首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Candida shehatae ATCC 22984 fermented solutions of up to 260 g/L sugars derived by hydrolysis of whole barley. These solutions contained hexose: pentose 7030, the hexose being mainly glucose from the barley starch and the pentose being mainly xylose. At sugar concentrations of 180 g/L, fermentation was complete in 72 h, yielding 84 g/L ethanol, 0.47 g ethanol/g sugar. At 260 g/L, fermentation ceased when ethanol concentration reached 100 g/L, but resumed when the ethanol was removed by vacuum distillation, to yield finally 0.50 g ethanol/g sugar.  相似文献   

2.
木质纤维素原料水解产物的主要成分是葡萄糖和木糖,其中葡萄糖很容易发酵,致使木糖成为木质纤维素发酵的关键,休哈塔假丝酵母(Candida shehatae)1766是自然界木糖发酵性能较好的天然酵母之一。研究了发酵温度、发酵时间、接种量、初始pH值、摇床转速等因素对休哈塔假丝酵母1766发酵木糖生产乙醇的影响,由正交试验初步确定了休哈塔假丝酵母发酵木糖制乙醇工艺的适宜条件为好氧条件,发酵时间为2d,发酵温度为28℃,摇床转速为150r/min,初始pH值为5,此时乙醇收率最高可达68.62%。  相似文献   

3.
Understanding how organisms respond to climate is critical for focusing the debate about ways to recover imperiled or manage exploited species. However, efforts to understand climate effects on biota are complicated by differences among species in life history and physiology. Even within a species it is not clear if different populations will react similarly to large-scale climate trends. Climate regimes exhibit basin-wide effects similar to the El Ni no Southern Oscillation but persist for decades. In the North Pacific Ocean, two regime shifts (abrupt changes from one regime to another) occurred in 1976–1977 and 1989–1990 and had wide ranging effects on many species. We examined the response of chinook salmon from 9 evolutionary significant units (ESUs) to the regime shifts. While there was an average decline in spawner numbers associated with the regime shifts, ESUs did not respond in a uniform manner: some ESUs declined, some did not respond and one may have increased. Four ESUs currently listed under the Endangered Species Act may have declined more across regime boundaries than did the five non-listed ones. Interpretation of this result depends on two ESUs: the Snake River spring/summer run and the Central Valley fall run. The Snake River ESU had the largest decline and most sampling effort. If this ESU was excluded from the analysis, there was no evidence that listed and non-listed stocks responded differently to the regimes. The Central Valley ESU is currently a candidate for listing. If this ESU is considered to be a threatened or endangered, then listed ESUs declined more on average than did non-listed ESUs across the regime boundaries regardless of the Snake River ESU. As a whole, these results suggest that long-term climate trends are important to the dynamics of chinook populations and that sub-units of a species (here ESUs) can respond differently to these regimes.  相似文献   

4.
Summary These studies examined several process variables important in scaling up the fermentation of xylose by Candida shehatae. Inoculum age and cell density were particularly influential. Young (24-h) inocula fermented xylose to ethanol two to three times as fast as older (48- or 72-h) inocula. With all three inocula ages, the initial fermentation rates were essentially linear with cell density, up to 4 g dry wt cells L-1. Above that cell density, the ethanol production rate appeared to be oxygen limited, particularly with 24-h old cells. Aeration also played a role in xylose utilization. The fermentation proceeded under both aerobic and anaerobic conditions, but xylose was not completely utilized anaerobically. With aeration, 25% more ethanol was formed in about one third the time than without aeration. Ethanol yields were similar under the two conditions. Cell growth on xylose was observed in the absence of oxygen. Cells went through essentially one doubling in 24 h. Based on the sugar consumed, a Y ATP of 9.9 was obtained. Slow continuous feeding of glucose significantly increased the xylose utilization rate.Maintained in cooperation with the University of Wisconsin, Madison, Wisconsin, USA  相似文献   

5.
木糖的乙醇发酵一直被视为木质纤维原料生物转化产生乙醇的关键因素,休哈塔假丝酵母(Candidashehatae)是木糖发酵性能较好的天然酵母之一。对Candida shehatae HDYXHT-01进行了氦氖激光诱变和NTG诱变,力求选育出发酵木糖产乙醇能力强的菌株。氦氖激光诱变得到的突变株HN-3乙醇产量为17.03g/L,乙醇得率达到0.3393g/g,相比原始菌株提高20.36%。再对HN-3进行NTG诱变,得到的突变株NTG-2乙醇产量为24.20g/L,相比HN-3提高42.10%。进而对NTG-2菌株进行了摇瓶48h连续发酵试验,测得其乙醇产量、木糖利用率、乙醇得率和乙醇产率分别达到24.16g/L,69.26%,0.4360g/g和0.7075g/(L·h)。  相似文献   

