首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously we have shown that treatment with the peroxisome proliferator perfluorodecanoic acid (PFDA) significantly increased hepatic reduced glutathione (GSH) content without altering the activity of selenium-glutathione peroxidase. In this study we examined some potential mechanisms by which PFDA treatment increases GSH levels. Male Sprague-Dawley rats were given a single injection of 0, 8.8, 17.5, and 35 mg PFDA in corn oil per kg body weight. Twelve days later the effects of PFDA on the activities of enzymes associated with GSH synthesis, utilization, and regeneration were assessed. The results showed that in a dose-dependent manner, PFDA treatment significantly decreased the activity of gamma-glutamylcysteine synthetase, while the activities of NADPH-generating enzymes, malic enzyme, glucose-6-phosphate dehydrogenase, and 6-phosphogluconate dehydrogenase were increased. PFDA treatment also dose dependently decreased cytosolic, but not microsomal, glutathione S-transferase activity, and the activity of glutathione reductase was decreased by the highest dose of PFDA. The data obtained suggest that increased hepatic GSH levels following PFDA treatment may result from increased regeneration and/or decreased utilization.  相似文献   

2.
The activities of rat hepatic subcellular antioxidant enzymes were studied during hepatic ischemia/reperfusion. Ischemia was induced for 30 min (reversible ischemia) or 60 min (irreversible ischemia). Ischemia was followed by 2 or 24 h of reperfusion. Hepatocyte peroxisomal catalase enzyme activity decreased during 60 min of ischemia and declined further during reperfusion. Peroxisomes of normal density (d = 1.225 gram/ml) were observed in control tissues. However, 60 min of ischemia also produced a second peak of catalase specific activity in subcellular fractions corresponding to newly formed low density immature peroxisomes (d = 1.12 gram/ml). The second peak was also detectable after 30 min of ischemia followed by reperfusion for 2 or 24 h. Mitochondrial and microsomal fractions responded differently. MnSOD activity in mitochondria and microsomal fractions increased significantly (p < 0.05) after 30 min of ischemia, but decreased below control values following 60 min of ischemia and remained lower during reperfusion at 2 and 24 h in both organelle fractions. Conversely, mitochondrial and microsomal glutathione peroxidase (GPx) activity increased significantly (p < 0.001) after 60 min of ischemia and was sustained during 24 h of reperfusion. In the cytosolic fraction, a significant increase in CuZnSOD activity was noted following reperfusion in animals subjected to 30 min of ischemia, but 60 min of ischemia and 24 h of reperfusion resulted in decreased CuZnSOD activity. These studies suggest that the antioxidant enzymes of various subcellular compartments respond to ischemia/reperfusion in an organelle or compartment specific manner and that the regulation of antioxidant enzyme activity in peroxisomes may differ from that in mitochondria and microsomes. The compartmentalized changes in hepatic antioxidant enzyme activity may be crucial determinant of cell survival and function during ischemia/reperfusion. Finally, a progressive decline in the level of hepatic reduced glutathione (GSH) and concomitant increase in serum glutamate pyruvate transaminase (SGPT) activity also suggest that greater tissue damage and impairment of intracellular antioxidant activity occur with longer ischemia periods, and during reperfusion.  相似文献   

