首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Procathepsin D (pCD), the precursor form of lysosomal aspartic protease, is overexpressed and secreted by various carcinomas. The fact that secreted pCD plays an essential role in progression of cancer has been established. In this study, we describe substantial secretion of pCD by the human keratinocyte cell line HaCaT, under serum-free conditions. Moreover, exogenous addition of purified pCD enhanced the proliferation of HaCaT cells. The proliferative effect of pCD was inhibited by a monoclonal antibody against the activation peptide (AP) of pCD. Treatment of HaCaT cells with pCD or AP led to the secretion of a set of cytokines that might promote the growth of cells in a paracrine manner. The role of secreted pCD and its mechanism of action were studied in a scratch wound model and the presence of pCD and AP enhanced regeneration, while this effect was reversed by the addition of anti-AP antibody. Expression and secretion of pCD was upregulated in HaCaT cells exposed to various stress conditions. Taken together, our results strongly suggest that the secretion of pCD is not only linked to cancer cells but also plays a role in normal physiological conditions like wound healing and tissue remodeling.  相似文献   

2.
Pro-Cathepsin D (pCD) is an aspartyl endopeptidase which is over expressed in many cancers. This over expression generally led to its secretion into the extracellular culture medium of cancer cells. Moreover, pCD can auto activate and cleave its substrates at an acidic pH compatible with that found in tumor microenvironments (TME). Thus, exploiting these two pathological characteristics of TME offers the opportunity to develop new protease-activated vector on the basis of their specific substrate structures. The aim of this study was to validate new pCD substrates in the extracellular pH conditions of TME. As a first step, we investigated the effect of pH on the catalytic activity and selectivity of mature Cathepsin D (CD). It was found that the increase in the pH of the media led to a decrease in the reaction rate. However, the specificity of mature CD was not affected by a variation in pH. In the second step, the effect of the substrate structure was studied. We demonstrated that the substrate structure had a significant effect on the catalytic activity of CD. In fact, some modifications in peptide structure induced a change in the catalytic behavior that involved a substrate activation phenomenon. We suggest that this activation may be related to the amphiphilic nature of the modified peptide that may induce an interfacial activation mechanism. Finally, pCD, which is the major form found in the extracellular culture medium of cancer cells, was used. We demonstrated that the proform of CD cleave the modified peptide 5 at pH 6.5 with the same cleavage selectivity obtained with the mature form of the protease. These data provide a better understanding of CD behavior in tumor microenvironment conditions and this knowledge can be used to develop more specific tools for diagnosis and drug delivery.  相似文献   

3.
4.
Procathepsin D (pCD) is a glycoprotein secreted abundantly by cancerous cells with a documented role in tumor development. The levels of pCD in primary tumors are highly correlated with an increased incidence of metastasis. Our earlier studies have shown that pCD exerts its effect on cancer cells through its activation peptide (AP) and involves both autocrine and paracrine modes of action. In this study, we analyzed the expression and role of pCD in MDA-MB-231 and its derived cell lines 1833 and 4175 possessing discrete metastatic abilities. Our results demonstrated a direct relationship between expression and secretion of pCD to the differential invasive potential of these cells. Also, the cell lines responded to AP treatment by enhancing their invasive potential, proliferation and induction of secretion of various cytokines, suggesting that pCD plays a role in metastasis through its AP region.  相似文献   

5.
6.
Heregulins are a family of ligands for the ErbB3/ErbB4 receptors that play important roles in breast cancer cell proliferation and tumorigenesis. Limited information is available on the contribution of Rho GTPases to heregulin-mediated signaling. In breast cancer cells, heregulin beta1 (HRG) causes a strong activation of Rac; however, it does so with striking differences in kinetics compared to epidermal growth factor, which signals through ErbB1 (epidermal growth factor receptor [EGFR]). Using specific ErbB receptor inhibitors and depletion of receptors by RNA interference (RNAi), we established that, surprisingly, activation of Rac by HRG is mediated not only by ErbB3 and ErbB2 but also by transactivation of EGFR, and it is independent of ErbB4. Similar receptor requirements are observed for HRG-induced actin cytoskeleton reorganization and mitogenic activity via extracellular signal-regulated kinase (ERK). HRG-induced Rac activation was phosphatidylinositol 3-kinase dependent and Src independent. Furthermore, inactivation of Rac by expression of the Rac GTPase-activating protein beta2-chimerin inhibited HRG-induced ERK activation, mitogenicity, and migration in breast cancer cells. HRG mitogenic activity was also impaired by depletion of Rac1 using RNAi. Our studies established that Rac is a critical mediator of HRG mitogenic signaling in breast cancer cells and highlight additional levels of complexity for ErbB receptor coupling to downstream effectors that control aberrant proliferation and transformation.  相似文献   

