首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Crohn's disease (CD) is a chronic intestinal inflammatory pathology, which develops as a result of innate immune signals, such as the activation of Toll-like receptors (TLRs), and adaptive immune signals, including Th1 cytokine release. We have recently demonstrated in TNBS-induced colitis, a murine model of CD, that VIP plays a homeostatic role, by reducing TNBS-induced TLR2 and TLR4 expression to control levels. The purpose of this paper is to elucidate for the first time, the physiological relevance of VIP specific control of innate and adaptive immune responses through TLR2 and TLR4 ligands. In addition, we investigated the effect of VIP on regulatory activity of T regulatory (Treg) cells in the TNBS-colitis model. First, we found that VIP downregulated the inflammatory response elicited in mesenteric lymph node cell cultures by treatment with the TLR2 ligand Pam3Cys, or the TLR4 ligand lipopolysaccharide (LPS), reducing the production of the chemokine CXCL1. Also, treatment with VIP impaired the induction of Th1 responses by decreasing p70 interleukin (IL)-12 and interferon gamma (IFN-γ) levels after TLR2/TLR4 stimulation in culture. Besides, VIP treatment restored in vivo the numbers of TLR2 and TLR4 positive CD4+CD25+ T lymphocytes, augmented by TNBS administration, and increased the expression of molecules involved in regulatory T cell function, such as Foxp3 and TGF-β. In conclusion, the ability of VIP to down-regulate uncontrolled inflammation by targeting TLR-mediated responses and regulatory T cell activity could be used as a new alternative therapy for intestinal inflammatory/autoimmune disorders.  相似文献   

4.
5.
Recognition of conserved features of infectious agents by innate pathogen receptors plays an important role in initiating the adaptive immune response. We have investigated early changes occurring among T cells after injection of TLR agonists into mice. Widespread, transient phenotypic activation of both naive and memory T cells was observed rapidly after injection of molecules acting through TLR3, -4, -7, and -9, but not TLR2. T cell activation was shown to be mediated by a combination of IFN-alphabeta, secreted by dendritic cells (DCs), and IFN-gamma, secreted by NK cells; notably, IFN-gamma-secreting NK cells expressed CD11c and copurified with DCs. Production of IFN-gamma by NK cells could be stimulated by DCs from TLR agonist-injected mice, and although soluble factors secreted by LPS-stimulated DCs were sufficient to induce IFN-gamma, maximal IFN-gamma production required both direct contact of NK cells with DCs and DC-secreted cytokines. In vitro, IFN-alphabeta, IL-18, and IL-12 all contributed to DC stimulation of NK cell IFN-gamma, whereas IFN-alphabeta was shown to be important for induction of T cell bystander activation and NK cell IFN-gamma production in vivo. The results delineate a pathway involving innate immune mediators through which TLR agonists trigger bystander activation of T cells.  相似文献   

6.
The ability of heat shock proteins to (1) chaperone peptides, including antigenic peptides; (2) interact with antigen-presenting cells through a receptor; (3) stimulate antigen-presenting cells to secrete inflammatory cytokines; and (4) mediate maturation of dendritic cells, makes them a unique starting point for generation of immune responses. These properties also permit the use of heat shock proteins for development of a new generation of prophylactic and therapeutic vaccines against cancers and infectious diseases.  相似文献   

7.
LPS is the major active agent in the pathogenesis of Gram-negative septic shock. In this report we have studied the influence of concurrent viral infection on the outcome of LPS-induced shock. We find that infection with vesicular stomatitis virus sensitizes mice to LPS at an early time point following infection. Treatment of mice with the chemical IFN inducer, polyinosinic:polycytidylic acid, has a similar effect. This hypersensitivity to LPS correlated with hyperproduction of TNF-alpha in vivo. The cellular and molecular mechanisms underlying this phenomenon were investigated using Ab-depleted and gene-targeted mice. Our results revealed that while NK cell depletion and elimination of IFN-gamma partially protected against the sensitizing effects of vesicular stomatitis virus and polyinosinic:polycytidylic acid, the most striking effect was observed in IFN-alphabetaR-deficient mice. Thus hyperproduction of TNF-alpha was completely abrogated in IFN-alphabetaR-deficient mice, indicating that the principal mechanism underlying rapid virus-induced sensitization to LPS is an IFN-alphabeta-mediated priming of mice for an augmented production of TNF-alpha in response to LPS. This conclusion was further supported by the finding that pretreatment of mice with rIFN-alphabeta mimicked the effect of viral infection. In conclusion, our results reveal a previously unrecognized proinflammatory effect of IFN-alphabeta and point to a new pathway through which viral infection may influence the outcome of concurrent bacterial infection.  相似文献   

