首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intact cores from the upper soil profile and surface litter were collected at the peak of the dry season and during the rainy period in the tropical deciduous forest of the Chamela region, Jalisco, México, to (1) analyze upper soil phosphorus (P) movement and retention, (2) compare soil P dynamic pools (soluble, bicarbonate, and microbial) in dry and rainy seasons, and (3) determine the response of these P pools to wetting. Unperturbed litter-soil cores were treated in the laboratory with either 10 mm or 30 mm of simulated rain with carrier-free 32P and compared to a control (no water addition) to determine the fate and retention of added P. 31P concentrations and pools in most litter and soil fractions were higher in the dry than in the rainy season. Soluble P was 0.306 g/m2 and microbial P was 0.923 g/m2 in the dry season (litter plus soil) versus 0.041 (soluble) and 0.526 (microbial) g P/m2 in the rainy season. After water addition, rainy-season cores retained 99.9 and 94% of 32P in the 10- and 30-mm treatments, respectively. Dry-season samples retained 98.9 and 80% of inputs in the same treatments. Retention after wetting occurred mostly in soil (bicarbonate and microbial fractions). Simulated rainfall on rainy-season soils increased P immobilization. On the other hand, simulated rainfall on dry-season soils released P through mineralization. The P release represents between 46 and 99% of the annual litterfall return. Our results suggest that both soluble and microbial P constitute important sources for initiation of plant growth at the onset of the rainy season in tropical dry forest. Received: 23 September 1997 / Accepted: 2 February 1998  相似文献   

2.
The role of secondary vegetation in restoring soil fertility during shifting cultivation in the tropics is well known. Yet the effect of secondary succession on the spatial patterns of soil properties has received little attention. To determine whether changes in the plant community as a result of shifting cultivation affect the scale of spatial dependence for biologically important soil nutrients, we sampled three dry tropical forest stands in Campeche, Mexico. These stands represented a gradient of cultivation history: one mature forest stand, a forest fallow that had undergone one cultivation-fallow cycle, and a forest fallow that had undergone two cultivation-fallow cycles. We used an analysis of semivariance to quantify the scale and magnitude of spatial dependence for organic matter content (OM), phosphorus (P), potassium (K), and aluminum (Al) in each stand. The scale of spatial dependence varied with cultivation history, but the degree of spatial dependence did not differ among stands. In the mature forest P and K were autocorrelated over distances >7.5 m. In the forest fallows 48–88% of the variation in soil P and K was autocorrelated over distances up to 1.1–5.1 m. In contrast, the range of autocorrelation for Al (∼2.5 m) did not differ among stands. We conclude that shifting cultivation changes the range of autocorrelation for biologically important soil nutrients at a scale that may influence plant growth. The finer scaled pattern of soil nutrients in forest fallows is likely to persist with continued shifting cultivation, since fallows are cleared every 3–15 years.  相似文献   

