首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Enzyme-catalysed hydrolysis of esters of 4-hydroxy-3-methyl-2-(2-propynyl)-cyclopent-2-enone (HMPC) was examined for the preparation of the optically pure alcohol moiety of synthetic pyrethroids. Among microorganisms and lipases tested, some bacterial lipases hydrolysed the ester of HMPC with high enantioselectivity and high reaction rate. Arthrobacter lipase gave the optically pure (R)-HMPC at 50% hydrolysis in a two-liquid phase reaction system of water and the insoluble substrate. The hydrolysis proceeded even at a substrate concentration of 80w/v%. The enantioselectivity was not changed with the chain length of the acid moiety of the esters. By combination of the enzymatic resolution with a chemical inversion of the (R)-alcohol, an efficient proess was developed for the total conversion of racemic HMPC to (S)-HMPC, which is an important alcohol for preparation of an insecticidallyactive synthetic pyrethroid.Biological preparation of an optically active alcohol. Part I  相似文献   

2.
Lipase from Arthrobacter sp. was immobilized onto low-cost diatomite materials using different protocols for the resolution of 4-hydroxy-3-methyl-2-(2-propenyl)-2-cyclopenten-1-one (HMPC) by asymmetric acylation. The support surface was grafted various functional groups including methacryloxypropyl, vinyl, octyl, dodecyl and γ-(aminopropyl)-glutaraldehyde. These modifications resulted in various mechanisms during the immobilization and thus introduced different characteristics to the prepared lipases. The interfacially adsorbed lipase onto dodecyl-modified support exhibited both higher activity and stability among these immobilized preparations. The modified enzyme-aggregate coating method was performed based on interfacial adsorption in our work, and the characteristics of this immobilized lipase were investigated and compared with those by cross-linking and interfacial adsorption methods. It was shown that the enzyme-aggregate coated lipase yielded the highest activity with a recovered activity of 8.5-fold of the free enzyme, and the highest operational stability with 85% of initial activity remained after 10 recycles. Excellent enantioselectivity (E ≥ 400, with e.e. = 99% of S-HMPC) was obtained for most lipase preparations in our paper (E = 85 for the free enzyme).  相似文献   

3.
Previously, we reported that ten strains belonging to Erythrobacter showed epoxide hydrolase (EHase) activities toward various epoxide substrates. Three genes encoding putative EHases were identified by analyzing open reading frames of Erythrobacter litoralis HTCC2594. Despite low similarities to reported EHases, the phylogenetic analysis of the three genes showed that eeh1 was similar to microsomal EHase, while eeh2 and eeh3 could be grouped with soluble EHases. The three EHase genes were cloned, and the recombinant proteins (rEEH1, rEEH2, and rEEH3) were purified. The functionality of purified proteins was proved by hydrolytic activities toward styrene oxide. EEH1 preferentially hydrolyzed (R)-styrene oxide, whereas EEH3 preferred to hydrolyze (S)-styrene oxide, representing enantioselective hydrolysis of styrene oxide. On the other hand, EEH2 could hydrolyze (R)- and (S)-styrene oxide at an equal rate. The optimal pH and temperature for the EHases occurred largely at neutral pHs and 40–55 °C. The substrate selectivity of rEEH1, rEEH2, and rEEH3 toward various epoxide substrates were also investigated. This is the first representation that a strict marine microorganism possessed three EHases with different enantioselectivity toward styrene oxide.  相似文献   

4.
A method to improve the enantioselectivity of lipase-catalyzed kinetic resolution (KR) of trans-2-phenyl-cyclopropane-1-carboxylic acid derivatives in water–acetone solution is presented. Two different approaches were compared: enzyme-catalyzed esterification and enzymatic hydrolysis of the target ester. A substantial influence of enzyme type, ethoxy group donor, and solvent on conversion and enantioselectivity of the enzymatic esterification was noted. While enzymatic esterification proceeds with poor enantioselectivity, the hydrolysis of target ester proceeds efficiently. Studies on the influence of cosolvent used for the enzymatic hydrolysis reaction showed that kinetic resolution can be performed in acetone and water buffer mixture predominantly containing organic solvent. Any change in organic solvent content resulted in a substantial decrease in enantioselectivity from almost E = 150 to less than 5.  相似文献   

5.
Kinetic resolution of a chiral alcohol, 4-hydroxy-3-methyl-2-(2′-propenyl)-2-cyclopentenone (HMPC), a key intermediate for the production of prallethrin insecticides, was successfully carried out by enantioselective hydrolysis of (RS)-HMPC acetate using calcium alginate gel-entrapped cells of a newly isolated esterase-producing bacterium Acinetobacter sp. CGMCC 0789. When the effect of different cosolvents was investigated, it was found that isopropanol could markedly enhance the activity and enantioselectivity of the immobilized cells. The optimum concentration of isopropanol was 10% (v/v) where immobilized cells still showed good operational stability. After 10 cycles of reaction, no significant decrease in the enzyme activity was observed. The catalytic specificity constants (Vmax/Km) for both enantiomers of the substrate were determined with partially purified enzyme, giving 0.0184 and 0.671 h−1 for the (S)- and (R)-ester, respectively.  相似文献   