3.
1. Various aspects of triacylglycerol metabolism were compared in rats given phenobarbital at a dose of 100mg/kg body wt. per day by intraperitoneal injection; controls were injected with an equal volume of 0.15m-NaCl by the same route. Animals were killed after 5 days of treatment. 2. Rats injected with phenobarbital demonstrated increased liver weight, and increased microsomal protein per g of liver. Other evidence of microsomal enzyme induction was provided by increased activity of aminopyrine N-demethylase and cytochrome P-450 content. Increased hepatic activity of γ-glutamyltransferase (EC 2.3.2.2) occurred in male rats, but not in females, and was not accompanied by any detectable change in the activity of this enzyme in serum. 3. Phenobarbital treatment increased the hepatic content of triacylglycerol after 5 days in starved male and female rats, as well as in non-starved male rats; non-starved females were not tested in this regard. At 5 days after withdrawal of the drug, there was no difference in hepatic triacylglycerol content or in hepatic functions of microsomal enzyme induction between the treated and control rats. 4. After 5 days, phenobarbital increased the synthesis in vitro of glycerolipids in cell-free liver fractions fortified with optimal concentrations of substrates and co-substrates when results were expressed per whole liver. The drug caused a significant increment in the activity of hepatic diacylglycerol acyltransferase (EC 2.3.1.20), but did not affect the activity per liver of phosphatidate phosphohydrolase (EC 3.1.3.4) in cytosolic or washed microsomal fractions. A remarkable sex-dependent difference was observed for this latter enzyme. In female rats, the activity of the microsomal enzyme per liver was 10-fold greater than that of the cytosolic enzyme, whereas in males, the activities of phosphohydrolases per liver from both subcellular fractions were similar. 5. The phenobarbital-mediated increase in hepatic triacylglycerol content could not be explained by a decrease in the hepatic triacylglycerol secretion rate as measured by the Triton WR1339 technique. Since the hepatic triacylglycerol showed significant correlation with microsomal enzyme induction functions, with hepatic glycerolipid synthesis in vitro and with diacylglycerol acyltransferase activity, it is likely to be due to enhanced triacylglycerol synthesis consequent on hepatic microsomal enzyme induction. 6. In contrast with rabbits and guinea pigs, rats injected with phenobarbital showed a decrease in serum triacylglycerol concentration in the starved state; this decrease persisted for up to 5 days after drug administration stopped, and did not occur in non-starved animals. It seems to be independent of the microsomal enzyme-inducing properties of the drug, and may be due to the action of phenobarbital at an extrahepatic site.  相似文献   

4.
1. The association between hepatic microsomal enzyme induction and triacylglycerol metabolism was examined in fasting male rabbits (2kg body wt.) injected intra-peritoneally with 50 mg of phenobarbital per kg for 10 days. 2. Occurrence of enzyme induction was established by a significant increase in hepatic aminopyrine N-demethylase activity and cytochrome P-450 content, as well as a doubling of microsomal protein per g of liver and a 54% increase in liver weight. Parallel increments in hepatic gamma-glutamyltransferase (EC 2.3.2.2) activity occurred; these were more pronounced in the whole homogenate than in the microsomes, which only accounted for 12.5% of the total enzyme activity in the controls and 17.0% in the animals given phenobarbital. Increased activity of gamma-glutamyltransferase activity was also observed in the blood serum of the test animals. 3. The rabbits given phenobarbital manifested increased hepatic triacylglycerol content and the triacylglycerol concentration of blood serum was also elevated. These changes were accompanied by a significantly enhanced ability of cell-free fractions of liver from the test animals (postmitochondrial supernatant and microsomal fractions) to synthesize glycerolipids in vitro from sn-[14C] glycerol 3-phosphate and fatty acids, when expressed per whole liver. Relative to the protein content of the fraction, glycerolipid synthesis in vitro was significantly decreased in the microsomes, presumably consequent upon the dramatic increase in their total protein content, whereas no change occurred in the postmitochondrial supernatant, possibly due to the protective effect of cytosolic factors present in this fraction and known to enhance glycerolipid synthesis. 4. Microsomal phosphatidate phosphohydrolase accounted for 85% of the total liver activity of this enzyme and its specific activity was 20-fold higher than that of the cytosolic phosphatidate phosphohydrolase (EC 3.1.3.4), when each was measured under optimal conditions. A significant increase in the activity of both enzymes per whole liver occurred in the rabbits given phenobarbital. A closer correlation between hepatic triacylglycerol content and and microsomal phosphatidate phosphohydrolase, as well as the above observation, suggest that this, rather than the cytosolic enzyme, may be rate-limiting for triacylglycerol synthesis in rabbit liver. 5. Significant correlations were observed between the various factors of hepatic microsomal-enzyme induction (aminopyrine N-demethylase and gamma-glutamyltransferase activity as well as cytochrome P-450 content) and hepatic triacylglycerol content, suggesting that that microsomal enzyme induction may promote hepatic triacylglycerol synthesis and consequently hypertriglyceridaemia in the rabbit.  相似文献   