8.
The innate immune system senses pathogens largely through signals initiated by proteins known as 'Toll-like receptors' (TLRs), of which ten representatives are known to be encoded in the human genome. The understanding of the biochemical circuitry that maintains the innate capacity for immune recognition and response has loomed as a major hurdle in immunology. A total of five adapter proteins with cytoplasmic domain homology to the TLRs are known to exist in mammals. These proteins show preferential association with individual TLR family members, giving a particular character to the signals that distinct microorganisms initiate, and also initiate the adaptive immune response. The adaptive immune response is dependent upon upregulation of costimulatory molecules (UCM) such as CD80 and CD86. Forward genetic analysis has revealed that this upregulation depends upon an adapter encoded by a locus known as Lps2, and upon type I interferon receptor signaling.  相似文献   

9.
Leptin is produced primarily by adipocytes and functions in a feedback loop regulating body weight. Leptin deficiency results in severe obesity and a variety of endocrine abnormalities in animals and humans. Several studies indicated that leptin plays an important role in immune responses. It exerts protective anti-inflammatory effects in models of acute inflammation and during activation of innate immune responses. In contrast, leptin stimulates T lymphocyte responses, thus having rather a proinflammatory role in experimental models of autoimmune diseases. Clinical studies have so far yielded inconsistent results, suggesting a rather complex role for leptin in immune-mediated inflammatory conditions in humans.  相似文献   

10.
The Gram-positive facultative intracellular bacterium Listeria monocytogenes is a model pathogen for elucidating important mechanisms of the immune response. Infection of mice with a sub-lethal dose of bacteria generates highly reproducible innate and adaptive immune responses, resulting in clearance of the bacteria and resistance to subsequent L. monocytogenes infection. Both the innate and adaptive immune systems are crucial to the recognition and elimination of this pathogen from the host.  相似文献   

11.
Expression of alpha interferon (IFN-alpha)-, IFN-beta-, and IFN-alpha/beta-induced genes was monitored during the development of lymphocytic choriomeningitis (LCM) to assess whether a restricted influence of these antiviral cytokines could be found in the central nervous system (CNS). High levels of IFN-alpha (83 +/- 42 U/ml) were present in the blood of LCM virus-infected mice 3 days postinfection, whereas IFN-beta was not detected (< 1.0 U/ml) at any time point. Spleens contained high levels of IFN-alpha and IFN-beta mRNAs at days 1 and 3 postinfection, whereas no IFN-alpha mRNA and only low levels of IFN-beta mRNA were detected in brains. In situ hybridization showed IFN-alpha mRNA-expressing cells in the marginal zones of the spleen and in the subcapsular sinus and outer cortex of cervical lymph nodes. The expression of 2',5'-oligoadenylate synthetase (2',5'-OAS) mRNA followed the expression of IFN-beta mRNA in the brain, whereas 2',5'-OAS mRNA in the periphery was associated with systemic IFN-alpha. The localization of IFN-alpha-expressing cells in the spleen and lymph nodes in proximity to T- and B-cell compartments is consistent with a role for these cytokines in immune regulation. Furthermore, the absence of IFN-alpha and the relatively low level and delayed expression of IFN-beta in the brain suggest that the CNS is an especially vulnerable organ for virus replication. With certain strains of LCM virus, the absence of early antiviral IFN-alpha/beta activity and preferential virus growth in the brain might lead to targeted T-cell inflammation of the CNS, resulting in death of the animal.  相似文献   

12.
The availability of potassium to the plant is highly variable, due to complex soil dynamics, which are strongly influenced by root-soil interactions. A low plant potassium status triggers expression of high affinity K+ transporters, up-regulates some K+ channels, and activates signalling cascades, some of which are similar to those involved in wounding and other stress responses. The molecules that signal low K+ status in plants include reactive oxygen species and phytohormones, such as auxin, ethylene and jasmonic acid. Apart from up-regulation of transport proteins and adjustment of metabolic processes, potassium deprivation triggers developmental responses in roots. All these acclimation strategies enable plants to survive and compete for nutrients in a dynamic environment with a variable availability of potassium.  相似文献   