6.
Semi-purified lipases from Candida rugosa, Pseudomonas cepacia and Alcaligenes sp. were chemically modified with a wide range of hydrophobic groups such as benzyloxycarbonyl, p-nitrobenzyloxycarbonyl, p-methoxybenzyloxycarbonyl, t-butoxycarbonyl, lauroyl and acetyl moieties. The Candida rugosa lipase MY modified with the benzyloxycarbonyl group (modification ratio = 84%) brought about a 15-fold increase in enantioselectivity (E value) towards the hydrolysis of racemic butyl 2-(4-ethylphenoxy)propionate in an aqueous buffer solution, although the enzymatic activity was decreased. The origin of the enantioselectivity enhancement by chemical modification of the lipase is attributed to a significant deceleration in the initial reaction rate for the incorrectly binding enantiomer.  相似文献   

7.
Porcine pancreas lipase (PPL) resolution of the α-methyl group of racemic methyl 2-methyl-4-oxopentanoate, a valuable synthetic precursor of fragrances and marine natural products, was enhanced by salt modulation of the enzymatic hydrolysis. For the enantioselective hydrolysis of the title ester, PPL was selected from a series of esterases and lipases, and its enantioselectivity was evaluated by changing the reaction medium parameters. The use of 1.6?mol L–1 sodium sulfate in phosphate buffer (pH 7.2) improved the enantioselectivity allowing the formation of methyl (2R)-(+)-2-methyl-4-oxopentanoate and (2S)-(–)-2-methyl-4-oxopentanoic acid with an enantiomeric excess of >99% and 71%, respectively. The study showed that a modulation of PPL enantioselectivity could be achieved by using kosmotropic salts in the reaction media. The present method consists of a practical and low-cost option to improve enzymatic kinetic resolution reactions.  相似文献   

8.
A biotransformation process has been developed for the production of (S)-N-(2-ethyl-6-methylphenyl) alanine by enantioselective hydrolysis of racemic methyl ester in the presence of Candida antarctica lipase B (CAL-B). However, the enantioselectivity of CAL-B towards the resolution is not high enough to obtain enantiomerically pure product. In order to improve the enantioselectivity of the enzyme, the effects of surfactants on CAL-B-catalyzed hydrolysis were tested. The results suggest that surfactants can influence the microenvironment of the enzyme, and the addition of Tween-80, in particular, to the reaction medium markedly enhanced the selectivity of CAL-B towards the substrate used, with the enantiomeric ratio (E-value) increasing from 11.3 to 60.1.  相似文献   

9.
Chang CS  Ho SC 《Biotechnology letters》2011,33(11):2247-2253
Isooctane was the best reaction medium for the enantioselective esterification of (R,S)-2-methylalkanoic acid with n-butanol using Carica papaya lipase as catalyst. Increasing linear alkyl-chain length of racemic 2-methylalkanoic acids from ethyl to hexyl increased the enantioselectivity (E) from 2.1 to 98.2 for the esterification of racemic 2-methylalkanoic acids with n-butanol at 35°C. Decreasing reaction temperature from 40 to 20°C increased the enantioselectivity (E) from 14 to 33 for the esterification of racemic 2-methylhexanoic acids with n-butanol. We obtained a maximum enantioselectivity, of E = 24.3, for the enantioselective esterification of racemic 2-methylhexanoic acids with n-butanol in isooctane at water activity 0.33, and at 35°C.  相似文献   

10.
The homologous lipases fromRhizomucor miehei andHumicola lanuginosa showed approximately the same enantioselectivity when 2-methyldecanoic acid esters were used as substrates. Both lipases preferentially hydrolyzed theS-enantiomer of 1-heptyl 2-methyldecanoate (R. miehei:E S =8.5;H. lanuginosa:E S =10.5), but theR-enantiomer of phenyl 2-methyldecanoate (E R =2.9). Chemical arginine specific modification of theR. miehei lipase with 1,2-cyclohexanedione resulted in a decreased enantioselectivity (E R =2.0), only when the phenyl ester was used as a substrate. In contrast, treatment with phenylglyoxal showed a decreased enantioselectivity (E S =2.5) only when the heptyl ester was used as a substrate. The presence of guanidine, an arginine side chain analog, decreased the enantioselectivity with the heptyl ester (E S =1.9) and increased the enantioselectivity with the aromatic ester (E R =4.4) as substrates. The mutation, Glu 87 Ala, in the lid of theH. lanuginosa lipase, which might decrease the electrostatic stabilization of the open-lid conformation of the lipase, resulted in 47% activity compared to the native lipase, in a tributyrin assay. The Glu 87 Ala mutant showed an increased enantioselectivity with the heptyl ester (E S =17.4) and a decreased enantioselectivity with the phenyl ester (E R =2.5) as substrates, compared to native lipase. The enantioselectivities of both lipases in the esterification of 2-methyldecanoic acid with 1-heptanol were unaffected by the lid modifications.  相似文献   