5.
The present study demonstrates unequivocally the existence of short-chain trans-2-enoyl coenzyme A (CoA) hydratase and beta-ketoacyl CoA reductase activities in the endoplasmic reticulum of rat liver. Subcellular fractionation indicated that all four fractions, namely, mitochondrial, peroxisomal, microsomal, and cytosolic contained significant hydratase activity when crotonyl CoA was employed as the substrate. In the untreated rat, based on marker enzymes and heat treatment, the hydratase activity, expressed as mumol/min/g liver, wet weight, in each fraction was: mitochondria, 684; peroxisomes, 108; microsomes, 36; and cytosol, 60. Following di-(2-ethylhexyl)phthalate (DEHP) treatment (2% (v/w) for 8 days), there was only a 20% increase in mitochondrial activity; in contrast, peroxisomal hydratase activity was stimulated 33-fold, while microsomal and cytosolic activities were enhanced 58- and 14-fold respectively. A portion of the cytosolic hydratase activity can be attributed to the component of the fatty acid synthase complex. Although more than 70% of the total hydratase activity was associated with the mitochondrial fraction in the untreated rat, DEHP treatment markedly altered this pattern; only 11% of the total hydratase activity was present in the mitochondrial fraction, while 49 and 29% resided in the peroxisomal and microsomal fractions, respectively. In addition, all four subcellular fractions contained the short-chain NADH-specific beta-ketoacyl CoA (acetoacetyl CoA) reductase activity. Again, in the untreated animal, reductase activity was predominant in the mitochondrial fraction; following DEHP treatment, there was marked stimulation in the peroxisomal, microsomal, and cytosolic fractions, while the activity in the mitochondrial fraction increased by only 39%. Hence, it can be concluded that both reductase and hydratase activities exist in the endoplasmic reticulum in addition to mitochondria, peroxisomes, and soluble cytoplasm.  相似文献   

6.
Rat liver cytosolic thiopurine methyltransferase and microsomal thiol methyltransferase were each found to be subject to control by the absolute molar ratio of S-adenosylmethionine to S-adenosylhomocysteine using cell-free enzyme preparations. As this ratio was lowered, inhibition of both sulfhydryl xenobiotic transmethylases occurred. On the other hand, when the ratio was decreased in vivo by the administration of D,L-homocysteine thiolactone to animals, this alteration was accompanied by an inhibition of only thiopurine methyltransferase activity. Thiol methyltransferase activity was not significantly affected after drug treatment, which would suggest that there is a compartmentalization of S-adenosylhomocysteine in the intact hepatocyte.  相似文献   

7.
The effects of levonorgestrel treatment (4 micrograms/day per kg body weight 0.75 for 18 days) on rate-limiting enzymes of hepatic triacylglycerol synthesis, namely glycerol-3-phosphate acyltransferase and phosphatidic acid phosphatase were investigated in microsomal, mitochondrial and cytosolic fractions of rat liver. Levonorgestrel treatment resulted in a significant reduction (26%) of hepatic microsomal glycerol-3-phosphate acyltransferase specific activity. Hepatic mitochondrial glycerol-3-phosphate acyltransferase specific activity was unchanged. Levonorgestrel treatment also significantly reduced (by 20%) the specific activity of hepatic microsomal magnesium-independent phosphatidic acid phosphatase. However, magnesium-dependent phosphatic acid phosphatase specific activities in microsomal and cytosolic fractions were unaffected. Cytosolic magnesium-independent phosphatidic acid phosphatase activity was also unchanged. These studies are consistent with the view that levonorgestrel lowers serum triacylglycerol levels, at least in part, by inhibition of the glycerol-3-phosphate acyltransferase (EC 2.3.1.15) step in hepatic triacylglycerol synthesis.  相似文献   

