首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A seasonal carbon budget for a laminarian population in a Scottish sea-loch   总被引:1,自引:0,他引:1  
Employing in situ SCUBA methods a seasonal carbon budget has been established for aLaminaria saccharina population in a Scottish sea-loch. Concurrent studies of photosynthesis, secretion rates, reserve fluctuations and frond growth were undertaken. Net annual production is in excess of 120 g C m–2 yr–1. Over 13% of gross carbon input is released as extracellular secretions (over 30% in autumn) and 40–50% is lost by distal decay, entering detrital food chains. The large concentrations of laminarin, synthesised in summer months, are nearly all lost in autumn-winter distal tissue loss and therefore not available for early spring growth.  相似文献   

2.
Sub-arctic Lake Myvatn is one of the most productive lakes in the Northern Hemisphere, despite an ice cover of 190 days per year. In situ, transparent and dark flux chambers were used for direct measurements of benthic fluxes of dissolved oxygen, nutrients, silica and certain metals, taking into account primary production and mineral precipitation. The range of benthic flux observed for dissolved oxygen (DO), dissolved inorganic carbon (DIC), ammonium, ortho-P, silica, calcium, and magnesium was –45.89 to 187.03, –99.32 to 50.96, –1.30 to 1.27, –0.51 to 0.39, –62.3 to 9.3, –33.82 to 16.83, and –23.93 to 7.52 mmol m–2 d–1, respectively (negative value indicating flux towards the lake bottom). Low benthic NH4 + and ortho-P fluxes were likely related to benthic algal production, and aerobic bottom water. Ortho-P fluxes could also be controlled by the dissolution/precipitation of ferrihydrite, calcite, and perhaps hydroxyapatite. The negative silica fluxes were caused by diatom frustule synthesis. Benthic calcium and magnesium fluxes could be related to algal production and dissolution/precipitation of calcium and/or Ca,Mg-carbonates. Fluxes of DO, DIC, pH and alkalinity were related to benthic biological processes. It is likely that some of the carbon precipitates as calcite at the high pH in the summer and dissolves at neutral pH in the winter. Mean of the ratio of gross benthic DIC consumption and gross benthic DO production was 0.94 ± 0.18, consistent with algal production using NH4 + as N source. During the summer weeks the water column pH remains above 10. This high pH is caused by direct and indirect utilisation of CO2, HCO3 , CO3 –2, H4SiO4 ° and H3SiO4 by primary producers. This study shows that in shallow lakes at high latitudes, where summer days are long and the primary production is mostly by diatoms, the pH is forced to very high values. The high pH could lead to a positive feedback for the Si flux, but negative feedback for the NH4 + flux.  相似文献   

3.
The classical outwelling hypothesis states that small coastal embayments (e.g. estuaries, wetlands) export their excess production to inshore marine waters. In line with this notion, the present study tested whether the Swartkops estuary acts as source or sink for carbon. To this end, concentrations of dissolved inorganic carbon (DIC), dissolved organic carbon (DOC) and particulate organic carbon (POC) were determined hourly during the first monthly spring and neap tides over one year in the tidal waters entering and leaving the estuary. Each sampling session spanned a full tidal cycle, yielding a total of 936 concentration estimates. Carbon fluxes were calculated by integrating concentrations with water flow rates derived from a hydrodynamic model calibrated for each sampling datum. Over the year, exports to marine waters markedly exceeded imports to the estuary for all carbon species: on the basis of total spring tidal drainage area, 1083 g m–2 of DIC, 103 g m–2 of DOC, and 123 g m–2 of POC left the estuary annually. Total carbon export from the estuary to the ocean amounted to 4755 tonnes, of which 83% was in the inorganic form (DIC). Thus, the bulk of carbon moving in the water column is inorganic - yet, DIC seems to be measured only rarely in most flux studies of this nature. Salt marshes cover extensive areas in this estuary and produce some carbon, particularly DOC, but productivity of the local Spartina species is low (P:B=1.1). Consequently, the bulk of carbon exported from the estuary appears to originate from the highly productive macroinvertebrate and the phytoplankton component and not from the salt marsh plants.  相似文献   