13.
Cytoplasmic and endosomal RNA sensors recognize RNA virus infection and signals to protect host cells by inducing type I IFN. The cytoplasmic RNA sensors, retinoic acid inducible gene I/melanoma differentiation-associated gene 5, actually play pivotal roles in sensing virus replication. IFN-β promoter stimulator-1 (IPS-1) is their common adaptor for IFN-inducing signaling. Toll/IL-1R homology domain-containing adaptor molecule 1 (TICAM-1), also known as TRIF, is the adaptor for TLR3 that recognizes viral dsRNA in the early endosome in dendritic cells and macrophages. Poliovirus (PV) belongs to the Picornaviridae, and melanoma differentiation-associated gene 5 reportedly detects replication of picornaviruses, leading to the induction of type I IFN. In this study, we present evidence that the TLR3/TICAM-1 pathway governs IFN induction and host protection against PV infection. Using human PVR transgenic (PVRtg) mice, as well as IPS-1(-/-) and TICAM-1(-/-) mice, we found that TICAM-1 is essential for antiviral responses that suppress PV infection. TICAM-1(-/-) mice in the PVRtg background became markedly susceptible to PV, and their survival rates were decreased compared with wild-type or IPS-1(-/-) mice. Similarly, serum and organ IFN levels were markedly reduced in TICAM-1(-/-)/PVRtg mice, particularly in the spleen and spinal cord. The sources of type I IFN were CD8α(+)/CD11c(+) splenic dendritic cells and macrophages, where the TICAM-1 pathway was more crucial for PV-derived IFN induction than was the IPS-1 pathway in ex vivo and in vitro analyses. These data indicate that the TLR3/TICAM-1 pathway functions are dominant in host protection and innate immune responses against PV infection.  相似文献   

14.
A critical element in improving the potency of cancer vaccines, especially pure protein or peptide antigens, is to develop procedures that can strongly but safely increase their ability to induce immune responses. Here, we describe that encapsulation of a pure protein antigen and interleukin-2 (IL-2) together into liposomes significantly improves immune responses and tumor protection. Groups of C57Bl/6 mice were immunized weekly ×4 with –0.1 mg of ovalbumin (OVA) injected subcutaneously in PBS or encapsulated in liposomes with or without human recombinant IL-2. Control groups included mice immunized to irradiated E.G7-OVA cells (that express ovalbumin), or to PBS. Sera were collected and pooled by immunization group at baseline and at weeks 2 and 4 to measure antibody responses to OVA by ELISA. Splenocytes obtained at week 4 were tested for anti-OVA cellular responses by ELISPOT. Mice were then challenged to a lethal dose of E.G7-OVA cells to measure tumor-protective immunity. IL-2 liposomes caused no detectable toxicity. Antibody, CD8+ T cell, and tumor-protective immune responses were markedly enhanced in mice immunized to OVA + IL-2 in liposomes compared to mice immunized to OVA, either alone or encapsulated into liposomes without IL-2. These results indicate that IL-2 liposomes enhance antibody, cellular, and tumor-protective immune responses to immunization with a soluble protein. This may provide a simple, safe, and effective way to enhance the immunogenicity of vaccines that consist of pure protein antigens. Supported by grant CA096804 (DJ)  相似文献   

15.
The antiviral activities of type I IFNs have long been established. However, comparatively little is known of their role in defenses against nonviral pathogens. We examined here the effects of type I IFNs on host resistance against the model pathogenic yeast Cryptococcus neoformans. After intratracheal or i.v. challenge with this fungus, most mice lacking either the IFN-alpha/beta receptor (IFN-alpha/betaR) or IFN-beta died from unrestrained pneumonia and encephalitis, while all wild-type controls survived. The pulmonary immune response of IFN-alpha/betaR-/- mice was characterized by increased expression of IL-4, IL-13, and IL-10, decreased expression of TNF-alpha, IFN-gamma, inducible NO synthetase, and CXCL10, and similar levels of IL-12 mRNA, compared with wild-type controls. Histopathological analysis showed eosinophilic infiltrates in the lungs of IFN-alpha/betaR-/- mice, although this change was less extensive than that observed in similarly infected IFN-gammaR-deficient animals. Type I IFN responses could not be detected in the lung after intratracheal challenge. However, small, but statistically significant, elevations in IFN-beta levels were measured in the supernatants of bone marrow-derived macrophages or dendritic cells infected with C. neoformans. Our data demonstrate that type I IFN signaling is required for polarization of cytokine responses toward a protective type I pattern during cryptococcal infection.  相似文献   