11.
The pharmacokinetics of the antiparasitic drug toltrazuril (1-methyl-3-[3-methyl-4-[4-[trifluoromethyl]thio]phenoxy]phenyl-1,3,5- triazine-2,4,6(1H,3H,5H)-trione) were studied in the rat following pretreatment with 3-methylcholanthrene, an inducer of rat liver cytochrome P-450 1A. The induction markedly modified the pharmacokinetics of the compound, leading to a decrease in the AUC value for toltrazuril sulfoxide. The results were explained on the basis of previous results from our laboratory relating to the product enantioselectivity of the formation of the sulfoxide and the substrate enantioselectivity of the subsequent formation of the sulfone. © 1994 Wiley-Liss, Inc.  相似文献   

12.
Bacteria were enriched from soil samples with succinate as carbon source and racemic 2-phenylpropionitrile as sole source of nitrogen. One of the isolates, strain d3, converted (R,S)-2-phenylpropionitrile with high enantioselectivity to (S)-2-phenylpropionic acid. Strain d3 was identified as Agrobacterium tumefaciens. Resting cells hydrolysed 2-phenylpropionitrile via 2-phenylpropionamide to 2-phenylpropionic acid. Racemic 2-phenylpropionitrile as well as 2-phenylpropionamide were converted to (S)-2-phenylpropionic acid with an enantiometric excess above 96%. The nitrile hydratase and the amidase were both shown to convert preferentially the S enantiomer of their respective substrate. These two enzymes were induced in the presence of (R,S)-2-phenylpropionitrile but only in the absence of ammonia. In addition to 2-phenylpropionitrile strain d3 could utilize various aliphatic and aromatic nitriles as nitrogen sources. Resting cells of strain d3 also converted (R,S)-2-phenylbutyronitrile, ibuprofen nitrile, ketoprofen nitrile and -aminophenylacetonitrile with high enantioselectivity. The nitrile- and amide-converting enzyme activities were also found in cell-free extracts.  相似文献   

13.
Pig liver esterase (PLE) is probably the most important carboxyl esterase in organic synthesis and is commercially obtained by extraction of the animal tissue. However, problems occur in its application due to the presence of several isoenzymes (α-, β- and γ-PLE). The functional expression of the γ-isoenzyme was already shown and differences in the enantioselectivity compared to the commercial preparations were confirmed. The amino acid and nucleotide sequences of the α- and β-PLE are still unknown. In this work, putative sequences of the α-isoenzyme were identified from a commercial PLE preparation by 2D gel electrophoresis, digestion with proteases and analysis using Matrix-assisted laser desorption/ionization–time of flight (TOF) and electrospray ionisation quadrupole–TOF mass spectrometry. Based on these results, three amino acid exchanges were introduced into the gene encoding γ-rPLE by site-directed mutagenesis, and the proteins were expressed in E. coli Origami (DE3). The produced PLE mutants were characterised with respect to their substrate specificity and enantioselectivity. No significant differences in the activity towards methyl butyrate were found, but several variants showed substantially enhanced enantioselectivity in the resolution of (R,S)-1-phenyl-2-butyl acetate with E = 100 for the best mutant V236P/A237G.  相似文献   

14.
Pseudomonas sp. lipase (PSL) was successfully immobilized on a novel hydrophobic polymer support through physical adsorption and the immobilized PSL was used for resolution of (R,S)-2-octanol with vinyl acetate as acyl donor. Enhanced activity and enantioselectivity were observed from the immobilized PSL compared with free PSL. The effects of reaction conditions such as temperature, water activity, substrate molar ratio and the amount of immobilized lipase were investigated. Under optimum conditions, the residual (S)-2-octanol was recovered with 99.5% enantiomeric excess at 52.9% conversion. The results also indicated that the immobilized PSL could maintain 94% of its initial activity even after reusing it five times.  相似文献   

