首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonlinear Leslie matrix models have a long history of use for modeling the dynamics of semelparous species. Semelparous models, as do nonlinear matrix models in general, undergo a transcritical equilibrium bifurcation at inherent net reproductive number R 0 = 1 where the extinction equilibrium loses stability. Semelparous models however do not fall under the purview of the general theory because this bifurcation is of higher co-dimension. This mathematical fact has biological implications that relate to a dichotomy of dynamic possibilities, namely, an equilibration with over lapping age classes as opposed to an oscillation in which age classes are periodically missing. The latter possibility makes these models of particular interest, for example, in application to the well known outbreaks of periodical insects. While the nature of the bifurcation at R 0 = 1 is known for two-dimensional semelparous Leslie models, only limited results are available for higher dimensional models. In this paper I give a thorough accounting of the bifurcation at R 0 = 1 in the three-dimensional case, under some monotonicity assumptions on the nonlinearities. In addition to the bifurcation of positive equilibria, there occurs a bifurcation of invariant loops that lie on the boundary of the positive cone. I describe the geometry of these loops, classify them into three distinct types, and show that they consist of either one or two three-cycles and heteroclinic orbits connecting (the phases of) these cycles. Furthermore, I determine stability and instability properties of these loops, in terms of model parameters, as well as those of the positive equilibria. The analysis also provides the global dynamics on the boundary of the cone. The stability and instability conditions are expressed in terms of certain measures of the strength and the symmetry/asymmetry of the inter-age class competitive interactions. Roughly speaking, strong inter-age class competitive interactions promote oscillations (not necessarily periodic) with separated life-cycle stages, while weak interactions promote stable equilibration with overlapping life-cycle stages. Methods used include the theory of planar monotone maps, average Lyapunov functions, and bifurcation theory techniques.   相似文献   

2.
3.
Synchronization, i.e., convergence towards a dynamical state where the whole population is in one age class, is a characteristic feature of some population models with semelparity. We prove some rigorous results on this, for a simple class of nonlinear one- population models with age structure and semelparity: (i) the survival probabilities are assumed constant, and (ii) only the last age class is reproducing (semelparity), with fecundity decreasing with total population. For this model we prove: (a) The synchronized, or Single Year Class (SYC), dynamical state is always attracting. (b) The coexistence equilibrium is often unstable; we state and prove simple results on this. (c) We describe dynamical states with some, but not all, age classes populated, which we call Multiple Year Class (MYC) patterns, and we prove results extending (a) and (b) into these patterns.Acknowledgement Boris Kruglikov contributed the nonlinear part of the formulation as well as the proof of Theorem 1. The authors are grateful for critical and constructive comments by N. Davydova and O. Diekmann. E.M. is also grateful for discussions with Marius Overholt concerning problems of proving Theorem 2.  相似文献   

4.
Even though the Leslie matrix is usually singular, there is a subspace on which is has an inverse. In addition, there is a projection into that subspace which preserves certain age classes. These two facts are combined to provide a model for the history of a population whose future is predicted by a Leslie matrix. It has the advantage of being composed of easily calculated matrices. The relation of this model to a backward projection method of Greville and Keyfitz is discussed and some other backward projection functions are proposed.  相似文献   

5.
Understanding effects of hypotheses about reproductive influences, reproductive schedules and the model mechanisms that lead to a loss of stability in a structured model population might provide information about the dynamics of natural population. To demonstrate characteristics of a discrete time, nonlinear, age structured population model, the transition from stability to instability is investigated. Questions about the stability, oscillations and delay processes within the model framework are posed. The relevant processes include delay of reproduction and truncation of lifetime, reproductive classes, and density dependent effects. We find that the effects of delaying reproduction is not stabilizing, but that the reproductive delay is a mechanism that acts to simplify the system dynamics. Density dependence in the reproduction schedule tends to lead to oscillations of large period and towards more unstable dynamics. The methods allow us to establish a conjecture of Levin and Goodyear about the form of the stability in discrete Leslie matrix models.This research was supported in part by the US Environmental Protection Agency under cooperation agreement CR-816081  相似文献   