7.
8.
9.
Recent studies have suggested that 5-aminosalicylic acid (5-ASA) inhibits colorectal cancer (CRC) development. However, the mechanism underlying the antineoplastic effect of 5-ASA remains unknown. We here examined the effect of 5-ASA on epidermal growth factor receptor (EGFR) activation, a pathway that triggers mitogenic signals in CRC cells. We show that 5-ASA inhibits EGFR activation, through a mechanism that does not rely on CRC cell death induction. 5-ASA enhances the activity, but not expression, of phosphorylated (p)-EGFR-targeting phosphatases (PTPs), and treatment of cells with PTP inhibitors abrogates the 5-ASA-mediated EGFR dephosphorylation. Both SH-PTP1 and SH-PTP2 interact with EGFR upon 5-ASA treatment. However, knockdown of SH-PTP2 but not SH-PTP1 by small interference RNAs prevents the 5-ASA-induced EGFR dephosphorylation. Finally, we show that 5-ASA attenuates p-EGFR in ex vivo organ cultures of CRC explants. Data indicate that 5-ASA disrupts EGFR signalling by enhancing SH-PTP2 activity, and suggest a mechanism by which 5-ASA interferes with CRC growth.  相似文献   

10.
In Schwann cells (SCs), cyclic adenosine monophosphate (cAMP) not only induces differentiation into a myelinating SC-related phenotype, but also synergistically enhances the mitogenic action of growth factors such as neuregulin. To better understand the molecular mechanism by which cAMP exerts these apparently contradictory functions, we investigated the role of the two main effectors of cAMP, protein kinase A (PKA) and the exchange protein activated by cAMP (EPAC), on the proliferation and differentiation of both isolated and axon-related SCs. For these studies, a variety of PKA and EPAC agonists and antagonists were used, including pathway-selective analogs of cAMP and pharmacological inhibitors. Our studies indicated that the activity of PKA rather than EPAC was required for the adjuvant effect of cAMP on S-phase entry, whereas the activity of EPAC rather than PKA was required for SC differentiation and myelin formation. Even though selective EPAC activation had an overall anti-proliferative effect in SCs, it failed to drive the expression of Krox-20, a master regulator of myelination, and that of myelin-specific proteins and lipids, suggesting that EPAC activation was insufficient to drive a full differentiating response. Interestingly, inhibition of EPAC activity resulted in a drastic impairment of SC differentiation and myelin formation but not Krox-20 expression, which indicates an independent mechanism of Krox-20 regulation in response to cAMP. In conclusion, our data supports the idea that the outcome of cAMP signaling in SCs depends on the particular set of effectors activated. Whereas the mitogenic action of cAMP relies exclusively on PKA activity, the differentiating action of cAMP requires a PKA-independent (non-canonical) cAMP-specific pathway that is partially transduced by EPAC.  相似文献   

11.
The comparative mitogenic activities of 17beta-estradiol (E2) and four metabolites, 2-hydroxyestradiol (2-OHE2), 2-hydroxyestrone (2-OHE1), 16alpha-hydroxyestradiol (16alpha-OHE2) and 16alpha-hydroxyestrone (16alpha-OHE1) were determined in estrogen receptor (ER)-positive MCF-7 and T47D human breast cancer cells. E2 (1 nM) induced a 7- to 13-fold increase in cell number in both cell lines compared to untreated cells and the mitogenic potencies of 16alpha-OHE1 or 16alpha-OHE2 were comparable to or greater than E2. In contrast, 2-OHE1 and 2-OHE2 were weak mitogens in both cell lines and in cells cotreated with 1 nM E2 and 100 or 1000 nM 2-OHE1 or 2-OHE2, there was a significant inhibition of hormone-induced cell proliferation. The comparative ER agonist/antagonist activities of E2 and the metabolites on transactivation were determined in T47D cells transiently transfected with constructs containing promoter inserts from the cathepsin D (pCD) and creatine kinase B (pCKB) genes. E2, 16alpha-OHE2 and 16alpha-OHE1 induced reporter gene activity in both MCF-7 or T47D cells transfected with pCKB or pCD. In contrast, 2-OHE1 and 2-OHE2 did not exhibit ER agonist activity for these transactivation assays, but in cells cotreated with E2 plus 2-OHE1 or 2-OHE2, there was a significant decrease in the hormone-induced response. These results demonstrate that 16alpha-OHE1/16alpha-OHE2 exhibit estrogenic activities similar to that observed for E2, whereas the 2-catecholestrogens are weak ER agonists (cell proliferation) or antagonists (cell proliferation and transactivation).  相似文献   

