We used an integrative approach to probe the significance of the interaction between the relay loop and converter domain of the myosin molecular motor from Drosophila melanogaster indirect flight muscle. During the myosin mechanochemical cycle, ATP-induced twisting of the relay loop is hypothesized to reposition the converter, resulting in cocking of the contiguous lever arm into the pre-power stroke configuration. The subsequent movement of the lever arm through its power stroke generates muscle contraction by causing myosin heads to pull on actin filaments. We generated a transgenic line expressing myosin with a mutation in the converter domain (R759E) at a site of relay loop interaction. Molecular modeling suggests that the interface between the relay loop and converter domain of R759E myosin would be significantly disrupted during the mechanochemical cycle. The mutation depressed calcium as well as basal and actin-activated MgATPase (Vmax) by ∼ 60% compared to wild-type myosin, but there is no change in apparent actin affinity (Km). While ATP or AMP-PNP (adenylyl-imidodiphosphate) binding to wild-type myosin subfragment-1 enhanced tryptophan fluorescence by ∼ 15% or ∼ 8%, respectively, enhancement does not occur in the mutant. This suggests that the mutation reduces lever arm movement. The mutation decreases in vitro motility of actin filaments by ∼ 35%. Mutant pupal indirect flight muscles display normal myofibril assembly, myofibril shape, and double-hexagonal arrangement of thick and thin filaments. Two-day-old fibers have occasional “cracking” of the crystal-like array of myofilaments. Fibers from 1-week-old adults show more severe cracking and frayed myofibrils with some disruption of the myofilament lattice. Flight ability is reduced in 2-day-old flies compared to wild-type controls, with no upward mobility but some horizontal flight. In 1-week-old adults, flight capability is lost. Thus, altered myosin function permits myofibril assembly, but results in a progressive disruption of the myofilament lattice and flight ability. We conclude that R759 in the myosin converter domain is essential for normal ATPase activity, in vitro motility and locomotion. Our results provide the first mutational evidence that intramolecular signaling between the relay loop and converter domain is critical for myosin function both in vitro and in muscle.  相似文献   

14.
The Xin actin-binding repeat–containing proteins Xin and XIRP2 are exclusively expressed in striated muscle cells, where they are believed to play an important role in development. In adult muscle, both proteins are concentrated at attachment sites of myofibrils to the membrane. In contrast, during development they are localized to immature myofibrils together with their binding partner, filamin C, indicating an involvement of both proteins in myofibril assembly. We identify the SH3 domains of nebulin and nebulette as novel ligands of proline-rich regions of Xin and XIRP2. Precise binding motifs are mapped and shown to bind both SH3 domains with micromolar affinity. Cocrystallization of the nebulette SH3 domain with the interacting XIRP2 peptide PPPTLPKPKLPKH reveals selective interactions that conform to class II SH3 domain–binding peptides. Bimolecular fluorescence complementation experiments in cultured muscle cells indicate a temporally restricted interaction of Xin-repeat proteins with nebulin/nebulette during early stages of myofibril development that is lost upon further maturation. In mature myofibrils, this interaction is limited to longitudinally oriented structures associated with myofibril development and remodeling. These data provide new insights into the role of Xin actin-binding repeat–containing proteins (together with their interaction partners) in myofibril assembly and after muscle damage.  相似文献   

15.
Tropomodulin (Tmod) is an actin pointed-end capping protein that regulates actin dynamics at thin filament pointed ends in striated muscle. Although pointed-end capping by Tmod controls thin filament lengths in assembled myofibrils, its role in length specification during de novo myofibril assembly is not established. We used the Drosophila Tmod homologue, sanpodo (spdo), to investigate Tmod's function during muscle development in the indirect flight muscle. SPDO was associated with the pointed ends of elongating thin filaments throughout myofibril assembly. Transient overexpression of SPDO during myofibril assembly irreversibly arrested elongation of preexisting thin filaments. However, the lengths of thin filaments assembled after SPDO levels had declined were normal. Flies with a preponderance of abnormally short thin filaments were unable to fly. We conclude that: (a) thin filaments elongate from their pointed ends during myofibril assembly; (b) pointed ends are dynamically capped at endogenous levels of SPDO so as to allow elongation; (c) a transient increase in SPDO levels during myofibril assembly converts SPDO from a dynamic to a permanent cap; and (d) developmental regulation of pointed-end capping during myofibril assembly is crucial for specification of final thin filament lengths, myofibril structure, and muscle function.  相似文献   

16.
Insect flight muscle is known for its crystal-quality regularity of contractile protein arrangement within a sarcomere. We have previously shown by X-ray microdiffraction that the crystal-quality regularity in bumble-bee flight muscle is not confined within a sarcomere, but extends over the entire length of a myofibril (>1000 sarcomeres connected in series). Because of this, the whole myofibril may be regarded as a millimetre-long, natural single protein crystal. Using bright X-ray beams from a synchrotron radiation source, we examined how this long-range crystallinity has evolved among winged insects. We analysed >4600 microdiffraction patterns of quick-frozen myofibrils from 50 insect species, covering all the major winged insect orders. The results show that the occurrence of such long-range crystallinity largely coincides with insect orders with asynchronous muscle operation. However, a few of the more skilled fliers among lower-order insects apparently have developed various degrees of structural regularity, suggesting that the demand for skillful flight has driven the lattice structure towards increased regularity.  相似文献   