4.
Dynamics of bacterioplankton in a mesotrophic French reservoir (Pareloup)   总被引:1,自引:1,他引:0  
Bacterioplankton abundance, biomass and production were studied at a central station (35 m depth) from April 1987 to September 1988 in a mesotrophic reservoir. Bacterial production was calculated by the (3H) thymidine method.For the water column, integrated estimates of bacterioplankton abundance ranged from 2.3 109 to 4.6 109 cells l–1, and carbon biomass from 0.037 to 0.068 mg C l–1; the thymidine incorporation rates ranged from 0.8 to 17.2 picomoles l–1 h–1, leading to net bacterial production estimates of less than 0.7 µg C l–1 d–1 in winter to 18 µg C l–1 d–1 in summer. About 55% of the production occurred in the euphotic layers.Over the year, the bacterial carbon requirement represented 90% of the autotrophic production for the whole lake. It was five times lower than autotrophic production in spring, but twice as high in summer. This important temporal lack of balance suggests that not all the spring primary production products are consumed immediately and/or that other carbon sources probably support bacterial growth in summer.  相似文献   

5.
Results of hydrochemical and stable isotope measurements during the ice-breaking period on Lake Baikal indicate an apparent lack of relationship between measured δ13C of dissolved inorganic carbon (DIC) and phytoplankton below the trophogenic layer. While planktonic values of −31.7 to −33.5‰ are within a typical lacustrine range, the δ13C values of DIC turned out to be very negative, from −28.9 to −35.6‰. These isotopic values of DIC appear to be associated with oxidation of methane that accumulated during winter ice cover period. At the time of sampling, however, the observed depletion did not affect the phytoplankton/DIC fractionation relationship, because the difference between phytoplankton and DIC (−20 to −22‰ in surface waters) lies within the expected range of the fractionation coefficient. By analogy with small lakes, we explain this lack of relationship by the time lag between peak productivity and peak methane oxidation. Our interpretation of the Baikal DIC isotopic signature is consistent with methanogenesis in bottom sediments and with the known presence of widespread unstable gas hydrates and active methane seeps on the lake floor. Our findings suggest that methane is an important component of the Baikal carbon cycle, that late winter concentrations of methane in Baikal under ice may be 3–4 orders of magnitude higher than previously reported values for summer, and that the lake may be emitting a significant amount of methane to the atmosphere.  相似文献   

6.
Braud  Jean-Paul  Amat  Mireille A. 《Hydrobiologia》1996,326(1):335-340
The injection of exogenous carbon into intensively cultivated algal tanks is necessary to insure a maximum growth rate by stabilizing the dissolved inorganic carbon (DIC) pool, but represents the major part of the cultivation cost (ca. 73%). This study was conducted in paddle-wheel tanks ranging in size from 260 m2 to 1000 m2. Additional carbon was provided by carbon dioxide mixed into the incoming sea water through a tubular reactor. Production vs pH was analysed on 120 growth measurements covering two years of continuous cultivation. Whereas production peaked at pH 8.0–8.2, the economic optimum for pH regulation was in the range 8.4–8.5, where CO2 injection was greatly reduced (–29%) for only a slight decrease in production (–4%). Expressed as a function of pH level, the specific carbon injection (g c gdw–1 of Chondrus produced) showed an inverse exponential relationship, whereas gross photoconversion ratio (gdw mol photons–1) varied according to a second degree equation with a low amplitude. The photoconversion ratio was not improved when the culture was maintained at a DIC concentration higher than the natural equilibrium (0.64 ± 0.11 gdw mol photons–1 at 2.35 mM and 0.65 ± 0.15 gdw mol photons–1 at 3.19 MM).A complementary source of carbon was found in underground salt water with a high and stable DIC concentration (10.15 ± 0.25 mmole Cl–1). The mixing of the well water with natural sea water allowed another economy of CO2 (–20% at pH 8.5) and nutrients (–12%), the total unitary cost of production being cut by about 17%.  相似文献   