12.
MUC1 mucin is a transmembrane glycoprotein that is highly expressed in various cancer cell lines and is also present in most of the glandular epithelial cells including the airway. Although the presence of numerous phosphorylation sites in its cytoplasmic domain suggests its potential role as a receptor, the unavailability of a ligand for MUC1 mucin has limited our understanding of its function. In this paper, we tried to circumvent this problem by constructing a chimeric receptor containing the cytoplasmic domain of MUC1 mucin, which can be phosphorylated on activation. To this end, we constructed a chimeric plasmid vector (pCD8/MUC1) by replacing the extracellular and transmembrane domains of human MUC1 mucin with those of human CD8. Transient transfection of the vector into COS-7 cells resulted in expression of the chimeric receptor on the surface of the COS-7 cells as judged by immunologic assays with various antibodies as well as by fluorescence-activated cell-sorting analysis. Treatment of the transfected COS-7 cells with an anti-CD8 antibody resulted in a significant increase in phosphorylation of tyrosine moieties of the chimeric receptor. This chimeric receptor will serve as a powerful tool in elucidating the signaling mechanism as well as the functional role of MUC1 mucin in the airway.  相似文献   

13.
F Wang  W Wang  S Safe 《Biochemistry》1999,38(35):11490-11500
The region of residues -145 to -119 (CD/L) of the cathepsin D gene promoter contains a GC-rich motif that binds Sp1 protein and an adjacent pentanucleotide (CACGC) that corresponds to the core sequence of a dioxin responsive element (DRE) and binds the aryl hydrocarbon receptor (AhR)-AhR nuclear translocator (Arnt) complex. This Sp1(N)(4)DRE(core) motif has been identified in promoters of several genes in which Sp1 plays an important role in basal gene expression. In transient transfection assays with MCF-7 human breast cancer cells using wild-type pCD/L and constructs mutated in the core DRE (pCD/L(m1)) and Sp1 (pCD/L(m2)) sites, it was shown that both motifs were required for maximal basal activity. The requirements for AhR-Arnt interactions with Sp1 protein for maximal activity of pCD/L were confirmed in wild-type MCF-7 and Hepa 1c1c7 cells and Arnt-deficient Hepa 1c1c7 cells using antisense Arnt and Arnt expression plasmids. The functional interactions of Sp1 with AhR-Arnt were paralleled by physical interactions showing that AhR-Arnt and Sp1 proteins were co-immunoprecipitated and AhR-Arnt enhanced Sp1-[(32)P]CD/L binding in electrophoretic mobility shift assays. The physical and functional interactions of Sp1 with AhR-Arnt proteins bound to the Sp1(N)(4)DRE(core) motif were also dependent on the proximity of these sites, and both the activity and the extent of Sp1-DNA binding decreased as the number of intervening nucleotides increased from 4 to 20. These studies show that regulation of basal expression of some genes by Sp1 may also require interactions with AhR-Arnt.  相似文献   

14.
《Cellular signalling》2014,26(10):2161-2166
Hepassocin (HPS) is a secreted protein with mitogenic activity on primary hepatocytes and protects hepatocytes from chemically-induced injury. Our previous studies showed that HPS stimulates proliferation of hepatocytes in an ERK pathway-dependent manner. However, the molecular mechanism of HPS-induced activation of the ERK pathway remains unclear. In this study, we found that HPS induced the phosphorylation of the epidermal growth factor receptor (EGFR) in the human L02 hepatocyte cell line, and this event was concomitant with the activation of the non-receptor tyrosine kinase Src. Specific inhibition of EGFR kinase activity by gefitinib or down-regulation of EGFR by specific EGFR siRNAs prevented HPS-induced activation of the ERK pathway and proliferation of L02 cells. Furthermore, inhibition of Src activity significantly blocked HPS-induced activation of the EGFR, which was suggestive of a ligand-independent transactivation mechanism of EGFR itself as well as ERK phosphorylation and proliferation of L02 cells. These results indicate that EGFR plays an important role in the mitogenic signaling induced by HPS in L02 cell lines and may further stimulate research on the role of HPS in hepatocytes within biological processes in human health and disease.  相似文献   