3.
Questions: How are leaf attributes and relative growth rate (RGR) of the dominant tree species of tropical deciduous forest (TDF) affected by seasonal changes in soil moisture content (SMC)? What is the relationship of functional attributes with each other? Can leaf attributes singly or in combination predict the growth rate of tree species of TDF? Location: Sonebhadra district of Uttar Pradesh, India. Methods: Eight leaf attributes, specific leaf area (SLA); leaf carbon concentration (LCC); leaf nitrogen concentration (LNC); leaf phosphorus concentration (LPC); chlorophyll concentration (Chl), mass‐based stomatal conductance (Gsmass); mass based photosynthetic rate (Amass); intrinsic water use efficiency (WUEi); and relative growth rate (RGR), of six dominant tree species of a dry tropical forest on four sites were analysed for species, site and season effects over a 2‐year period. Step‐wise multiple regression was performed for predicting RGR from mean values of SMC and leaf attributes. Path analysis was used to determine which leaf attributes influence RGR directly and which indirectly. Results: Species differed significantly in terms of all leaf attributes and RGR. The response of species varied across sites and seasons. The attributes were positively interrelated, except for WUEi, which was negatively related to all other attributes. The positive correlation was strongest between Gsmass and Amass and the negative correlation was strongest between Gsmass and WUEi. Differences in RGR due to site were not significant when soil moisture was controlled, but differences due to season remained significant. The attributes showed plasticity across moisture gradients, which differed among attributes and species. Gsmass was the most plastic attribute. Among the six species, Terminalia tomentosa exhibited the greatest plasticity in six functional attributes. In the step‐wise multiple regression, Amass, SLA and Chl among leaf attributes and SMC among environmental factors influenced the RGR of tree species. Path analysis indicated the importance of SLA, LNC, Chl and Amass in determining RGR. Conclusion: A mass, SMC, SLA and Chl in combination can be used to predict RGR but could explain only three‐quarters of the variability in RGR, indicating that other traits/factors, not studied here, are also important in modulating growth of tropical trees. RGR of tree species in the dry tropical environment is determined by soil moisture, whereas the response of mature trees of different species is modulated by alterations in key functional attributes such as SLA, LNC and Chl.  相似文献   

4.
Dung beetles (Scarabaeinae) are conspicuous components in most terrestrial ecosystems, performing important ecological functions and services. Being sensitive to several types of disturbance, they have been successfully used as indicators of habitat change. Dung beetle communities in tropical rainforests have been well studied, but considerably less information is available for tropical dry forests. In this study I sampled dung beetles in two undisturbed habitats, deciduous forest and semideciduous forest, and two disturbed habitats, secondary forest and open area habitat, in the Chamela-Cuixmala region of western Mexico. Dung beetle species with high indicator value for each habitat were identified. Beetle abundance, observed species richness and estimated species richness were similar in the three forest habitats, but significantly lower in the open area habitat. A more detailed analysis of species-specific abundances in the three forest habitats revealed some differences. Transects of one of the undisturbed habitats, the deciduous forest, were more similar to the non-adjacent transects of disturbed secondary forest, than to the adjacent undisturbed semideciduous forest transects. Unlike studies in other tropical sites that have found a decrease in equitability in Scarabaeinae assemblages between undisturbed forest and disturbed habitat (particularly open habitats), in the Chamela-Cuixmala region all four habitats showed similar low equitability in community structure, with two or three very dominant species.  相似文献   

5.
Phosphorus cycling in a Mexican tropical dry forest ecosystem   总被引:10,自引:4,他引:6  
The study was conducted in five contiguous small watersheds (12–28 ha) gauged for long-term ecosystem research. Five 80 × 30 m plots were used for the study. We quantified inputs from the atmosphere, dissolved and particulate-bound losses, throughfall and litterfall fluxes, standing crop litter and soil available P pools. Mean P input and output for a six-year period was 0.16 and 0.06 kgha–1yr–1, respectively. Phosphorus concentration increased as rainfall moved through the canopy. Annual P returns in litterfall (3.88 kg/ha) represented more than 90% of the total aboveground nutrient return to the forest floor. Phosphorus concentration in standing litter (0.08%) was lower than that in litterfall (0.11%). Phosphorus content in the litterfall was higher at Chamela than at other tropical dry forests. Mean residence time on the forest floor was 1.2 yr for P and 1.3 yr for organic matter. Together these results suggest that the forest at Chamela may not be limited by P availability and suggest a balance between P immobilization and uptake. Comparison of P losses in stream water with input rates from the atmosphere for the six-year period showed that inputs were higher than outputs. Balances calculated for a wet and a dry year indicated a small P accumulation in both years.  相似文献   