8.
After force-feeding a protein-free diet to male rats for 5-7 days a substantial (2.4-fold) increase in the specific activity of the liver microsomal enzyme UDP-glucuronyltransferase (EC 2.4.1.17) was observed. A similar activation of the enzyme occurred when rats were fed on a low-protein (5%, w/w, casein) diet for 60 days. Although both the short- and long-term protein-deficient diets decreased the contents of microsomal protein and phospholipid in liver tissue they did not significantly alter the ratio of these major membrane components. Protein deficiency profoundly altered the phospholipid composition of microsomal membranes. The most striking difference in microsomal phospholipid composition between control and protein-deficient rats was their content of lysophosphatides. Whereas microsomal membranes from protein-deficient rats contained significant proportions of lysophosphatidylcholine and lysophosphatidylethanolamine very little or no lysophosphatides were detected in control preparations. Pretreatment of microsomal fractions from normal rats with phospholipase A markedly increased their UDP-glucuronyltransferase activity as did their pretreatment with lysophosphatidylcholine. It is concluded that the quantities of lysophosphatides present in microsomal membranes from protein-deficient rats were sufficient to have caused the increased UDP-glucuronyltransferase activities of these preparations. Evidence is presented suggesting that these changes in microsomal phospholipid composition and UDP-glucuronyltransferase activity caused by protein deficiency reflect changes that occur in vivo. The possible physiological significance of these findings is discussed.  相似文献   

9.
Ingestion of licorice or treatment with chemical derivatives of glycyrrhetinic acid (GA), an active principle of licorice, can cause hypertension, sodium retention, and hypokalemia. Although GA has been shown to inhibit 11 beta-hydroxysteroid dehydrogenase, it may not be the only hepatic enzyme affected by this licorice derivative. Therefore, we studied the effects of GA on other major hepatic steroid-metabolizing enzymes from adrenalectomized male rats using aldosterone as the substrate; namely, delta 4-5 alpha- and delta 4-5 beta-reductases and 3 alpha- and 3 beta-hydroxysteroid dehydrogenases (3 alpha- and 3 beta-HSD). From these in vitro studies, we demonstrated that GA does not affect either microsomal 5 alpha-reductase or cytosolic 3 alpha-HSD activity. However, GA is a potent inhibitor of cytosolic 5 beta-reductase; the K(is) and K(ii) were calculated from enzyme kinetic analysis to be 6.79 and 5.41 microM, respectively, using the Cleland equation, indicating that GA is a noncompetitive inhibitor of aldosterone. In addition, GA specifically inhibited microsomal 3 beta-HSD enzyme activity by what appears to be a competitive inhibition mechanism, causing a build-up of the intermediate, 5 alpha-dihydroaldosterone (DHAldo). Thus, this study has indicated that GA has a profound effect on hepatic ring A-reduction of aldosterone. Inhibition of 5 beta-reductase and 3 beta-HSD results in decreased synthesis of both 3 alpha, 5 beta-tetrahydroaldosterone (THAldo) and 3 beta, 5 alpha-THAldo and, hence, accumulation of aldosterone and 5 alpha-DHAldo, both potent mineralocorticoids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Insecticide endosulfan significantly inhibited testicular androgen biosynthesis in adult rats, when fed (po) at 7.5 and 10 mg/kg body weight dose levels, consecutively for 15 and 30 days. No appreciable alterations were apparent in body weights, testicular wet weights, and cytosolic and microsomal protein contents of testis in treated rats. Profound decrease in the levels of plasma gonadotrophins (FSH and LH) along with plasma testosterone and testicular testosterone were observed at both the doses of endosulfan, particularly after the longer exposure of 30 days. Activities of steroidogenic enzymes studied (3 beta- and 17 beta-hydroxysteroid dehydrogenases) were considerably lowered on longer exposure of endosulfan. A significant decrease in the contents/activities of microsomal cytochrome P-450 and related mixed function oxidases (MFOs) in testis of treated rats was also observed, along with a marked inhibition in the activity of cytosolic conjugation enzyme, glutathione-S-transferase at both doses studied. These biochemical changes were reversed when the endosulfan treatment was withdrawn.  相似文献   