7.
The dissolved inorganic carbon (DIC) cycle in a softwater lake was studied using natural variations of the stable isotopes of carbon,12C and13C. During summer stratification there was a progressive decrease in epilimnion DIC concentration with a concomitant increase in 13CDIC), due to preferential uptake of12C by phytoplankton and a change in the dominant CO2 source from inflow andin situ oxidation to invasion from the atmosphere. There was an increase in hypolimnion DIC concentration throughout summer with a concomitant general decrease in 13CDIC from oxidation of the isotopically light particulate organic carbon that sank down through the thermocline from the epilimnion.Mass balance calculations of DI12C and DI13C in the epilimnion for the summer (June 23–September 25) yield a mean rate of net conversion of DIC to organic carbon (Corg) of 430 ± 150 moles d-1 (6.5 ± 1.8 m moles m-2 d-1. Net CO2 invasion from the atmosphere was 420 ± 120 moles d-1 (6.2 ± 1.8 m moles m-2 d-1) with an exchange coefficient of 0.6 ± 0.3m d-1. These results imply that at least for the summer months the phytoplankton obtained about 90% of their carbon from atmosphere CO2. About 50% of CO2 invasion and conversion to Corg for the summer occurred during a two week interval in mid-summer.DIC concentration increased in the hypolimnion at a rate of 350 ± 70 moles DIC d-1 during summer stratification. The amount of DIC added to the hypolimnion was equivalent to 75 ± 20% of net conversion of DIC to Corg in the euphotic zone over spring and summer implying rapid degradation of POC in the hypolimnion. The 13C of DIC added to the deep water (-22.) was too heavy to have been derived from oxidation of particulate organic carbon alone. About 20% of the added DIC must have diffused from hypolimnetic sediments where relatively heavy CO2 (-7) was produced by a combination of POC oxidation and as a by-product of methanogenesis.  相似文献   

8.
Saggar  S.  Hedley  C.B. 《Plant and Soil》2001,236(1):91-103
Using a 14C pulse-labelling technique, we studied the seasonal changes in assimilation and partitioning of photoassimilated C in the plant–root–soil components of a temperate pasture. Pasture and soil samples were taken after 4-h, and 35-day chase periods, to examine these seasonal 14C fluxes. Total C and 14C were determined in the shoot, root and soil system. The amounts of C translocated annually to roots and soil were also estimated from the seasonal 14C distribution and pasture growth. The in situ field decomposition of newly formed roots during different seasons, also using 14C-labelling, was studied for one year in undisturbed rhizosphere soil. The 14C-labelled roots were sampled five times and decomposition rates were calculated assuming first-order decomposition.Annual pasture production at the site was 16 020 kg DM ha–1, and pasture growth varied with season being highest (75–79 kg ha–1 d–1) in spring and lowest (18–20 kg ha–1 d–1) in winter. The above- and below-ground partitioning of 14C also varied with the season. The respiratory 14C–CO2 losses, calculated as the difference between the total amounts of 14C recovered in the soil-plant system at 4 h and 35 days, were high (66–70%) during the summer, autumn and winter season, and low (37–39%) during the spring and late-spring season. Pasture plants partitioned more C below-ground during spring compared with summer, autumn and winter seasons. Overall, at this high fertility dairy pasture site, 18 220 kg C/ha was respired, 6490 kg remained above-ground in the shoot, and 6820 kg was translocated to roots and 1320 kg to soil. Root decomposition rate constant (k) differed widely with the season and were the highest for the autumn roots. The half-life was highest (111 days) for autumn roots and lowest (64 days) for spring roots. About one-third of the root label measured in the spring season disappeared in the first 5 weeks after the initial 35 Day of allocation period. The late spring, summer, late summer and winter roots had intermediate half-lives (88–94 days). These results indicate that seasonal changes in root growth and decomposition should be accounted for to give a better quantification of root turnover.  相似文献   

9.
Cermelj  Branko  Faganeli  Jadran 《Hydrobiologia》2003,494(1-3):193-199
Anoxic degradation of sedimentary biogenic debris using closed sediment incubation experiments was studied in eutrophic subalpine Lake Bled (NW Slovenia) which, for most of the year, has an anoxic hypolimnion. Production rates of dissolved inorganic carbon (DIC), NH4 +, PO4 3- and dissolved Si, and reduction rates of SO4 2- were measured and anoxic mineralization rates were modelled using G-model. The depth profiles indicated major mineralization of biogenic debris and SO4 2- reduction near the sediment surface. A comparison between depth integrated anoxic mineralization rates and diffusive benthic fluxes of DIC, NH4 + and PO4 3- showed that the anoxic incubation experiments provide a good estimate of N degradation of biogenic debris. The contributions of SO4 2- reduction and acetate fermentation in NH4 + production are about 30 and 70%, respectively. The DIC production accounted for only 15% of DIC benthic flux, indicating that methanogenesis and oxidation of methane provides 80% of this flux. Only about 30% of PO4 3- was released because phosphate precipitated in the closed incubation experiments. The depth integrated production of Si accounts for 70–80% of Si benthic fluxes indicating intense dissolution of biogenic Si in the surficial lake sediment.  相似文献   

