首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cadherins are a family of adhesive proteins involved in cell-cell homophilic interactions. VE-cadherin, expressed in endothelial cells, is involved in morphogenesis, regulation of permeability, and cellular proliferation. The cytoplasmic tails of cadherins contain two major domains, the juxtamembrane domain that plays a role in the intercellular localization of the protein and also serves for binding of p120ctn, and a C-terminal domain that associates with beta- or gamma-catenin. A highly conserved region present in the juxtamembrane domain of the cadherins has been shown to be necessary for p120ctn binding in E-cadherin. Using a mutant VE-cadherin lacking a highly conserved octapeptide, we demonstrated that it is required for p120ctn binding to VE-cadherin as determined by immunoprecipitation and colocalization studies. By immunofluorescence, this mutant protein has a topographical distribution similar to that of the wild-type VE-cadherin and, therefore, we conclude that the topographical distribution of VE-cadherin is independent of this motif. In addition, although cell-cell association is present in cells expressing this mutant form of VE-cadherin, we found that the strength of adhesion is decreased. Finally, our results for the first time demonstrate that the interaction of VE-cadherin with p120 catenin plays an important role in cellular growth, suggesting that the binding of p120 catenin to cadherins may regulate cell proliferation.  相似文献   

2.
As the vertebrate myotome is generated, myogenic precursor cells undergo extensive and coordinated movements as they differentiate into properly positioned embryonic muscle fibers. In the zebrafish, the "adaxial" cells adjacent to the notochord are the first muscle precursors to be specified. After initially differentiating into slow-twitch myosin-expressing muscle fibers, these cells have been shown to undergo a remarkable radial migration through the lateral somite, to populate the superficial layer of slow-twitch muscle of the mature myotome. Here we characterize an earlier set of adaxial cell behaviors; the transition from a roughly 4x5 array of cuboidal cells to a 1x20 stack of elongated cells, prior to the migration event. We find that adaxial cells display a highly stereotypical series of behaviors as they undergo this rearrangement. Furthermore, we show that the actin regulatory molecule, Cap1, is specifically expressed in adaxial cells and is required for the progression of these behaviors. The requirement of Cap1 for a cellular apical constriction step is reminiscent of similar requirements of Cap during apical constriction in Drosophila development, suggesting a conservation of gene function for a cell biological event critical to many developmental processes.  相似文献   

3.
Structure of the armadillo repeat domain of plakophilin 1   总被引:2,自引:0,他引:2  
The p120ctn subfamily of armadillo domain proteins has roles in modulating intercellular adhesion by cadherin-containing junctions. We have determined the crystal structure of the arm repeat domain from plakophilin-1 (PKP1), a member of the p120ctn subfamily that is found in desmosomes. The structure reveals that the domain has nine instead of the expected ten arm repeats. A sequence predicted to be an arm repeat is instead a large insert which serves as a wedge that produces a significant bend in the overall domain structure. Structure-based sequence alignments indicate that the nine repeats and large insert are common to this subfamily of armadillo proteins. A prominent basic patch on the surface of the protein may serve as a binding site for partners of these proteins.  相似文献   

4.
p120(ctn) binds to the cytoplasmic domain of cadherins but its role is poorly understood. Colo 205 cells grow as dispersed cells despite their normal expression of E-cadherin and catenins. However, in these cells we can induce typical E-cadherin-dependent aggregation by treatment with staurosporine or trypsin. These treatments concomitantly induce an electrophoretic mobility shift of p120(ctn) to a faster position. To investigate whether p120(ctn) plays a role in this cadherin reactivation process, we transfected Colo 205 cells with a series of p120(ctn) deletion constructs. Notably, expression of NH2-terminally deleted p120(ctn) induced aggregation. Similar effects were observed when these constructs were introduced into HT-29 cells. When a mutant N-cadherin lacking the p120(ctn)-binding site was introduced into Colo 205 cells, this molecule also induced cell aggregation, indicating that cadherins can function normally if they do not bind to p120(ctn). These findings suggest that in Colo 205 cells, a signaling mechanism exists to modify a biochemical state of p120(ctn) and the modified p120(ctn) blocks the cadherin system. The NH2 terminus-deleted p120(ctn) appears to compete with the endogenous p120(ctn) to abolish the adhesion-blocking action.  相似文献   