6.
Seasonal variation of dissolved organic C (DOC) and its effects on microbial activity and N dynamics were studied during two consecutive years in soils with different organic C concentrations (hilltop and hillslope) in a tropical deciduous forest of Mexico. We found that DOC concentrations were higher at the hilltop than at the hillslope soils, and in both soils generally decreased from the dry to the rainy season during the two study years. Microbial biomass and potential C mineralization rates, as well as dissolved organic N (DON) and NH4+ concentrations and net N immobilization were higher in soils with higher DOC than in soils with lower DOC. In contrast, net N immobilization and NH4+ concentration were depleted in the soil with lowest DOC, whereas NO3 concentrations and net nitrification increased. Negative correlations between net nitrification and DOC concentration suggested that NH4+ was transformed to NO3 by nitrifiers when the C availability was depleted. Taken together, our results suggest that available C appears to control soil microbial activity and N dynamics, and that microbial N immobilization is facilitated by active heterotrophic microorganisms stimulated by high C availability. Soil autotrophic nitrification is magnified by decreases in C availability for heterotrophic microbial activity. This study provides an experimental data set that supports the conceptual model to show and highlight that microbial dynamics and N transformations could be functionally coupled with DOC availability in the tropical deciduous forest soils. Responsible Editor: Chris Neill  相似文献   

7.
8.
Summary Clusters of 2–4 bare, deciduous hardwood trees and woody vines in a dry upland forest in Costa Rica were surrounded by scaffolding and rehydration was induced during the dry season by irrigation of 9–50 m2 plots with 200 mm water. The resulting changes in water status preceding bud break were monitored. Following irrigation, stem water potentials increased from < –4 MPa to about –1.5 MPa within 24 h and to > –0.3 MPa within 48 h. Rehydration of stem tissues by lateral transport, measured as an increase in electric conductivity, continued for 4–8 days. Terminal flower buds in Tabebuia ochracea began to expand 48 h after irrigation and trees were in full bloom 4 days later. In all experimental species, lateral vegetative buds began to expand 5–7 days after irrigation and leaves were fully expanded 2 weeks later. After the first rains of the rainy season (100 mm in 48 hr) all trees in the dry forest rehydrated and leaves emerged in synchrony slightly faster than after irrigation. In response to rain or irrigation drought-stressed tropical hardwood trees thus rehydrated at rates similar to those of desert succulents and their development resumed much faster than that of deciduous cold-temperate trees in spring.  相似文献   

9.
福建东山短枝木麻黄小枝氮磷含量及其再吸收率季节动态   总被引:3,自引:0,他引:3  
叶功富  张立华  林益明  王亨  周海超  曾琦 《生态学报》2009,29(12):6519-6526
对福建东山赤山林场短枝木麻黄纯林小枝中的N和P含量、N ∶ P比、养分再吸收率的季节动态进行研究.结果表明,随着小枝的成熟和衰老,各季节N和P的含量依次降低,其中衰老小枝中N和P含量分别为(3.97±0.21)~(8.64±0.58) mg · g~(-1)和(0.04±0.03)~(0.10±0.03) mg · g~(-1),基本上表现为N和P的完全再吸收.成熟小枝N ∶ P比的季节动态介于(18.67±3.24)~(37.98±1.32)之间,均高于16,表明木麻黄的生长受到不同程度的P限制.N、P再吸收率的季节变化分别为(51.02±4.66)%~(63.00±8.61)%和(81.24 ±5.08)%~(91.78±5.84)%,P再吸收率显著高于N.N和P的再吸收率之间以及成熟叶中N、P含量与二者再吸收率之间没有显著相关性,但在衰老叶中存在显著负相关,表明养分再吸收程度越高,其再吸收率就越高.因此,木麻黄通过小枝衰老过程中的养分再吸收,减少养分的损失,从而适应贫瘠的立地条件.  相似文献   