11.
Postnatal developmental patterns of uridine kinase were determined in crude subcellular fractions of the rat cerebellum, hypothalamus and cerebral cortex at ages 3 through 60 days. The highest specific activity and predominant distribution of enzyme was in the 105,000g supernatant of the 3 brain regions. Enzyme activity in hypothalamus and cerebral cortex was maximum at 3 days and decreased with age; in cerebellum it increased through 13 days and decreased thereafter. Thus, the pattern of activity in hypothalamus and cerebral cortex paralleled changes in DNA and RNA synthesis through age 60 days; in cerebellum, it more closely approximated changes in DNA synthesis during early development. Changes inK m with aging suggest that the brain regions contain more than one form of enzyme. The highest particulate activity was in the microsomal fraction of the cerebellum and hypothalamus at all ages and in the cortex at 35 and 60 days. Relative specific activity for microsomal fractions of the brain regions at 60 days indicate a concentration of the enzyme which may be relevant in the maintenance of RNA activity in adult brain.  相似文献   

12.
Administration of dexamethasone to pregnant rats at 19 days gestation increased phosphatidylcholine synthesis (45%) from radioactive choline in type II cells. This enhanced synthesis of phosphatidylcholine was accompanied by an increased conversion of choline phosphate into CDP-choline. Similar results were obtained by incubating organotypic cultures of 19-day-fetal rat lung with cortisol. The increased conversion of choline phosphate into CDP-choline correlated with an enhanced choline-phosphate cytidylyltransferase activity (31% after dexamethasone treatment; 47% after cortisol exposure) in the cell homogenates. A similar increase (26% after dexamethasone treatment; 39% after cortisol exposure) was found in the microsomal-associated enzyme. No differences in cytosolic enzyme activity were observed. The specific activity of the microsomal enzyme was 3-4 times that of the cytosolic enzyme. Most of the enzyme activity was located in the microsomal fraction (58-65%). The treatments had no effect on the total amount of enzyme recovered from the cell homogenates. These results, taken collectively, are interpreted to indicate that the active form of cytidylyltransferase in type II cells is the membrane-bound enzyme and that cytidylyltransferase activation in type II cells from fetal rat lung after maternal glucocorticoid administration occurs by binding of inactive cytosolic enzyme to endoplasmic reticulum.  相似文献   

13.
The work presented here deals with the status of glutathione-S-transferase (GST; E.C. 2.5.1.18), the major enzyme of the phase II detoxification pathway, in bovine filarial worms Setaria cervi. GST activity was determined in various subcellular fractions of bovine filarial worms S. cervi (Bubalus bubalis Linn.) and was found to be mainly associated with cytosolic and microsomal fractions. The respective specific activities of the enzyme from cytosolic and microsomal fractions of S. cervi females were determined to be 0.122 +/- 0.024 and 0.010 +/- 0.0052 micromol/min/mg protein, respectively. Cytosolic enzyme was found to possess optimal activity between pH 6.5 and 7.5, whereas the microsomal enzyme showed a broad pH optima, centered at pH 6.0. Kinetic studies on the cytosolic and microsomal forms of the enzyme revealed significant differences between them, thereby indicating that microsomal GST from S. cervi is quite distinct to the cytosolic protein catalyzing the same reaction.  相似文献   