10.
In situ microsensor measurements were combined with biogeochemical methods to determine oxygen, sulfur, and carbon cycling in microbial mats growing in a solar saltern (Salin-de-Giraud, France). Sulfate reduction rates closely followed the daily temperature changes and were highest during the day at 25°C and lowest during the night at 11°C, most probably fueled by direct substrate interactions between cyanobacteria and sulfate-reducing bacteria. Sulfate reduction was the major mineralization process during the night and the contribution of aerobic respiration to nighttime DIC production decreased. This decrease of aerobic respiration led to an increasing contribution of sulfide (and iron) oxidation to nighttime O2 consumption. A peak of elemental sulfur in a layer of high sulfate reduction at low sulfide concentration underneath the oxic zone indicated anoxygenic photosynthesis and/or sulfide oxidation by iron, which strongly contributed to sulfide consumption. We found a significant internal carbon cycling in the mat, and sulfate reduction directly supplied DIC for photosynthesis. The mats were characterized by a high iron content of 56 mol Fe cm–3, and iron cycling strongly controlled the sulfur cycle in the mat. This included sulfide precipitation resulting in high FeS contents with depth, and reactions of iron oxides with sulfide, especially after sunset, leading to a pronounced gap between oxygen and sulfide gradients and an unusual persistence of a pH peak in the uppermost mat layer until midnight.  相似文献   

11.
Sulfur is an important element in the metabolism of salt marshes and subtidal, coastal marine sediments because of its role as an electron acceptor, carrier, and donor. Sulfate is the major electron acceptor for respiration in anoxic marine sediments. Anoxic respiration becomes increasingly important in sediments as total respiration increases, and so sulfate reduction accounts for a higher percentage of total sediment respiration in sediments where total respiration is greater. Thus, sulfate accounts for 25% of total sediment respiration in nearshore sediments (200 m water depth or less) where total respiration rates are 0.1 to 0.3gCm–1 day–1 , for 50% to 70% in nearshore sediments with higher rates of total respiration (0.3 to 3gCm–2 day–1), and for 70% to 90% in salt marsh sediments where total sediment respiration rates are 2.5 to 5.5gcm–2 day–1 .During sulfate reduction, large amounts of energy from the respired organic matter are conserved in inorganic reduced sulfur compounds such as soluble sulfides, thiosulfate, elemental sulfur, iron monosulfides, and pyrite. Only a small percentage of the reduced sulfur formed during sulfate reduction is accreted in marine sediments and salt marshes. When these reduced sulfur compounds are oxidized, energy is released. Chemolithoautotrophic bacteria which catalyze these oxidations can use the energy of oxidation with efficiencies (the ratio of energy fixed in organic biomass to energy released in sulfur oxidation) of up to 21–37% to fix CO2 and produce new organic biomass.Chemolithoautotrophic bacterial production may represent a significant new formation of organic matter in some marine sediments. In some sediments, chemolithoautotrophic bacterial production may even equal or exceed organoheterotrophic bacterial production. The combined cycle of anaerobic decomposition through sulfate reduction, energy conservation as reduced sulfur compounds; and chemolithoautotrophic production of new organic carbon serves to take relatively low-quality organic matter from throughout the sediments and concentrate the energy as living biomass in a discrete zone near the sediment surface where it can be readily grazed by animals.Contribution from a symposium on the role of sulfur in ecosystem processes held August 10, 1983, at the annual meeting of the A.I.B.S., Grand Forks, ND; Myron Mitchell, convenor.  相似文献   