10.
Water uptake and transport were studied in eight liana species in a seasonally dry tropical forest on Barro Colorado Island, Panama. Stable hydrogen isotope composition (D) of xylem and soil water, soil volumetric water content (v), and basal sap flow were measured during the 1997 and 1998 dry seasons. Sap flow of several neighboring trees was measured to assess differences between lianas and trees in magnitudes and patterns of daily sap flow. Little seasonal change in v was observed at 90–120 cm depth in both years. Mean soil water D during the dry season was –19 at 0–30 cm, –34 at 30–60 cm, and –50 at 90–120 cm. Average values of xylem D among the liana species ranged from –28 to –44 during the middle of the dry season, suggesting that water uptake was restricted to intermediate soil layers (30–60 cm). By the end of the dry season, all species exhibited more negative xylem D values (–41 to –62), suggesting that they shifted to deeper water sources. Maximum sap flux density in co-occurring lianas and trees were comparable at similar stem diameter (DBH). Furthermore, lianas and trees conformed to the same linear relationship between daily sap flow and DBH. Our observations that lianas tap shallow sources of soil water at the beginning of the dry season and that sap flow is similar in lianas and trees of equivalent stem diameter do not support the common assumptions that lianas rely primarily on deep soil water and that they have higher rates of sap flow than co-occurring trees of similar stem size.  相似文献   

11.
 A series of horizontal and vertical measurements of dew deposition and dew duration were carried out in a tropical dry deciduous forest in western Mexico (19° 30′ N, 105° 03′ W). The effect of dew on transpiration in heliophile species was also investigated. The amount of dew was very variable with no temporal or spatial pattern. The amount of dew measured at two horizontal transects (maximum and minimum) (at heights of 0.20 m and 1.30 m above ground level) was from 0.014 to 0.203 mm and from 0.013 to 0.061 mm in the middle and at the end of the dry season, respectively. Dew deposition at different vertical levels (0.50–12.5 m height) ranged from 0.04 to 0.36 mm. The duration of dew formation ranged between 60 and 129 min after sunrise above the canopy (a height of 11 m), and between 259 and 290 min after sunrise at a height of 2 m. Daily transpiration rates were 883 and 632 g m–2 d–1 in Coccoloba liebmannii and 538 and 864 g m–2 d–1 in Jacquinia pungens in January and April, respectively. Transpiration was restricted from sunrise to early afternoon in April, as a result of the pronounced midday closure of stomata in both species. The reduction of transpiration by dew ranged from 13.2 to 50.1 g m–2 d–1 and from 4.5 to 77.7 g m–2 d–1 for C. liebmannii and J. pungens, respectively. Dew can play an important role in enhancing the survival of heliophile species in the dry season by reducing transpiration rates during the morning. Received: 30 April 1998 / Accepted: 14 December 1998  相似文献   

12.
日益频发的干旱严重威胁着全球森林生态系统的功能。由于干旱胁迫抑制了土壤养分可利用性,因此植物的养分利用和重吸收效率对 森林生态系统的功能以及生物地球化学循环至关重要。然而,目前对于植物养分利用和重吸收效率在干旱条件下的动态响应规律的理解十分 有限,且在(亚)热带区域尤为明显。因此,本研究主要探讨了在湿热森林中不同植物物种在不同月份遭受干旱胁迫时,其养分利用和重吸收 效率的重要性是否会发生变化以及如何变化。本研究在2016年10月–2019年5月期间,依托一处位于亚热带常绿阔叶林的隔离70%自然穿透 雨的干旱实验平台,采集了木荷(Schima superba)和石栎(Lithocarpus glaber)两个物种在不同月份的鲜叶及凋落叶,用于分析干旱对两种植物叶片氮磷利用和重吸收效率的影响(NUE和PUE,NRE和PRE)。研究结果表明,干旱对氮磷利用和重吸收效率的作用在不同植物物种和月份之间有差异。基于两年的观测结果显示,干旱对木荷的养分利用和重吸收效率无显著影响,却使石栎的NUE、NRE和PRE分别降低了3.4%、 20.2%和7.1%。另外,2017 年夏季发生的自然干旱进一步加剧了干旱对石栎养分重吸收的负作用。在2017年8月,石栎的NUE和PUE在干旱处理下分别降低了17.2%和58.1%,而NRE和PRE分别下降了56.5%和53.8%。此外,石栎的NRE,PRE和NUE对干旱的响应显著依赖于土壤水分条件,即当土壤湿度降至约9 v/v%时,存在一个阈值使干旱处理的效果从无影响转变为负作用。我们的结果表明,在干旱条件下亚热带常绿阔叶林树木的养分利用呈现出了物种特定的阈值响应。  相似文献   