5.
Signaling through cell adhesion complexes plays a critical role in coordinating cytoskeletal remodeling necessary for efficient cell migration. During embryonic development, normal morphogenesis depends on a series of concerted cell movements; but the roles of cell adhesion signaling during these movements are poorly understood. The transparent zebrafish embryo provides an excellent system to study cell migration during development. Here, we have identified zebrafish git2a and git2b, two new members of the GIT family of genes that encode ArfGAP proteins associated with cell adhesions. Loss-of-function studies revealed an essential role for Git2a in zebrafish cell movements during gastrulation. Time-lapse microscopy analysis demonstrated that antisense depletion of Git2a greatly reduced or arrested cell migration towards the vegetal pole of the embryo. These defects were rescued by expression of chicken GIT2, indicating a specific and conserved role for Git2 in controlling embryonic cell movements. Git2a knockdown embryos showed defects in cell morphology that were associated with reduced cell contractility. We show that Git2a is required for phosphorylation of myosin light chain (MLC), which regulates myosin II-mediated cell contractility. Consistent with this, embryos treated with Blebbistatin-a small molecule inhibitor for myosin II activity-exhibited cell movement defects similar to git2a knockdown embryos. These observations provide in vivo evidence of a physiologic role for Git2a in regulating cell morphogenesis and directed cell migration via myosin II activation during zebrafish embryonic development.  相似文献   

6.
Syndecan-4 is composed of a core protein and covalently attached glycosaminoglycan (GAG) and N-linked glycosylated (N-glycosylated) chains. The core protein is divided into extracellular, transmembrane, and cytoplasmic domains. The cytoplasmic domain has two conserved regions and a variable region in the middle. The Ser residue in the conserved region 1 and the Tyr residue in the variable region are important in regulating protein kinase C alpha (PKCα) membrane localization and focal adhesion formation. The objective of the current study was to investigate the role of syndecan-4 Ser and Tyr residues in combination with the GAG and N-glycosylated chains in turkey satellite cell proliferation, differentiation, fibroblast growth factor 2 (FGF2) responsiveness, and PKCα membrane localization. Site-directed mutagenesis was used to generate Ser and Tyr mutants with or without GAG and N-glycosylated chains. The wild type and mutant syndecan-4 constructs were transfected into turkey satellite cells. The over-expression of Ser and Tyr mutants increased cell proliferation and differentiation and decreased membrane localization of PKCα. Furthermore, Ser mutants enhanced cellular responsiveness to FGF2. The results from this study are the first demonstration of a role of syndecan-4 cytoplasmic domain Ser and Tyr residues in regulating satellite cell proliferation, differentiation, and the modulation of cellular responsiveness to FGF2.  相似文献   

7.
8.
Calmodulin (CaM) plays a very important role in many physiological processes and is highly conserved in different species. In a previous study, we successfully cloned CaM and a novel calmodulin-like protein (CaLP) with an extra C-terminal sequence from the pearl oyster Pinctada fucata and then expressed in Escherichia coli. In this research, we used fluorescence confocal microscopy to analyze the protein-protein interaction between CaM/CaLP and p21Cip1, which is cloned from mammalian cells, to show the different characteristics of these two proteins in vivo. The fluorescence confocal microscopy showed that the C-terminal globular domain together with the extra tail of CaLP is very important in CaLP's sequestration in cytoplasm. The most interesting phenomenon is that transfection of p21Cip1 can stimulate translocation of CaLP from the cytoplasm to the nucleus, but this is not the case for CaM. Fluorescence confocal microscopy and co-immunoprecipitation on different mutants of CaLP with p21Cip1 indicated that the C-terminal globular domain of CaLP is responsible for the trafficking of CaLP from cytoplasm to nucleus.  相似文献   