12.
Peak pore water SRP and iron(II) concentrations were found during summer in surface sediments in the shallow and eutrophic L. Finjasjön, Sweden, and the concentrations generally increased with water depth. The SRP variation in surface sediments (0–2 cm) was correlated with temperature (R2 = 0.82–0.95) and iron(II) showed a correlation with sedimentary carbon on all sites (R2 = 0.42–0.96). In addition, sedimentary Chla, bacterial abundances and production rates in surface sediments (0–2 cm) varied seasonally, with peaks during spring and fall sedimentation. Bacterial production rates were correlated with phosphorus and carbon in the sediment (R2 = 0.90–0.95 and R2 = 0.31–0.95, respectively), indicating a coupling with algal sedimentation. A general increase in sediment Chla and bacterial abundances towards sediments at greater water depth was found. Further, data from 1988–90 reveal that TP and TFe concentrations in the lake were significantly correlated during summer (R2 = 0.81 and 0.76, in the hypolimnion and epilimnion, respectively). The results indicate that the increase in pore water SRP and Fe(II) in surface sediments during summer is regulated by bacterial activity and the input of organic matter. In addition, spatial and temporal variations in pore water composition are mainly influenced by temperature and water depth and the significant correlation between TP and TFe in the water suggests a coupled release from the sediment. These findings support the theory of anoxic microlayer formation at the sediment-water interface.  相似文献   

13.
Summary During the austral summer of 1987/1988, three 24 h in situ primary productivity measurements were made at a nearshore sublittoral site on the east coast of Signy Island, Antarctica. The first experiment in December, coincided with the peak of the benthic algal bloom as shown by benthic chlorophyll measurements and a primary productivity rate of 700.9 mg carbon m–2 day–1. In January, the experiment was undertaken during the peak of the phytoplankton bloom when light intensities reaching the benthos were greatly reduced. A rate of 313.4 mg carbon m–2 day–1 was measured, half that of the previous month. In March the phytoplankton bloom had died off, benthic light intensities had increased and production was 391.8 mg m–2 day–1. The experiments indicate changes in benthic microalgal activity during the summer, linked to changes in the benthic light climate. Compared with previous measurements of phytoplanktonic activity at Signy, the microphytobenthos seems to be an important source of primary production. A production estimate of 100.9 mg carbon m–2, for the ice-free summer period, lies within the range of values of results from other polar studies.  相似文献   

14.
Submerged macrophytes are a major component of freshwater ecosystems, yet their net effect on water column phosphorus (P), algae, and bacterioplankton is not well understood. A 4-month mass-balance study during the summer quantified the net effect of a large (5.5 ha) undisturbed macrophyte bed on these water-column properties. The bed is located in a slow-flowing (0.05–0.1 cm s–1) channel between two lakes, allowing for the quantification of inputs and outputs. The P budget for the study period showed that, despite considerable short-term variation, the macrophyte bed was a negligible net sink for P (0.06 mg m–2 day–1, range from –0.76 to +0.79 mg m–2 day–1), demonstrating that loading and uptake processes in the weedbed roughly balance over the summer. Chlorophyll a was disproportionately retained relative to particulate organic carbon (POC), indicating that the algal component of the POC was preferentially trapped. However, the principal contribution of the weedbed to the open water was a consistent positive influence on bacterioplankton production over the summer. Conservative extrapolations based on measured August specific exports (m–2 day–1) of P and bacterial production exiting the weedbed applied to five regional lakes varying in lake morphometry and macrophyte cover suggest that even in the most macrophyte dominated of lakes (66% cover), P loading from submerged weedbeds never exceeds 1% day–1 of standing epilimnetic P levels, whereas subsidization of bacterioplankton production can reach upward of 20% day–1. The presence of submerged macrophytes therefore differentially modifies algae and bacteria in the water column, while modestly altering P dynamics over the summer.  相似文献   