13.
In the present study the linkage between hydraulic, photosynthetic and phenological properties of tropical dry forest trees were investigated. Seasonal patterns of stem‐specific conductivity (KSP) described from 12 species, including deciduous, brevi‐deciduous and evergreen species, indicated that only evergreen species were consistent in their response to a dry‐to‐wet season transition. In contrast, KSP in deciduous and brevi‐deciduous species encompassed a range of responses, from an insignificant increase in KSP following rains in some species, to a nine‐fold increase in others. Amongst deciduous species, the minimum KSP during the dry season ranged from 6 to 56% of wet season KSP, indicating in the latter case that a significant portion of the xylem remained functional during the dry season. In all species and all seasons, leaf‐specific stem conductivity (KL) was strongly related to the photosynthetic capacity of the supported foliage, although leaf photosynthesis became saturated in species with high KL. The strength of this correlation was surprising given that much of the whole‐plant resistance appears to be in the leaves. Hydraulic capacity, defined as the product of KL and the soil–leaf water potential difference, was strongly correlated with the photosynthetic rate of foliage in the dry season, but only weakly correlated in the wet season.  相似文献   

14.
The nitrogen and phosphorus content of two temperate fishes, Rutilus rutilus and Perca fluviatilis , and six tropical fishes, Oreochromis niloticus , Cichla monoculus , Serrassalmus rhombeus , Plagioscion squamosissimus , Prochilodus brevis and Hoplias malabaricus , were investigated to test the hypothesis that variation in body P content and N:P ratio is related to body size. Regressions of %P and N:P ratios against fish size (length and mass) confirmed the hypothesis for P. fluviatilis and P. squamosissimus , suggesting that body size is an important factor driving body P content and N:P ratios in some fishes. Moreover, significant increases in %N and N:P ratio with body size was found for H. malabaricus , a common piscivorous fish of the Neotropics. Interspecific variation in %P and N:P ranged two-fold and significant differences ( P < 0·05) were found among the tested species. The mean ± s . d . elemental content across all fishes ( n = 170) was 10·35 ± 1·29% for N and 3·05 ± 0·82% for P, while the N:P ratio was 8·00 ± 2·14. Data on fish body nutrient content and ratio will improve parameterization of bioenergetics and mass balance models and help clarify the role of fishes in nutrient cycles in both temperate and tropical freshwaters.  相似文献   

15.
Logging, pervasive across the lowland tropics, affects millions of hectares of forest, yet its influence on nutrient cycling remains poorly understood. One hypothesis is that logging influences phosphorus (P) cycling, because this scarce nutrient is removed in extracted timber and eroded soil, leading to shifts in ecosystem functioning and community composition. However, testing this is challenging because P varies within landscapes as a function of geology, topography and climate. Superimposed upon these trends are compositional changes in logged forests, with species with more acquisitive traits, characterized by higher foliar P concentrations, more dominant. It is difficult to resolve these patterns using traditional field approaches alone. Here, we use airborne light detection and ranging‐guided hyperspectral imagery to map foliar nutrient (i.e. P, nitrogen [N]) concentrations, calibrated using field measured traits, over 400 km2 of northeastern Borneo, including a landscape‐level disturbance gradient spanning old‐growth to repeatedly logged forests. The maps reveal that canopy foliar P and N concentrations decrease with elevation. These relationships were not identified using traditional field measurements of leaf and soil nutrients. After controlling for topography, canopy foliar nutrient concentrations were lower in logged forest than in old‐growth areas, reflecting decreased nutrient availability. However, foliar nutrient concentrations and specific leaf area were greatest in relatively short patches in logged areas, reflecting a shift in composition to pioneer species with acquisitive traits. N:P ratio increased in logged forest, suggesting reduced soil P availability through disturbance. Through the first landscape scale assessment of how functional leaf traits change in response to logging, we find that differences from old‐growth forest become more pronounced as logged forests increase in stature over time, suggesting exacerbated phosphorus limitation as forests recover.  相似文献   