9.
Mitf has been reported to play a crucial role in regulating the differentiation of pigment cells in homeothermal animals, i.e. the melanocytes and the retinal pigment epithelium (RPE). However, less is known about the functions of Mitf in the developing RPE. To elucidate such functions, we introduced wild-type and dominant-negative Mitf expression vectors into chick optic vesicles by electroporation. Over-expression of wild-type Mitf altered neural retina cells to become RPE-like and repressed the expression of neural retina markers in vivo. In contrast, dominant-negative Mitf inhibited pigmentation in the RPE. The percentage of BrdU-positive cells decreased during normal RPE development, which was followed by Mitf protein expression. The percentage of BrdU-positive cells decreased in the wild-type Mitf-transfected neural retina, but increased in the dominant-negative Mitf-transfected RPE. p27kip1, one of the cyclin-dependent kinase inhibitors, begins to be expressed in the proximal region of the RPE at stage 16. Transfection of wild-type Mitf induced expression of p27kip1, while transfection of dominant-negative Mitf inhibited p27kip1 expression. We found that Mitf was associated with the endogenous p27kip1 5′ flanking region. These results demonstrate for the first time “in vivo” that Mitf uniquely regulates both differentiation and cell proliferation in the developing RPE.  相似文献   

10.
During Drosophila eye development, cell differentiation is preceded by the formation of a morphogenetic furrow, which progresses across the epithelium from posterior to anterior. Cells within the morphogenetic furrow are apically constricted and shortened along their apical-basal axis. However, how these cell shape changes and, thus, the progression of the morphogenetic furrow are controlled is not well understood. Here we show that cells simultaneously lacking Hedgehog and Dpp signal transduction fail to shorten and do not enter the morphogenetic furrow. Moreover, we have identified a gene, cadherin Cad86C, which is highly expressed in cells of the leading flank of the morphogenetic furrow. Ectopic activation of either the Hedgehog or Dpp signal transduction pathway results in elevated Cad86C expression. Conversely, simultaneous loss of both Hedgehog and Dpp signal transduction leads to decreased Cad86C expression. Finally, ectopic expression of Cad86C in either eye-antennal imaginal discs or wing imaginal discs results in apical constriction and shortening of cells. We conclude that Hedgehog and Dpp signaling promote the shortening of cells within the morphogenetic furrow. Induction of Cad86C expression might be one mechanism through which Hedgehog and Dpp promote these cell shape changes.  相似文献   

11.
The cadherin family of cell adhesion molecules mediates adhesive interactions that are required for the formation and maintenance of tissues. Previously, we demonstrated that N‐cadherin, which is required for numerous morphogenetic processes, is expressed in the pancreatic epithelium at E9.5, but later becomes restricted to endocrine aggregates in mice. To study the role of N‐cadherin during pancreas formation and function we generated a tissue‐specific knockout of N‐cadherin in the early pancreatic epithelium by inter‐crossing N‐cadherin‐floxed mice with Pdx1Cre mice. Analysis of pancreas‐specific ablation of N‐cadherin demonstrates that N‐cadherin is dispensable for pancreatic development, but required for β‐cell granule turnover. The number of insulin secretory granules is significantly reduced in N‐cadherin‐deficient β‐cells, and as a consequence insulin secretion is decreased. genesis 48:374–381, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
The COOH-terminal S9-S10 tail domain of large conductance Ca(2+)-activated K(+) (BK) channels is a major determinant of Ca(2+) sensitivity (Schreiber, M., A. Wei, A. Yuan, J. Gaut, M. Saito, and L. Salkoff. 1999. Nat. Neurosci. 2:416-421). To investigate whether the tail domain also modulates Ca(2+)-independent properties of BK channels, we explored the functional differences between the BK channel mSlo1 and another member of the Slo family, mSlo3 (Schreiber, M., A. Yuan, and L. Salkoff. 1998. J. Biol. Chem. 273:3509-3516). Compared with mSlo1 channels, mSlo3 channels showed little Ca(2+) sensitivity, and the mean open time, burst duration, gaps between bursts, and single-channel conductance of mSlo3 channels were only 32, 22, 41, and 37% of that for mSlo1 channels, respectively. To examine which channel properties arise from the tail domain, we coexpressed the core of mSlo1 with either the tail domain of mSlo1 or the tail domain of mSlo3 channels, and studied the single-channel currents. Replacing the mSlo1 tail with the mSlo3 tail resulted in the following: increased open probability in the absence of Ca(2+); reduced the Ca(2+) sensitivity greatly by allowing only partial activation by Ca(2+) and by reducing the Hill coefficient for Ca(2+) activation; decreased the voltage dependence approximately 28%; decreased the mean open time two- to threefold; decreased the mean burst duration three- to ninefold; decreased the single-channel conductance approximately 14%; decreased the K(d) for block by TEA(i) approximately 30%; did not change the minimal numbers of three to four open and five to seven closed states entered during gating; and did not change the major features of the dependency between adjacent interval durations. These observations support a modular construction of the BK channel in which the tail domain modulates the gating kinetics and conductance properties of the voltage-dependent core domain, in addition to determining most of the high affinity Ca(2+) sensitivity.  相似文献   