15.
The interactions among sedimentary cycles of sulphur, iron and phosphorus were investigated in the eutrophic Sacca di Goro lagoon (Northern Adriatic coast, Italy) in order to assess the iron buffering capacity of the sediment. Three stations were chosen, which represented different primary producer communities, hydrodynamics and sediment characteristics. Station G was close to the outlet of the Po di Volano river, station 4 was in the central part of the lagoon under tidal influence and station 17, in the sheltered zone, was affected by macroalgal blooms. From January 1997 to January 1998, sediment cores were sampled approximately every 2 months. In parallel, temperature, salinity and dissolved oxygen were determined in the water column. Sedimentary profiles of Eh, pH, dissolved sulphide (DS), acid volatile sulphide (AVS), chromium reducible sulphur (CRS), iron and phosphorus pools were determined in the 0–10 cm sediment horizon. Bacterial sulphate reduction rates were measured only at station 17. Iron pools, AVS and CRS followed similar patterns at all the considered stations, with lower values in the 0–2 cm sediment horizon and peaks in the deepest sediment layer (5–10 cm horizon). Overall, the labile Fe accounted for an annual average of 115.6 ± 3.0 μmol cm−3, with peaks of labile ferric iron up to 40 μmol cm−3. The great iron availability and reactivity accounted for an efficient buffering capacity against sulphides, with the accumulation of AVS and CRS, specially at station G where the iron buffer was replenished by iron-rich freshwaters. At station 17, in spite of a great iron availability the buffering capacity was less efficient due to macroalgal blooms and accumulation of labile organic matter, whose decomposition stimulated bacterial sulfate reduction and the inherent sulphide production both in the pore-water (DS: 4.0 ± 3.7 mM) and in the deepest water column (DS: 85 μM). The iron and sulphur interactions had also implications for P cycling, since in summer the ferric iron reduction was accompanied by a significant increase of pore-water and exchangeable phosphates. The AVS to labile Fe and AVS to TRIS (AVS + CRS) ratios were used to assess the sediment capacity of precipitating and retaining sulphides. These ratios were then compared with the chemical buffer capacity, demonstrating their suitability as indicators of buffering capacity towards sulphides.  相似文献   

16.
Iron has a central role in bioleaching and biooxidation processes. Fe2+ produced in the dissolution of sulfidic minerals is re-oxidized to Fe3+ mostly by biological action in acid bioleaching processes. To control the concentration of iron in solution, it is important to precipitate the excess as part of the process circuit. In this study, a bioprocess was developed based on a fluidized-bed reactor (FBR) for Fe2+ oxidation coupled with a gravity settler for precipitative removal of ferric iron. Biological iron oxidation and partial removal of iron by precipitation from a barren heap leaching solution was optimized in relation to the performance and retention time (τFBR) of the FBR. The biofilm in the FBR was dominated by Leptospirillum ferriphilum and “Ferromicrobium acidiphilum.” The FBR was operated at pH 2.0 ± 0.2 and at 37 °C. The feed was a barren leach solution following metal recovery, with all iron in the ferrous form. 98–99% of the Fe2+ in the barren heap leaching solution was oxidized in the FBR at loading rates below 10 g Fe2+/L h (τFBR of 1 h). The optimal performance with the oxidation rate of 8.2 g Fe2+/L h was achieved at τFBR of 1 h. Below the τFBR of 1 h the oxygen mass transfer from air to liquid limited the iron oxidation rate. The precipitation of ferric iron ranged from 5% to 40%. The concurrent Fe2+ oxidation and partial precipitative iron removal was maximized at τFBR of 1.5 h, with Fe2+ oxidation rate of 5.1 g Fe2+/L h and Fe3+ precipitation rate of 25 mg Fe3+/L h, which corresponded to 37% iron removal. The precipitates had good settling properties as indicated by the sludge volume indices of 3–15 mL/g but this step needs additional characterization of the properties of the solids and optimization to maximize the precipitation and to manage sludge disposal.  相似文献   

17.
The Carbon Balance of an Old-growth Forest: Building Across Approaches   总被引:2,自引:1,他引:1  
The carbon budget of the Wind River old-growth forest is being addressed from a variety of perspectives and with a range of approaches. The goal of this comprehensive analysis is developing a thorough, general, and validated understanding of the carbon balance, as well as the processes controlling it. The initial results from studies addressing annual carbon (C) balance with ground-based methods, eddy flux, leaf-based models, and ecosystem models are consistent in some, but not all, respects. Net primary production is 500–600 g C m–2 y–1 (5–6 Mg C ha–1 y–1), consistent with estimates based on climate alone. The site appears to be close to carbon equilibrium, as a multiyear average, using ground-based methods but a sink of approximately 150–190 g C m–2 y–1 from eddy flux for a single year. An overview of the mechanisms that can drive forest carbon sinks illustrates why methods emphasizing different temporal and spatial scales, as well as different processes, can come to different conclusions, and it highlights opportunities in moving toward a truly integrated approach.  相似文献   