6.
Some grouping is necessary when constructing a Leslie matrix model because it involves discretizing a continuous process of births and deaths. The level of grouping is determined by the number of age classes and frequency of sampling. It is largely unknown what is lost or gained by using fewer age classes, and I address this question using aggregation theory. I derive an aggregator for a Leslie matrix model using weighted least squares, determine what properties an aggregated matrix inherits from the original matrix, evaluate aggregation error, and measure the influence of aggregation on asymptotic and transient behaviors. To gauge transient dynamics, I employ reactivity of the standardized Leslie matrix. I apply the aggregator to 10 Leslie models developed for animal populations drawn from a diverse set of species. Several properties are inherited by the aggregated matrix: (a) it is a Leslie matrix; (b) it is irreducible whenever the original matrix is irreducible; (c) it is primitive whenever the original matrix is primitive; and (d) its stable population growth rate and stable age distribution are consistent with those of the original matrix if the least squares weights are equal to the original stable age distribution. In the application, depending on the population modeled, when the least squares weights do not follow the stable age distribution, the stable population growth rate of the aggregated matrix may or may not be approximately consistent with that of the original matrix. Transient behavior is lost with high aggregation.  相似文献   

7.
Stability, bifurcation, and dynamic behavior, investigated here in discrete, nonlinear, age-structured models, can be complex; however, restrictions imposed by compensatory mechanisms can limit the behavioral spectrum of a dynamic system. These limitations in transitional behavior of compensatory models are a focal point of this article. Although there is a tendency for compensatory models to be stable, we demonstrate that stability in compensatory systems does not always occur; for example, equilibria arising through a bifurcation can be initially unstable. Results concerning existence and uniqueness of equilibria, stability of the equilibria, and boundedness of solutions suggest that "compensatory" systems might not be compensatory in the literal sense.  相似文献   

8.
Hal Caswell  Yngvild Vindenes 《Oikos》2018,127(5):648-663
The demographic consequences of stochasticity in processes such as survival and reproduction are modulated by the heterogeneity within the population. Therefore, to study effects of stochasticity on population growth and extinction risk, it is critical to use structured population models in which the most important sources of heterogeneity (e.g. age, size, developmental stage) are incorporated as i‐state variables. Demographic stochasticity in heterogeneous populations has often been studied using one of two approaches: multitype branching processes and diffusion approximations. Here, we link these approaches, through the demographic stochasticity in age‐ or stage‐structured matrix population models. We derive the demographic variance, σ2d, which measures the per capita contribution to the variance in population growth increment, and we show how it can be decomposed into contributions from transition probabilities and fertility across ages or stages. Furthermore, using matrix calculus we derive the sensitivity of σ2d to age‐ or stage‐specific mortality and fertility. We apply the methods to an extensive set of data from age‐classified human populations (long‐term time‐series for Sweden, Japan and the Netherlands; two hunter–gatherer populations, and the high‐fertility Hutterites), and to a size‐classified population of the herbaceous plant Calathea ovandensis. For the human populations our analysis reveals substantial temporal changes in the demographic variance as well as its main components across age. These new methods provide a powerful approach for calculating the demographic variance for any structured model, and for analyzing its main components and sensitivities. This will make possible new analyses of demographic variance across different kinds of heterogeneity in different life cycles, which will in turn improve our understanding of mechanisms underpinning extinction risk and other important biological outcomes.  相似文献   

9.
In nonlinear matrix models, strong Allee effects typically arise when the fundamental bifurcation of positive equilibria from the extinction equilibrium at r=1 (or R0=1) is backward. This occurs when positive feedback (component Allee) effects are dominant at low densities and negative feedback effects are dominant at high densities. This scenario allows population survival when r (or equivalently R0) is less than 1, provided population densities are sufficiently high. For r>1 (or equivalently R0>1) the extinction equilibrium is unstable and a strong Allee effect cannot occur. We give criteria sufficient for a strong Allee effect to occur in a general nonlinear matrix model. A juvenile–adult example model illustrates the criteria as well as some other possible phenomena concerning strong Allee effects (such as positive cycles instead of equilibria).  相似文献   

10.
Recent developments of the theory of stochastic matrix modeling have made it possible to estimate general properties of age- and size-structured populations in fluctuating environments. However, applications of the theory to natural populations are still few. The empirical studies which have used stochastic matrix models are reviewed here to examine whether predictions made by the theory can be generally found in wild populations. The organisms studied include terrestrial grasses and herbs, a seaweed, a fish, a reptile, a deer and some marine invertebrates. In all the studies, the stochastic population growth rate (ln λ s ) was no greater than the deterministic population growth rate determined using average vital rates, suggesting that the model based only on average vital rates may overestimate growth rates of populations in fluctuating environments. Factors affecting ln λ s include the magnitude of variation in vital rates, probability distribution of random environments, fluctuation in different types of vital rates, covariances between vital rates, and autocorrelation between successive environments. However, comprehensive rules were hardly found through the comparisons of the empirical studies. Based on shortcomings of previous studies, I address some important subjects which should be examined in future studies.  相似文献   