16.
Activation of dendritic cells by ligands for Toll-like receptors (TLR) is a crucial event in the initiation of innate and adaptive immune responses. Several classes of TLR ligands have been identified that interact with distinct members of the TLR-family. TLR4 ligands include lipopolysaccharide derived from different Gram-negative bacteria and viral proteins. Recent reports have demonstrated the TLR-mediated activation of dendritic cells by heat shock proteins (HSPs). However, doubts were raised as to what extent this effect was due to lipopolysaccharide contaminations of the HSP preparations. We re-examined this phenomenon using Gp96 or its N-terminal domain, nominally endotoxin-free (<0.5 enzyme units/mg). As described previously, innate immune cells are activated by Gp96 at high concentrations (> or =50 microg/ml) but not at lower concentrations. However, preincubation of low amounts of Gp96 with TLR2 and TLR4 ligands at concentrations unable to activate dendritic cells by themselves results in the production of high levels of proinflammatory cytokines, up-regulation of activation markers, and amplification of T cell activation. Our results provide significant new insights into the mechanism of HSP-mediated dendritic cell activation and present a new function of HSPs in the amplification of dendritic cell activation by bacterial products and induction of adaptive immune responses.  相似文献   

17.
The innate immune system senses pathogens largely through signals initiated by a collection of phylogenetically related proteins known as "Toll-like receptors" (TLRs), of which 10 representatives are encoded in the human genome. Our understanding of the sensing role played by the TLRs began with the positional cloning of a spontaneous mutation (Lps(d)) in the gene encoding the mammalian lipopolysaccharide (LPS) receptor. Other key innate immunity proteins have been disclosed by germline mutagenesis, and are discussed in the present review.  相似文献   

18.
Toll-like receptors (TLRs) play an important role in the innate immune response and these receptors link innate and adaptive responses. We have reported that ethanol modulates TLR4 receptors by activating or inhibiting its response. However, the role of TLRs in the effects of ethanol on the innate and adaptive responses during acute or chronic treatment is presently unknown. Peritoneal macrophages of wild-type and TLR4-deficient mice treated with acute ethanol (4?g?kg(-1), intraperitoneally) or chronic ethanol consumption (5 months) were used. Here we report how acute ethanol dose induces inflammatory cytokines (tumor necrosis factor-α, interleukin (IL)-1β, macrophage inflammatory protein 1α (MIP-1α), interferon β1 and IL-12β) and chemokines (monocyte chemoattractant protein -1α and MIP-1α), and upregulates major histocompatibility complexes class I and II (MHC-I and -II), but inhibits the activation of the costimulatory molecules (CD86 and CD40), leading to the suppression of the CD4(+) T-cell proliferation in the macrophages of wild-type mice. Chronic ethanol consumption downregulates the number of F4/80(+) cells expressing MHC-I and -II and decreases CD4(+) T-cell activation in wild-type mice. Interestingly, elimination of TLR4 abolishes the effects of ethanol on the innate and the adaptive inflammatory response induced by both ethanol treatments in macrophages. Taken together, our findings support the role of TLR4 in the effects of ethanol on the immune system, and suggest that alterations in the function of this receptor might modulate the immune response induced by alcohol abuse.  相似文献   

19.
Sphingosine-1-phosphate (S1P) has long been recognized as a mediator of a variety of cell functions. A growing body of evidence has accumulated demonstrating its role in cell migration and as a mediator of growth factor-induced events. In recent years, it has become apparent that S1P also mediates many cytokine and chemokine functions. Cells of the immune system function and migrate in response to a complex network of cytokines and chemokines, and the outcome is determined by the interplay of the effects of these molecules on the target cell. S1P may be a bona fide component of these networks and influence the responses of cells to these immune modulators.  相似文献   

20.
Although IFN enhance the cytotoxic activity of NK cells, K cells, and monocytes, IFN-alpha/beta and IFN-gamma did not stimulate the cytotoxic activity of rat peritoneal mast cells (PMC), but had an inhibitory effect. Preincubation for 2 h with 100 and 200 U/ml of IFN-gamma and IFN-alpha/beta, respectively, inhibited PMC cytotoxicity against WEHI-164 target cells. Lower concentrations of IFN-gamma (12.5 U/ml) and IFN-alpha/beta (25 U/ml) inhibited cytotoxicity of PMC after 8 h preincubation. The inhibitory effect of IFN was concentration and time dependent. In contrast to cytotoxicity, the release of histamine by PMC was not stimulated by the target cells WEHI-164 and there was no correlation between histamine release and cytotoxic activity of PMC. Specific antibody to subclasses of IFN prevented the inhibition of PMC cytotoxic activity, but preincubation with antibodies to the alternate subclass of IFN did not affect the observed inhibition. Moreover, the presence of both subclasses of IFN showed an additive inhibition of PMC cytotoxicity. The cytotoxic activity of PMC can be completely inhibited by the addition of anti-TNF during the assay. At high concentrations (400 U/ml), IFN inhibited the release of TNF from PMC. In the presence of RNA or protein synthesis inhibitors, IFN did not inhibit cytotoxicity of PMC further. We postulate that IFN may alter gene expression in mast cells in a manner that down-regulates their functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号