13.
To demonstrate the interaction of calpastatin (CS) domain L (CSL) with Cav1.2 channel, we investigated the binding of CSL with various C-terminus-derived peptides at ≈ free, 100 nM, 10 μM, and 1 mM Ca2+ by using the GST pull-down assay method. Besides binding with the IQ motif, CSL was also found to bind with the PreIQ motif. With increasing [Ca2+], the affinity of the CSL–IQ interaction gradually decreased, and the affinity of the CSL–PreIQ binding gradually increased. The results suggest that CSL may bind with both the IQ and PreIQ motifs of the Cav1.2 channel in different Ca2+-dependent manners.  相似文献   

14.
DOCK180 is a guanine exchange factor of Rac1 originally identified as a protein bound to an SH3 domain of the Crk adaptor protein. DOCK180 induces tyrosine phosphorylation of p130Cas, and recruits the Crk-p130Cas complex to focal adhesions. To understand the role of DOCK180 in cell adhesion and migration, we searched for DOCK180-binding proteins with a nano-LC/MS/MS system, and identified ANKRD28, a protein that contains twenty-six ankyrin domain repeats. Knockdown of ANKRD28 by RNA interference reduced the velocity of migration of HeLa cells, suggesting that this protein plays a physiologic role in the DOCK180-Rac1 signaling pathway. Furthermore, knockdown of ANKRD28 was found to alter the distribution of focal adhesion proteins such as Crk, paxillin, and p130Cas. On the other hand, expression of ANKRD28, p130Cas, Crk, and DOCK180 induced hyper-phosphorylation of p130Cas, and impaired detachment of the cell membrane during migration. Consequently, cells expressing ANKRD28 exhibited multiple long cellular processes. ANKRD28 associated with DOCK180 in an SH3-dependent manner and competed with ELMO, another protein bound to the SH3 domain of DOCK180. In striking contrast to ANKRD28, overexpression of ELMO induced extensive lamellipodial protrusion around the entire circumference. These data suggest that ANKRD28 specifies the localization and the activity of the DOCK180-Rac1 pathway.  相似文献   

15.
16.
Y. P. Tu  H. Xu 《Bioscience reports》1994,14(4):159-169
Zn2+ can induce a conformational change of Band 3 with concomitant inhibition of its anion transport activity of human erythrocyte membrane vesicles only from the cytoplasmic side. The Zn2+ inhibition exhibits a dose-dependent manner with an apparent half maximal concentration of 50 M ZnCl2 and can be reversed by 0.5 mM EDTA, but not by 1 mM dithiothreitol. The Zn2+ effect is specific and no similar inhibitory action could be observed by other divalent cations (Cu2+, Mn2+, Mg2+ or Sr2+).Abbreviations DPA dipicolinic acid - EITC eosin 5-isothiocyanate - DIDS 4,4-diisothiocyanostilbene-2,2-disulfonate - TES N-Tris-(hydroxymethyl)methyl-2-aminoethane sulfonic acid - EDTA ethylendiamine tetraacetic acid - DTT dithiothreitol - NEM N-ethylmaleimide - EITC-Band 3 Band 3 labeled with EITC  相似文献   

17.
The NH2-terminal domain (N-tail) of histone H3 has been implicated in chromatin compaction and its phosphorylation at Ser10 is tightly correlated with mitotic chromosome condensation. We have developed one mAb that specifically recognizes histone H3 N-tails phosphorylated at Ser10 (H3P Ab) and another that recognizes phosphorylated and unphosphorylated H3 N-tails equally well (H3 Ab). Immunocytochemistry with the H3P Ab shows that Ser10 phosphorylation begins in early prophase, peaks before metaphase, and decreases during anaphase and telophase. Unexpectedly, the H3 Ab shows stronger immunofluorescence in mitosis than interphase, indicating that the H3 N-tail is more accessible in condensed mitotic chromatin than in decondensed interphase chromatin. In vivo ultraviolet laser cross-linking indicates that the H3 N-tail is bound to DNA in interphase cells and that binding is reduced in mitotic cells. Treatment of mitotic cells with the protein kinase inhibitor staurosporine causes histone H3 dephosphorylation and chromosome decondensation. It also decreases the accessibility of the H3 N-tail to H3 Ab and increases the binding of the N-tail to DNA. These results indicate that a phosphorylation-dependent weakening of the association between the H3 N-tail and DNA plays a role in mitotic chromosome condensation.  相似文献   