11.
Journal of Mathematical Biology - For structured populations with an annual breeding season, life-stage interactions and behavioral tactics may occur on a faster time scale than that of population...  相似文献   

12.
We obtain conditions for the existence of an invariant distribution on (0, ∞) for stochastic growth models of Ito type. We interpret the results in the case where the intrinsic growth rate is adjusted to account for the impact of a toxicant on the population. Comparisons with related results for ODE models by Hallamet al. are given, and consequences of taking the Stratonovich interpretation for the stochastic models are mentioned.  相似文献   

13.
《Mathematical biosciences》1987,85(2):153-183
We consider a predator-prey system where the prey can diffuse between one patch with a low level of food and without predation and one patch with a higher level of food but with predation. We assume a Volterra within-patch dynamics, and we assume further that the benefit for the predator comes also from predation in the past through an exponential-delay memory function. By homotopy techniques we prove that, if the prey diffusion is weak enough, then a nonzero globally stable equilibrium exists. This result essentially depends upon the self-regulating coefficient of the predator. If we put this coefficient equal to zero, assuming that the predator density is regulated only by predation, then we can prove the existence of a Hopf bifurcating orbit from the positive equilibrium. The main cause of periodic orbits is the time delay in the predator response functional. We prove that diffusion, lack of delay in the predator response, and increase in the rate of the exponential decay of the memory play stabilizing roles.  相似文献   

14.
We use a periodically forced density-dependent compensatory Leslie model to study the combined effects of environmental fluctuations and age-structure on pioneer populations. In constant environments, the models have globally attracting positive fixed points. However, with the advent of periodic forcing, the models have globally attracting cycles. We derive conditions under which the cycle is attenuant, resonant, and neither attenuant nor resonant. These results show that the response of age-structured populations to environmental fluctuations is a complex function of the compensatory mechanisms at different life-history stages, the fertile age classes and the period of the environment.  相似文献   

15.
16.
We propose an additive model for cell population growth which allows for positive correlation between sister cell lifetimes but arbitrary correlations between mother and daughter cell lifetimes. In the model each cell lifetime is the sum of two independent components, one of which is shared with its sister cell and which is also a function of the components of the lifetime of their mother. Assuming that the components follow a gamma distribution, the model is fitted to cell lifetime data of EMT6 cells obtained by the method of time-lapse cinematography.  相似文献   

17.
A matrix model is used to describe the dynamics of a population of female tsetse flies structured by parity (i.e., by the number of larvae laid). For typical parameter values, the intrinsic growth rate of the population is zero when the adult daily survival rate is 0.970, corresponding to an adult life expectancy of 1/0.030 = 33.3 days. This value is plausible and consistent with results found earlier by others. The intrinsic growth rate is insensitive to the variance of the interlarval period. Temperature being a function of the time of the year, a known relationship between temperature and mean pupal and interlarval times was used to produce a time-varying version of the model which was fitted to temperature and (estimated) population data. With well-chosen parameter values, the modeled population replicated at least roughly the population data. This illustrates dynamically the abiotic effect of temperature on population growth. Given that tsetse flies are the vectors of trypanosomiasis ("sleeping sickness") the model provides a framework within which future transmission models can be developed in order to study the impact of altered temperatures on the spread of this deadly disease.  相似文献   

18.
Laplace's approximation for nonlinear mixed models   总被引:5,自引:0,他引:5  
WOLFINGER  RUSS 《Biometrika》1993,80(4):791-795
  相似文献   

19.
Phase I trials to study the pharmacokinetic properties of a new drug generally involve a restricted number of healthy volunteers. Because of the nature of the group involved in such studies, the appropriate distributional assumptions are not always obvious. These model assumptions include the actual distribution but also the ways in which the dispersion of responses is allowed to vary over time and the fact that small concentrations of a substance are not easily detectable and hence are left censored. We propose that a reasonably wide class of generalized nonlinear models allowing for left censoring be considered now that this is feasible with current computer power and sophisticated statistical packages. These modelling strategies are applied to a Phase I study of the drug flosequinan and its metabolite. This drug was developed for the treatment of heart failure. Because the metabolite also exhibits an active pharmacologic effect, study of both the parent drug and the metabolite is of interest.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号