14.
The characteristics of neutral cholesteryl ester hydrolase activities found in the microsomal and cytosolic subcellular fractions of rat lactating mammary tissue were investigated. The enzymes were assayed using cholesteryl oleate dispersed as a mixed micelle with phosphatidylcholine and sodium taurocholate (molar ratio 1:4:2) as substrate. This method gave activities approx. 20-fold higher than those seen when cholesteryl oleate was added in ethanol. Addition of phosphatidylcholine and sodium taurocholate to the assays using the ethanol-dissolved substrate did not increase the activities observed. When the cholesteryl oleate was dispersed with phosphatidylcholine only (molar ratio, 1:4) the activity of the two neutral cholesteryl ester hydrolases was also decreased considerably compared to that found with mixed micelles. In this case, however, approx. 60% of the cytosolic, but only 10% of the microsomal activity, was restored by separate addition of sodium taurocholate. The activities of both the microsomal and the cytosolic neutral cholesteryl ester hydrolases were inhibited by MgCl2, and this inhibition was almost completely reversed by the addition of an equimolar concentration of ATP. At a fixed concentration of MgCl2 increasing concentrations of ATP increased the enzyme activities in a dose-dependent way. The activity of the microsomal, but not the cytosolic enzyme was enhanced by a cyclic AMP-dependent protein kinase and both activities were inhibited by alkaline phosphatase (bovine milk). These results provide evidence for the regulation of neutral cholesteryl ester hydrolases in the rat lactating mammary gland by mechanisms involving phosphorylation-dephosphorylation and therefore suggest that these enzymes may be under hormonal control.  相似文献   

15.
Specific binding of steroid hormones to microsomes has been reported for several tissues. In the hen oviduct, this receptor appears to be very similar to activated cytosolic receptor. The microsomal receptor is readily solubilized, and resembles the cytosolic receptor in all physico-chemical characteristics: sedimentation coefficient approximately 4 S, Stokes radius 5.5 nm, slow dissociation rate of the complex, adsorption to polyanions. It is precipitated by an antibody to the cytosolic receptor. Microsomes display saturable binding of cytosolic receptor, with a Bmax of approximately 300 fmol/mg protein. This binding is also observed using microsomes from non-target tissues, and is decreased by treatment with RNase. It seems likely that microsomal binding is due to the high affinity of activated cytosolic receptor for RNA.  相似文献   

16.
Using dietary administration, mice were exposed to eight substances known to cause peroxisome proliferation (i.e. clofibrate clofibric acid, 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid, nafenopin, ICI-55.897, S-8527 and Wy-14.643) or the related substance p-chlorophenoxyacetic acid (group A). Other animals received di(2-ethylhexyl)phthalate, mono(2-ethylhexyl)phthalate, 2-ethylhexanoic acid, or one of 12 other metabolically and/or structurally related compounds (group B). The effects of these treatments on liver cytosolic and microsomal epoxide hydrolases, microsomal cytochrome P-450, cytosolic glutathione transferase activity, the liver-somatic index and the protein contents of the microsomal and cytosolic fractions prepared from liver were subsequently monitored. In general, peroxisome proliferation was accompanied by increases in cytosolic epoxide hydrolase activity. Many peroxisome proliferators also caused increases in microsomal epoxide hydrolase activity, although the correlation was poorer in this case. Immunochemical quantitation by radial immunodiffusion demonstrated that the increases observed in both of these enzyme activities reflected equivalent increases in enzyme protein, i.e. that induction truly occurred. Induction of total microsomal cytochrome P-450 was obtained after dietary exposure to clofibrate, clofibric acid, 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid, nafenopin, Wy-14.643, di(2-ethylhexyl)phthalate and di(2-ethylhexyl)phosphate. The most pronounced effects on cytosolic glutathione transferase activity were the decreases obtained after treatment with clofibrate, clofibric acid and Wy-14.643. Our results, together with those reported by others, suggest that the processes of peroxisome proliferation and induction of cytosolic epoxide hydrolase are intimately related. One possible explanation for this is presented.  相似文献   