6.
Candida shehatae cells pre-grown on D-xylose simultaneously consumed mixtures of D-xylose and D-glucose, under both non-growing (anoxic) and actively growing conditions (aerobic), to produce ethanol. The rate of D-glucose consumption was independent of the D-xylose concentration for cells induced on D-xylose. However, the D-xylose consumption rate was approximately three times lower than the D-glucose consumption rate at a 50% D-glucose: 50% D-xylose mixture. Repression was not observed (substrate utilization rates were approximately equal) when the percentage of D-glucose and D-xylose was changed to 22% and 78%, respectively. In fermentations with actively growing cells (50% glucose and D-xylose), ethanol yields from D-xylose increased, the % D-xylose utilized increased, and the xylitol yield was significantly reduced in the presence of D-glucose, compared to anoxic fermentations (YETOH,xylose = 0.2–0.40 g g−1, 75–100%, and Yxylitol = 0–0.2 g g−1 compared to YETOH,xylose = 0.15 g g−1, 56%, Yxylitol = 0.51 g g−1, respectively). To increase ethanol levels and reduce process time, fed-batch fermentations were performed in a single stage reactor employing two phases: (1) rapid aerobic growth on D-xylose (μ = 0.32 h−1) to high cell densities; (2) D-glucose addition and anaerobic conditions to produce ethanol (YETOH,xylose = 0.23 g g−1). The process generated high cell densities, 2 × 109 cells ml−1, and produced 45–50 g L−1 ethanol within 50 h from a mixture of D-glucose and D-xylose (compared to 30 g L−1 in 80 h in the best batch process). The two-phase process minimized loss of cell viability, increased D-xylose utilization, reduced process time, and increased final ethanol levels compared to the batch process. Received 23 February 1998/ Accepted in revised form 15 July 1998  相似文献   

7.
Summary Fed-batch cultivations of Pichia stipitis and strains of Candida shehatae with d-xylose or d-glucose were conducted at controlled low dissolved oxygen tension (DOT) levels. There were some marked differences between the strains. In general growth was inhibited at lower ethanol concentrations than fermentation, and ethanol levels of up to 47 g·l-1 were produced at 30°C. Ethanol production was mainly growth associated. The yeast strains formed small amounts of monocarboxylic acids and higher alcohols, which apparently did not enhance the ethanol toxicity. The maximum ethanol concentration obtained on d-xylose could not be increased by using a high cell density culture, nor by using d-glucose as substrate. The latter observation suggested that the low ethanol tolerance of these xylose-fermenting yeast strains was not a consequence of the metabolic pathway used during pentose fermentation. In contrast with the C. shehatae strains, it was apparent with P. stipitis CSIR-Y633 that when the ethanol concentration reached about 28 g·l-1, ethanol assimilation exceeded ethanol production, despite cultivation at a low DOT of 0.2% of air saturation. Discontinuing the aeration enabled ethanol accumulation to proceed, but with concomitant xylitol production and cessation of growth.  相似文献   

8.
Summary Two strains of Candida shehatae (ATCC 22984 and CSIR Y492) exhibit marked variability in colony size (petite, grande) and respiratory activity (tetrazolium reaction) when grown on glucose, xylose, and--especially--xylitol agar. The transitions occur in both directions at high frequency. Strains showing a negative or weak tetrazolium reaction on xylitol ferment xylose better than those showing a strong tetrazolium reaction. The type strain (ATCC 34887) shows stable colonial morphology with moderate respiratory and fermentative activities. The objective of this report is to demonstrate these variations.  相似文献   

9.
Long lasting abusive consumption, dependence, and withdrawal are characteristic features of alcohol use disorders (AUD). Mechanistically, persistent changes in gene expression are hypothesized to contribute to brain adaptations leading to ethanol toxicity and AUD. We employed repeated chronic intermittent ethanol (CIE) exposure by vapor chamber as a mouse model to simulate the cycles of ethanol exposure and withdrawal commonly seen with AUD. This model has been shown to induce progressive ethanol consumption in rodents. Brain CIE-responsive expression networks were identified by microarray analysis across five regions of the mesolimbic dopamine system and extended amygdala with tissue harvested from 0-hours to 7-days following CIE. Weighted Gene Correlated Network Analysis (WGCNA) was used to identify gene networks over-represented for CIE-induced temporal expression changes across brain regions. Differential gene expression analysis showed that long-lasting gene regulation occurred 7-days after the final cycle of ethanol exposure only in prefrontal cortex (PFC) and hippocampus. Across all brain regions, however, ethanol-responsive expression changes occurred mainly within the first 8-hours after removal from ethanol. Bioinformatics analysis showed that neuroinflammatory responses were seen across multiple brain regions at early time-points, whereas co-expression modules related to neuroplasticity, chromatin remodeling, and neurodevelopment were seen at later time-points and in specific brain regions (PFC or HPC). In PFC a module containing Bdnf was identified as highly CIE responsive in a biphasic manner, with peak changes at 0 hours and 5 days following CIE, suggesting a possible role in mechanisms underlying long-term molecular and behavioral response to CIE. Bioinformatics analysis of this network and several other modules identified Let-7 family microRNAs as potential regulators of gene expression changes induced by CIE. Our results suggest a complex temporal and regional pattern of widespread gene network responses involving neuroinflammatory and neuroplasticity related genes as contributing to physiological and behavioral responses to chronic ethanol.  相似文献   