16.
Lianas are an important component of most tropical forests, where they vary in abundance from high in seasonal forests to low in aseasonal forests. We tested the hypothesis that the physiological ability of lianas to fix carbon (and thus grow) during seasonal drought may confer a distinct advantage in seasonal tropical forests, which may explain pan-tropical liana distributions. We compared a range of leaf-level physiological attributes of 18 co-occurring liana and 16 tree species during the wet and dry seasons in a tropical seasonal forest in Xishuangbanna, China. We found that, during the wet season, lianas had significantly higher CO2 assimilation per unit mass (A mass), nitrogen concentration (N mass), and δ13C values, and lower leaf mass per unit area (LMA) than trees, indicating that lianas have higher assimilation rates per unit leaf mass and higher integrated water-use efficiency (WUE), but lower leaf structural investments. Seasonal variation in CO2 assimilation per unit area (A area), phosphorus concentration per unit mass (P mass), and photosynthetic N-use efficiency (PNUE), however, was significantly lower in lianas than in trees. For instance, mean tree A area decreased by 30.1% from wet to dry season, compared with only 12.8% for lianas. In contrast, from the wet to dry season mean liana δ13C increased four times more than tree δ13C, with no reduction in PNUE, whereas trees had a significant reduction in PNUE. Lianas had higher A mass than trees throughout the year, regardless of season. Collectively, our findings indicate that lianas fix more carbon and use water and nitrogen more efficiently than trees, particularly during seasonal drought, which may confer a competitive advantage to lianas during the dry season, and thus may explain their high relative abundance in seasonal tropical forests.  相似文献   

17.
Green and senesced leaf nitrogen (N) and phosphorus (P) concentrations of different plant functional groups in savanna communities of Kruger National Park, South Africa were analyzed to determine if nutrient resorption was regulated by plant nutritional status and foliar N:P ratios. The N and P concentrations in green leaves and the N concentrations in senesced leaves differed significantly between the dominant plant functional groups in these savannas: fine-leaved trees, broad-leaved trees and grasses. However, all three functional groups reduced P to comparable and very low levels in senesced leaves, suggesting that P was tightly conserved in this tropical semi-arid savanna ecosystem. Across all functional groups, there was evidence for nutritional control of resorption in this system, with both N and P resorption efficiencies decreasing as green leaf nutrient concentrations increased. However, specific patterns of resorption and the functional relationships between nutrient concentrations in green and senesced leaves varied by nutrient and plant functional group. Functional relationships between N concentrations in green and senesced leaves were indistinguishable between the dominant groups, suggesting that variation in N resorption efficiency was largely the result of inter-life form differences in green leaf N concentrations. In contrast, observed differences in P resorption efficiencies between life forms appear to be the result of both differences in green leaf P concentrations as well as inherent differences between life forms in the fraction of green leaf P resorbed from senescing leaves. Our results indicate that foliar N:P ratios are poor predictors of resorption efficiency in this ecosystem, in contrast to N and P resorption proficiencies, which are more responsive to foliar N:P ratios.  相似文献   