15.
Malignant melanoma is a cancer whose incidence is rising rapidly, but the mechanism by which normal melanocytes become malignant in vivo is still little understood. In the course of melanoma progression, a fraction of cells often becomes depigmented, which reflects the loss of the balance between mitogenic activities and differentiation in those pigment cells. A key factor involved in differentiation in pigment cells is mitogen-activated protein kinase (MAPK). However, because both activation and inhibition of MAPK signaling is known to correlate with differentiation, its function in pigment cells is still unclear. We investigated the role of MAPK signaling in pigment cells using the melanoma-inducing receptor tyrosine kinase Xmrk. Xmrk signaling in mouse melanocytes suppressed differentiation and induced a transformed phenotype. We found that this was based on sustained MAPK activation caused by low and transient expression of MAPK-phosphatase MKP-1. The Src kinase p59(Fyn) was thereby identified as being crucial for the receptor-mediated suppression of differentiation by down-regulating MKP-1 expression. Our findings reveal a novel mechanism of regulating the balance between differentiation and proliferation based on a Src kinase-modified MAPK activity. Moreover, they point to a new role for Src kinases in dedifferentiation and transformation of pigment cells.  相似文献   

16.
Neurotensin (NT) stimulates the proliferation of prostate cancer PC3 cells, which express high levels of its G protein-coupled receptor NTS1. To shed light on mechanisms that might serve to coordinate mitogenic responses to metabolic status, we studied the effects of metabolic inhibitors on NTS1 function. We also related these effects to cellular ATP levels and to the activation of AMP-activated protein kinase (AMPK). Glycolytic and mitochondrial inhibitors, at concentrations that reduced cellular ATP levels, altered NT binding to the cells, inhibited NT-induced inositol phosphate formation, and inhibited NT-induced DNA synthesis. For eight of the nine inhibitors, the potencies to alter NT receptor function correlated to the potencies to decrease cellular ATP levels. In keeping with its known role to oppose metabolic stress, AMPK was activated by the metabolic inhibitors. Accordingly, the AMPK activator AICAR elevated cellular ATP levels and produced effects on NTS1 function that were opposite to those for the metabolic inhibitors. These results indicate that metabolic stress inhibited NTS1 function by a mechanism that involved a fall in cellular ATP levels and that was opposed by activation of AMPK. In a broader context, these findings are compatible with the idea that one means by which cells might coordinate mitogenic signaling to metabolic status could involve changes in growth factor receptor function.  相似文献   

17.
Microprecipitates of calcium phosphate (CaPO4) can substitute for platelet-derived growth factor (PDGF) to stimulate the growth of cultured 3T3 cells. In two-part complementation assays, CaPO4 behaves as a PDGF-like "competence factor"--that is, the mitogenic response to CaPO4 is enhanced synergistically by "progression factors" contained in platelet-poor plasma. In studies described here, we show that early cytoplasmic and intranuclear events in the mitogenic response to CaPO4 are equivalent to those induced by PDGF. However, no net increase in tyrosine kinase activity of either the PDGF-alpha or PDGF-beta receptor is seen following exposure to CaPO4. Our data suggest that calcium acts within the cell, regulating events which normally proceed from activation of PDGF receptors. Alternatively, microprecipitates of CaPO4 could act externally by activating a growth factor receptor which escapes detection with available reagents.  相似文献   

18.
19.
20.
Effects of LHRH-analogues on mitogenic signal transduction in cancer cells   总被引:6,自引:0,他引:6  
The expression of luteinizing hormone-releasing hormone (LHRH) and its receptors has been demonstrated in a number of human malignant tumors, including cancers of the breast, ovary, endometrium and prostate. These findings suggest the presence of an autocrine regulatory system based on LHRH. Recent studies in our laboratory have demonstrated that the function of LHRH produced by ovarian cancer cells is the inhibition of their proliferation. Dose-dependent antiproliferative effects of LHRH-agonists have been observed by several laboratories in cell lines derived from the above cancers. Interestingly, also LHRH-antagonists have marked antiproliferative activity in most of the ovarian, breast and endometrial cancer cell lines tested so far, indicating that the dichotomy of LHRH-agonists/LHRH-antagonists is not valid for the LHRH-system in cancer cells. In addition, our data suggest that the classical LHRH receptor signal transduction mechanisms known from the pituitary (phospholipase-C, protein kinase C, adenylyl cyclase) are not involved in the mediation of LHRH effects in cancer cells. Data obtained by several groups, including ours, rather suggest that LHRH analogs interfere with the signal transduction of growth-factor receptors and related oncogene products associated with tyrosine-kinase activity. The mechanism of action is probably an LHRH-induced activation of a phosphotyrosine phosphatase, counteracting the effects of receptor associated tyrosine kinase. In our hands, LHRH analogs virtually blocked the EGF-induced MAP-kinase activity of ovarian and endometrial cancer cells. The pharmacological exploitation of this mechanism might provide promising new therapies for these cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号