18.
Myogenic differentiation is characterized by permanent and irreversible cell cycle withdrawal and increased resistance to apoptosis. These functions correlate with changes in expression and activity of several cyclin-dependent kinase inhibitors, including p18, p21, and p27. In this study, we examined the requirements for p18, p21, and p27 in initiating growth arrest in multinucleated myotubes under differentiation conditions and in maintaining terminal arrest upon restimulation of differentiated myotubes with mitogenic signals. Under differentiation conditions, only p27(-/-) or p18(-/-)p27(-/-) myotubes are capable of reentering the cell cycle and synthesizing DNA at a very low frequency. Escape from cell cycle arrest was significantly greater in p18(-/-)p27(-/-) myotubes than in p27(-/-) myotubes. Stimulation of differentiated cultures with a mitogen-rich growth medium enhances p18(-/-)p27(-/-) myotube proliferation to encompass approximately half of the nuclei. p18(-/-)p21(-/-) and p21(-/-)p27(-/-) myotubes remain terminally arrested. Nuclei within individual restimulated p18(-/-)p27(-/-) myotubes can be found in all phases of the cell cycle, and a myotube can be multiphasic without any obvious deleterious effects. Increasing the time of differentiation or serum stimulation of p18(-/-)p27(-/-) myotubes neither increases the proliferation index of the myotube nuclei, nor does it alter the percentage of nuclei in each of the cell cycle phases. During the first 24 h of serum stimulation, the p18(-/-)p27(-/-) myotube nuclei that escape G0 arrest will rearrest in either S or G2 phase, without either mitosis or endoreplication. Apoptosis is increased in restimulated p18(-/-)p27(-/-) myotube nuclei, but is not specific for any cell cycle phase. These results suggest a collaborative role for p18 and p27 in initiating and maintaining G0 arrest during myogenic differentiation. While p18 and p27 appear to be essential in initiating G0 arrest in a proportion of postmitotic myotube nuclei, there must be another cell cycle inhibitor protein that functions with p18 and p27 in maintaining terminal arrest. We propose that the combined rate-limiting expressions of p18, p27, and this other inhibitor determine whether the myotube nuclei will remain postmitotic, or reenter the cell cycle, and if the nuclei escape G0 arrest, in which phase of the cell cycle the nuclei will ultimately rearrest.  相似文献   

19.
Using differential G-staining of chromosomes, the karyotype of the endothelial cell line ECV304 obtained from endotheliocytes of the human umbilical vein was studied. The cells have been shown to have a polyploid karyotype with a number of chromosomes ranging from 96 to 112, as well as multiple numerical and structural clonal chromosome abnormalities. The structural rearrangements involve almost all chromosomes of the karyotype. Several paired chromosomal rearrangements have been revealed and include del(9)(p21), as well as two derivates of chromosome 3 with a breakpoint at the p25 locus, i.e., der(3)t(3;12)(3p25;12q11~12;12q21~24.?1) and der(3)t(3;?)(3p25). The role of these rearrangements in the immortalization of endotheliocytes and in angiogenesis is discussed. A comparison of the karyotypes of the cell line ECV304 and of the bladder carcinoma T24 cell line has shown that these karyotypes differ in all of the main cytogenetic characteristics. No identical structural chromosomal rearrangements, nor rearrangements characteristic of bladder carcinoma cells have been revealed. The studied endothelial cell line ECV304 is not identical to the T24 cell line.  相似文献   

20.
Summary Exponentially growing HeLa cells have been separated according to their cell cycle age by sedimenting at unit gravity for 3 hr on a phosphate-buffered sucrose density gradient. Measurements of cell size, cell number, DNA content, and tritiated thymidine incorporation in consecutive portions of the gradient showed that cells in upper fractions were in G1, cells in middle fractions were in S, and cells in lower fractions were in G2. Basic amino acids were rapidly incorporated into nuclear protein during late G1 and S; some incorporation also took place during G2. This work is supported by grant A-3458 from the National Research Council of Canada.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号