15.
Thirty-one ester hydrolases were cloned from Escherichia coli K-12 and an efficient screening strategy was applied to screen and characterize them, emphasizing on their enantioselectivity. We are the first to investigate the enantioselectivity of these enzymes, although their activity had been reported by other researchers. The enzyme XL3 from gene b0349, XL10 from gene b0494, XL15 from gene b3412, XL27 from gene b2154 and XL31 from gene b3825 exhibited high activity towards p-nitrophenyl esters with short chain. The enzyme XL15 from gene b3412 was demonstrated for the first time to show high enantioselectivity to (R)-1-phenylethyl acetate both in hydrolysis and esterification with enantioselectivity value (E) > 100 at the conversion of 31.2 and 36.8%, respectively.  相似文献   

16.
Cell-free extracts from ripening seeds of Arctium lappa L. catalyzed the enantioselective formation of (-)-pinoresinol, (-)-lariciresinol and (-)-secoisolariciresinol from achiral coniferyl alcohol in the presence of NADPH and H2O2. The enantioselectivity of the lignan formation was opposite to that of the (+)-secoisolariciresinol formation catalyzed by cell-free extracts from petioles of the same plant species.  相似文献   

17.
The enantioselectivity for subtilisin-catalyzed hydrolysis of ethyl 2-(4-substituted phenoxy)propionates in an aqueous buffer solution was improved by addition of DMSO (54–56% v/v). On the basis of the conformational change of subtilisin Carlsberg observed for FT-IR and CD spectra, the high enantioselectivity for subtilisin-catalyzed hydrolysis of racemic ethyl 2-(4-ethylphenoxy)propionate could be related to a partial decrease of the tertiary structure of the enzyme protein arising from an increase of the ratio of DMSO in the reaction medium. This mechanistic model for the enantiorecognition can also be supported by the discussion based on the value of the Michaelis constant (K m) obtained for each enantiomer of the substrate.  相似文献   

18.
The asymmetric bio-reduction of 4-chloro-acetoacetic-acid-ethyl-ester to the pharmaceutical building block (S)-4-chloro-3-hydroxybutanoate-ethyl-ester requires the utilization of an enantioselective robust biocatalyst. Some of the natural Saccharomyces cerevisiae strains, isolated from Mount Carmel National Park in Israel, were characterized as resistant to environmental stress. Nevertheless, these strains showed relatively low enantiomeric-excess (ee), while a laboratory strain, Y103, exhibited a selectivity of 98% ee. The enantioselective lab strain was crossed with the multi-stress resistant environmental isolate (93% ee) followed by backcross with Y103, to subsequently obtain a haploid offspring of backcross-1, exhibiting both high multi-stress resistance and high enantioselectivity (98% ee). Introducing osmotic (1 M NaCl), oxidative (0.6 mM H2O2) and thermal stress (44°C) to growing cultures of the enantioselective parent, resulted in a decrease of 24–32% in specific activity, while the enantioselectivity of the stress-resistant parent decreased by 4–12% ee. Unlike its original parental strains, the new strain maintained constant specific activity and enantioselectivity when introduced to the various stress factors. This work shows that the classic introgression method, can serve as a viable approach for creating a robust enantioselective biocatalyst, designed for industrial production of chiral compounds.  相似文献   

19.
Enantioselective acylation employing vinyl alkanoates as acyl donors was exploited for the resolution of 2-(substituted phenoxy)-1-propanols carrying different substituents on the benzene ring using Achromobacter sp. lipase. These primary alcohols with an oxygen atom at the stereocenter, were resolved with moderate to good enantioselectivity, based on the enantiomeric ratio E (up to 27), through acylation with vinyl butanoate in diisopropyl ether, after the examination of potential factors affecting the reaction such as organic solvents and acyl donors. Using this procedure, enantiomerically enriched (R)-2-(4-chlorophenoxy)-1-propanol was prepared in 97% e.e. and 33% yield in a gram-scale reaction.  相似文献   

20.
Abstract

In this study, four bacterial strains were tested for their ability to reduce acetophenones to its corresponding alcohol. Among these strains Weissella paramesenteroides N7 was found to be the most successful biocatalyst to reduce the ketones to the corresponding alcohols. The reaction conditions were systematically optimized for W. paramesenteroides N7 that resulted in high enantioselectivity and conversion rates for the bioreduction. The scale-up asymmetric reduction of 1-(4-methoxyphenyl) propan-1-one (1r) by W. paramesenteroides N7 gave (R)-1-(4-methoxyphenyl) propan-1-ol (2r) with 94% yield and >99% enantiomeric excess. This is the first report showing the synthesis of (R)-1-(4-methoxyphenyl) propan-1-ol (2r) in enantiopure form using a biocatalyst on a gram scale. The whole cell catalyzed the reductions of ketone substrates on the preparative scale, demonstrating that W. paramesenteroides N7 would be a valuable biocatalyst for the preparation of chiral aromatic alcohols of pharmaceutical interest as a promising and alternative green approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号