17.
The planthopper insect Issus produces one of the fastest and most powerful jumps of any insect. The jump is powered by large muscles that are found in its thorax and that, in other insects, contribute to both flying and walking movements. These muscles were therefore analysed by transmission electron microscopy to determine whether they have the properties of fast-acting muscle used in flying or those of more slowly acting muscle used in walking. The muscle fibres are arranged in a parallel bundle that inserts onto an umbrella-shaped tendon. The individual fibres have a diameter of about 70 μm and are subdivided into myofibrils a few micrometres in diameter. No variation in ultrastructure was observed in various fibres taken from different parts of the muscle. The sarcomeres are about 15 μm long and the A bands about 10 μm long. The Z lines are poorly aligned within a myofibril. Mitochondrial profiles are sparse and are close to the Z lines. Each thick filament is surrounded by 10–12 thin filaments and the registration of these arrays of filaments is irregular. Synaptic boutons from the two excitatory motor neurons to the muscle fibres are characterised by accumulations of ~60 translucent 40-nm-diameter vesicle profiles per section, corresponding to an estimated 220 vesicles, within a 0.5-μm hemisphere at a presynaptic density. All ultrastructural features conform to those of slow muscle and thus suggest that the muscle is capable of slow sustained contractions in keeping with its known actions during jumping. A fast and powerful movement is thus generated by a slow muscle.  相似文献   

18.
Hamada G. S. and Wertheim G. 1978. Mastophorus muris (Nematoda: Spirurina): ultrastructure of somatic muscle development. International Journal for Parasitology8; 405–414. The ultrastructure of the somatic muscle cells of the adult and six developmental stages of Mastophorus were studied. In all stages the cells consisted of a contractile region containing myofibrils separated by dense bands and a noncontractile region with nuclei, mitochondria, glycogen, lipid droplets and vesicles. Two sizes of myofilaments were present. The dense band contained T tubules and sarcoplasmic reticulum, and, in more advanced stages, support filaments, glycogen and dense bodies. The contractile region of the adult muscle cell consisted of several hundred irregularly shaped myofibrils arranged in a random pattern. This pattern of myofibrils was defined as irregular-coelomyarian. The third stage larva had a shallow-coelomyarian myofibril configuration, which changed to coelomyarian in the late third stage through the addition of new myofibrils at the apical contractile border. In the fourth stage larvae, the subdivision of existing myofibrils changed the pattern to irregular-coelomyarian.  相似文献   

19.
How proteins assemble into sarcomeric arrays to form myofibrils is controversial. Immunostaining and transfections of cultures of cardiomyocytes from 10-day avian embryos led us to propose that assembly proceeded in three stages beginning with the formation of premyofibrils followed by nascent myofibrils and culminating in mature myofibrils. However, premyofibril and nascent myofibril arrays have not been detected in early cardiomyocytes examined in situ in the forming avian heart suggesting that the mechanism for myofibrillogenesis differs in cultured and uncultured cells. To address this question of in situ myofibrillogenesis, we applied non-enzymatic procedures and deconvolution imaging techniques to examine early heart forming regions in situ at 2- to 13-somite stages (beating begins at the 9-somite stage), a time span of about 23 h. These approaches enabled us to detect the three myofibril stages in developing hearts supporting a three-step model of myofibrillogenesis in cardiomyocytes, whether they are present in situ, in organ cultures or in tissue culture. We have also discovered that before titin is organized the first muscle myosin filaments are about half the length of the 1.6 μm filaments present in mature A-bands. This supports the proposal that titin may play a role in length determination of myosin filaments.  相似文献   

20.
吴孔明  郭予元 《昆虫学报》1997,40(-1):79-83
利用电子显微镜观测表明,棉铃虫Helicoverpa rmigera (Hubner)飞翔肌的肌原纤维由400~800根肌球蛋白丝组成,每根肌球蛋白由6根肌动蛋白丝环绕排列成六角形,肌节长度2.0~3.5μm,线粒体占飞翔肌的体积达42.38%~48.57%,微气管组织较为发达。初羽化棉铃虫肌原纤维和线粒体的发育基本完成,横管系统的发育相对较慢,羽化3日后趋于成熟,至5日龄占飞翔肌的体积达3.31%~3.54%。表明棉铃虫具有适宜飞行的飞翔肌结构。采自渤海海面距海岸线80km的迁飞蛾子飞翔肌基本结构和实验种群无明显的区别,但迁飞过程中的能量代谢导致线粒体内脊疏松而出现大量空洞。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号