18.
Periphyton production in an Appalachian river   总被引:3,自引:3,他引:0  
Periphyton primary production was measured by 14C uptake on natural substrates in two sections of the New River, Virginia, U.S.A. Production ranged from 6.71 ± 0.43 mg C g–1 h–1 in summer to 1.47 ± 0.22 mg C g–1 h–1 in late autumn in the hardwater reach and from l.90 ± 0.10 mg C g–1 h–1 to 0.12 ± 0.08 mg C g–1 h–1 in the softwater reach. Production in the hardwater reach was 3–5 times greater than in the softwater reach and significantly correlated with dissolved inorganic carbon (DIC) concentration (r2 = 0.506). No significant correlation was found between periphyton production and photosynthetically active radiation (PhAR). Extrapolation of periphyton production to a 135 km reach of the New River yielded an estimated annual input of 2 252 T AFDW from this source. Estimates of allochthonous (excluding upstream contributions) and aquatic macrophyte inputs to this same reach were 64 T AFDW and 2 001 T AFDW, respectively. While periphyton is not a large source of organic matter, its high food quality and digestibility make it an important component of the New River energy dynamics.  相似文献   

19.
Quantification of annual carbon sequestration is very important in order to assess the function of forest ecosystems in combatting global climate change and the ecosystem responses to those changes. Annual cycling and budget of carbon in a forested basin was investigated to quantify the carbon sequestration of a cool-temperate deciduous forest ecosystem in the Horonai stream basin, Tomakomai Experimental Forest, northern Japan. Net ecosystem exchange, soil respiration, biomass increment, litterfall, soil-solution chemistry, and stream export were observed in the basin from 1999–2001 as a part of IGBP-TEMA project. We found that 258 g C m–2 year–1 was sequestered annually as net ecosystem exchange (NEE) in the forested basin. Discharge of carbon to the stream was 4 g C m–2 year–1 (about 2% of NEE) and consisted mainly of dissolved inorganic carbon (DIC). About 43% of net ecosystem productivity (NEP) was retained in the vegetation, while about 57% of NEP was sequestered in soil, suggesting that the movement of sequestered carbon from aboveground to belowground vegetation was an important process for net carbon accumulation in soil. The derived organic carbon from aboveground vegetation that moved to the soil mainly accumulated in the solid phase of the soil, with the result that the export of dissolved organic carbon to the stream was smaller than that of dissolved inorganic carbon. Our results indicated that the aboveground and belowground interaction of carbon fluxes was an important process for determining the rate and retention time of the carbon sequestration in a cool-temperate deciduous forest ecosystem in the southwestern part of Hokkaido, northern Japan.  相似文献   

20.
Small ponds and puddles are extremely common throughout the ice-free areas of the maritime Antarctic. The carbon and nitrogen dynamics in a typical pond on Livingston Island, South Shetland Islands were investigated during summer 1991. The pond vegetation consisted of a benthic mat of cyanobacteria, diatoms and chlorophytes. The mat was not limited by nutrient availability, both phosphorus and nitrogen being available in the overlying water and N:P ratios in both the water and the mat indicating a roughly balanced supply. Maximal rates of carbon fixation of 0.1–0.2 mgC g–1 dry weight h–1 were similar to those of other perennial Antarctic mat communities. Productivity appeared to be limited by physical factors, but the effects of irradiance and temperature could not be separated. Although carbon fixation rates were low, carbon loss processes were minimal leading to an accumulation of material in the mat approximating to one doubling per year. Atmospheric nitrogen fixation was not a significant component of the nitrogen budget of the pond, accounting for only 0.1 % of the nitrogen accumulation by the mat. Nitrogen uptake was largely from dissolved nitrogen sources, in particular as dissolved organic nitrogen. It is concluded that ephemeral water bodies may play a significant role in the nutrient dynamics of maritime Antarctic ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号