18.
Important phenological activities in seasonally dry tropical forest species occur within the hot‐dry period when soil water is limiting, while the subsequent wet period is utilized for carbon accumulation. Leaf emergence and leaf area expansion in most of these tree species precedes the rainy season when the weather is very dry and hot and the soil cannot support nutrient uptake by the plants. The nutrient requirement for leaf expansion during the dry summer period, however, is substantial in these species. We tested the hypothesis that the nutrients withdrawn from the senescing leaves support the emergence and expansion of leaves in dry tropical woody species to a significant extent. We examined the leaf traits (with parameters such as leaf life span, leaf nutrient content and retranslocation of nutrients during senescence) in eight selected tree species in northern India. The concentrations of N, P and K declined in the senescing foliage while those of Na and Ca increased. Time series observations on foliar nutrients indicated a substantial amount of nutrient resorption before senescence and a ‘tight nutrient budgeting’. The resorbed N‐mass could potentially support 50 to 100% and 46 to 80% of the leaf growth in terms of area and weight, respectively, across the eight species studied. Corresponding values for P were 29 to 100% and 20 to 91%, for K 29 to 100% and 20 to 57%, for Na 3 to 100% and 1 to 54%, and for Ca 0 to 32% and 0 to 30%. The species differed significantly with respect to their efficiency in nutrient resorption. Such interspecific differences in leaf nutrient economy enhance the conservative utilization of soil nutrients by the dry forest community. This reflects an adaptational strategy of the species growing on seasonally dry, nutrient‐poor soils as they tend to depend more or less on efficient internal cycling and, thus, utilize the retranslocated nutrients for the production of new foliage biomass in summer when the availability of soil moisture and nutrients is severely limited.  相似文献   

19.
We used experimental defoliations to examine the effect of leaf age on the timing of leaf shedding in two tropical dry forest trees. Trees of the deciduous Bombacopsis quinata (bombacaceae, a.k.a. Pachira quinata) and the brevi-deciduous Astronium graveolens (anacardiaceae) were manually defoliated for three times during the rainy season. All trees started to produce a new crown of leaves 2 weeks after defoliation, and continued expanding leaves throughout the rainy season. At the transition to the dry season, the experimental groups consisted of trees with known differences in maximum leaf age. Defoliations resulted in declines in stem growth but did not affect the mineral content or water relations of the leaves subsequently produced. There was no effect of leaf age on the timing of leaf abscission in B. quinata. In A. graveolens, the initiation of leaf shedding followed in rank order, the maximum leaf age of the four treatments, but there was substantial coherence among treatments in the major period of leaf abscission such that trees completed leaf shedding at the same time. In the two species, leaf water potential (ΨL) and stomatal conducantce (g S) declined with the onset of the dry season, reaching minimum values of –0.9 MPa in P. quinata and <–2.0 MPa in A. graveolens. Within each species, leaves of different age exhibited similar ΨL and g S at the onset of drought, and then decreased at a similar rate as the dry season progressed. Overall, our study suggests that the environmental factors were more important than leaf age in controlling the timing of leaf shedding.  相似文献   

20.
We investigated how water transport capacity, wood density and wood anatomy were related to leaf photosynthetic traits in two lowland forests in Panama. Leaf-specific hydraulic conductivity (kL) of upper branches was positively correlated with maximum rates of net CO2 assimilation per unit leaf area (Aarea) and stomatal conductance (gs) across 20 species of canopy trees. Maximum kL showed stronger correlation with Aarea than initial kL suggesting that allocation to photosynthetic potential is proportional to maximum water transport capacity. Terminal branch kL was negatively correlated with Aarea/gs and positively correlated with photosynthesis per unit N, indicating a trade-off of efficient use of water against efficient use of N in photosynthesis as water transport efficiency varied. Specific hydraulic conductivity calculated from xylem anatomical characteristics (ktheoretical) was positively related to Aarea and kL, consistent with relationships among physiological measurements. Branch wood density was negatively correlated with wood water storage at saturation, kL, Aarea, net CO2 assimilation per unit leaf mass (Amass), and minimum leaf water potential measured on covered leaves, suggesting that wood density constrains physiological function to specific operating ranges. Kinetic and static indices of branch water transport capacity thus exhibit considerable co-ordination with allocation to potential carbon gain. Our results indicate that understanding tree hydraulic architecture provides added insights to comparisons of leaf level measurements among species, and links photosynthetic allocation patterns with branch hydraulic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号