10.
Summary The effect of different ethanol concentrations on the growth of Candida shehatae and Pichia stipitis with xylose as substrate was evaluated in a temperature gradient incubator. The upper limit of the temperature profiles of ethanol tolerance of both yeast strains were similar, although P. stipitis appeared to have a slightly higher ethanol tolerance in the higher temperature range. An increase in the ethanol concentration severely depressed the maximum growth temperature, and also increased the minimum growth temperature slightly. The ethanol tolerance limit of 46–48 g·l-1 occurred within a narrow temperature plateau of 11 to 22° C. The low ethanol tolerance of these pentose fermenting yeasts is detrimental for commercial ethanol production from hemicellulose hydrolysates.  相似文献   

11.
The vitamin requirements of Candida shehatae for xylose fermentation   总被引:1,自引:0,他引:1  
Abstract The vitamin requirements of a strain of Candida shehatae for the fermentation of d -xylose was determined using a statistical procedure with a 23 factorial design. Biotin as well as thiamine exerted a dramatic stimulatory effect on the rate of ethanol production, coupled with a significant improvement in the ethanol yield. The greatest enhancement of the fermentation was found in the presence of both these vitamins. Pyridoxine exerted only a minor effect, but was essential for complete substrate utilization in the absence of either biotin or thiamine. Only biotin caused a significant increase in the growth rate.  相似文献   

12.
Summary Candida shehatae ATCC 22984 and Pichia stipitis CBS 5776 were tested for ethanol production from xylose, glucose-xylose mixtures, and aspen wood total hydrolysates. Adaptation of these yeasts to wood hydrolysate solutions by recycling resulted in improved substrate utilization and ethanol production. Compared to the non-adapted cultures, recycled C. shehatae and P. stipitis in aspen hydrolysate increased g ethanol/g sugar consumed from 0.39 and 0.41 to 0.45 and 0.47; while ethanol production from a 70:30 glucose-xylose solution (total sugars 140 g/L) was 45 g/L in 24 h and 60 g/L in 72 h with the adapted yeasts compared to 15 g/L and 28 g/L in the same times with the parent strains.  相似文献   

13.
[目的]探究木糖发酵典型菌株休哈塔假丝酵母在己糖和戊糖发酵中的转录谱及差异,筛选出与木糖利用和乙醇发酵代谢途径及调控相关的关键性酶和功能蛋白质基因.[方法]应用新一代高通量测序技术454 GS FLX Titanium分别构建了休哈塔假丝酵母木糖、葡萄糖发酵的cDNA文库,并进行De novo转录组的表达序列标签大规模测序和序列比较分析,进而挖掘出该酵母中参与木糖代谢和乙醇发酵的相关基因.[结果]分别对木糖和葡萄糖发酵样本进行二分之一RUN测序并各自得到60万条reads,序列平均长度400 bp.共拼接得到7250条(木糖)和7168条(葡萄糖)contigs,并利用BLAST对木糖样品和葡萄糖样品中的2421个基因(contig)和2456个基因(contig)进行了功能注释和GO分类.通过两个文库间的序列对比分析,共发现158个基因属于差异表达状态(P<0.05).基于经典的糖酵解及乙醇发酵途径筛选出与木糖乙醇发酵相关的候选基因,并且比较分析其转录水平的差异.[结论]基于大规模转录谱测序和比较分析首次筛选出休哈塔假丝酵母中参与木糖代谢和乙醇发酵的基因群,可为后续的分子生物学及代谢调控研究提供基础数据.  相似文献   

14.
Summary Candida shehatae carbon metabolic pathways were correlated with fermentative activity under different growth conditions. Reduced nicotine adenine dinucleotide (NADPH) is the coenzyme preferred for xylose reductase by C. shehatae under in vitro anoxic cell culture conditions. To prevent a redox imbalance derived from intracellular accumulation of NADH in the second enzymatic step of xylose metabolism, the operation of phosphoketolase via in addition the classic pentose phosphate pathway essential for NADH dissimilation is suggested. Variation in cultivation conditions showed a different NADH/NADPH ratio coupled to xylose reductase activity. The existence of two xylose reductases is discussed. Like ethanol, xylitol accumulates only under oxygen-limited or anaerobic conditions. Xylitol accumulaiton under unaerobic conditions was higher when using respiring cells than respirofermentative cells. This fact suggests that cells pregrown under oxygen limitation are better adapted to starting alcoholic fermentation than cells previously grown under aerobic conditions.Offprint requests to: M. T. Amaral-Collaço  相似文献   

15.
Ethanol was added at concentrations of 25 and 50 g/L to active cultures of Canida shehatae under oxygen-limited (fermentative) conditions. Added ethanol completely inhibited grwoth and fermentation of D-xylose by C. shehatae. Cultures with added ethanol rapidly declined in cell viability as measured by plate counts and methylene blue staining. The rate of decline in cell viability was dependent on the amount of added ethanol. Over the course of the fermentation, cell viability, as measured by plate counts, was significantly lower in all experiments (with or without ethanol addition) compared with the viability measurements by methylene blue staining. Thus, data from the plate counts provided a more sensitive measure of the toxic effects of added ethanol and long-term anaerobiosis on C. shehatae growth/fermentation. Mean cell volume and total cell volume declined in fermentations with added ethanol. (c) 1992 John Wiley & Sons, Inc.  相似文献   

16.
17.
The kinetics of biomass formation, D-xylose utilization, and mixed substrate utilization were determined in a chemostat using the yeast Candida shehatae. The maximum growth rate of C. shehatae grown aerobically on D-xylose was 0.42 h−1 and the Monod constant, K s, was 0.06 g L−1. The biomass yield, Y {X/S}, ranged from 0.40 to 0.50 g g−1 over a dilution rate range of 0.2–0.3 h−1, when C. shehatae was grown on pure D-xylose. Mixtures of D-xylose and glucose (∼1 : 1) were simultaneously utilized over a dilution rate from 0.15 to 0.35 h−1 at pH 3.5 and 4.5, but pH 3.5 reduced μmax and reduced the dilution rate range over which D-xylose was utilized in the presence of glucose. At pH 4.5, μmax was not reduced with the mixed sugar feed and the overall or lumped K s value was not significantly increased (0.058 g L−1 vs 0.06 g L−1), when compared to a pure D-xylose feed. Kinetic data indicate that C. shehatae is an excellent candidate for chemostat production of value added products from renewable carbon sources, since simultaneous mixed substrate utilization was observed over a wide range of growth rates on a 1 : 1 mixture of glucose and D-xylose. Received 21 August 1997/ Accepted in revised form 28 May 1998  相似文献   

18.
19.
采用Plackett-Burman (PB) 方法和中心组合设计 (Ccentral composit design,CCD) 对休哈塔假丝酵母Candida shehataeHDYXHT-01利用木糖发酵生产乙醇的工艺进行优化。PB试验设计与分析结果表明:硫酸铵、磷酸二氢钾、酵母粉和接种量是影响木糖乙醇发酵的4个关键因素,以乙醇产量为响应目标,采用CCD和响应面分析法 (Response surface methodology,RSM),确定了木糖乙醇发酵的最佳工艺为:硫酸铵1.73 g/L、磷酸二氢钾3.56 g/L、酵母粉2.62 g/L和接种量5.66%,其他发酵条件为:木糖80 g/L,MgSO4·7H2O 0.1 g/L,pH 5.0,培养温度30 ℃,装液量100 mL/250 mL,摇床转速140 r/min,发酵时间48 h,在该条件下发酵液中乙醇产量可以达到26.18 g/L,比未优化前提高了1.15倍。  相似文献   

20.
Anaerobic D-xylose fermentations were performed with C. shehatate in the presence of 0, 25, and 50 g/L of xylitol. D-Xylose was preferentially utilized over xylitol and ethanol yields (Y Etoh/S 0.26 g/g) were unaffected by xylitol. Added xylitol did inhibit conversion of xylose to xylitol at an external xylitol concentration of 50 g/L; Y Xylitol/S was reduced from 0.21 to 0.14. Cell viability declined in all of the fermentations, but was not due to the presence of xylitol. The decline in viability was attributed to oxygen deprivation, since ethanol levels only reached 10.5 g/L and the decline cell viability was the same in each fermentation, regardless of the xylitol concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号