17.
Several possible control mechanisms for CTP:choline-phosphate cytidylyltransferase (EC 2.7.7.15) activity in pea (Pisum sativum L.) stems were investigated. Indol-3-ylacetic acid (IAA) treatment of the pea stems decreased total cytidylyltransferase activity but did not affect its subcellular distribution. Oleate (2 mM) caused some stimulation of enzyme activity by release of activity from the microsomal fraction into the cytosol, but neither phosphatidylglycerol nor monoacyl phosphatidylethanolamine had an effect on activity or subcellular distribution. A decrease in soluble cytidylyltransferase protein concentrations was found in IAA-treated pea stems, but this was not sufficient to account for all of the decrease in cytidylyltransferase activity. A 50% inhibition of enzyme activity could be obtained with 0.2 mM-CMP, which indicated possible allosteric regulation. Similar inhibition was obtained with 1.5 mM-ATP, but other nucleotides had no effect. The cytidylyltransferase enzyme protein was not directly phosphorylated, and the inhibition with 1.5 mM-ATP occurred with the purified enzyme, thus excluding an obligatory mediation via a modulator protein. The results indicate that the cytosolic form of cytidylyltransferase is the most important in pea stem tissue and that the decrease in cytidylyltransferase activity in IAA-treated material appears to be brought about by several methods.  相似文献   

18.
P Wang  J Meijer  F P Guengerich 《Biochemistry》1982,21(23):5769-5776
Epoxide hydrolase (EC 3.3.2.3) was purified to electrophoretic homogeneity from human liver cytosol by using hydrolytic activity toward trans-8-ethylstyrene 7,8-oxide (TESO) as an assay. The overall purification was 400-fold. The purified enzyme has an apparent monomeric molecular weight of 58 000, significantly greater than the 50 000 found for human (or rat) liver microsomal epoxide hydrolase or for another TESO-hydrolyzing enzyme also isolated from human liver cytosol. Purified cytosolic TESO hydrolase catalyzes the hydrolysis of cis-8-ethylstyrene 7,8-oxide 10 times more rapidly than does the microsomal enzyme, catalyzes the hydrolysis of TESO and trans-stilbene oxide as rapidly as the microsomal enzyme, but catalyzes the hydrolysis of styrene 7,8-oxide, p-nitrostyrene 7,8-oxide, and naphthalene 1,2-oxide much less effectively than does the microsomal enzyme. Purified cytosolic TESO hydrolase does not hydrolyze benzo[a]pyrene 4,5-oxide, a substrate for the microsomal enzyme. The activities of the purified enzymes can explain the specific activities observed with subcellular fractions. Anti-human liver microsomal epoxide hydrolase did not recognize cytosolic TESO hydrolase in purified form or in cytosol, as judged by double-diffusion immunoprecipitin analysis, precipitation of enzymatic activity, and immunoelectrophoretic techniques. Cytosolic TESO hydrolase and microsomal epoxide hydrolase were also distinguished by peptide mapping. The results provide evidence that physically different forms of epoxide hydrolase exist in different subcellular fractions and can have markedly different substrate specificities.  相似文献   

19.
During analysis of pyruvate kinase distribution in developing guinea-pig liver it was observed that a substantial proportion of the activity remained associated with the microsomal membrane fraction ('microsomes'). Although some of this could be removed by washing with sucrose, the majority required detergent treatment for liberation, and even then at least one-half remained attached to the microsomes. Estimates of the contribution of this fraction to total cell pyruvate kinase activity indicated that it was more than 50% of the total, and this is likely to be an underestimate because of the continued latency of the enzyme even in the presence of detergent. The susceptibility of the microsomal enzyme, whether released by detergent or sucrose washing, to inactivation by Triton X-100 suggested it to be different from the cytosolic enzyme, which was stable under such conditions. (The microsomal enzyme required the presence of additional protein, such as bovine serum albumin, to maintain stability.) This view was confirmed by DEAE-cellulose chromatography and particularly isoelectric focusing, where the microsomal enzyme was shown to consist of at least four forms, which were distinctly different from those in the cytosol. Those data and the kinetic properties of the four forms in the membrane fraction indicate that the microsomal pyruvate kinase could consist of four counterparts to the cytosolic isoenzyme forms. These results are discussed in relation to the two possible explanations for the phenomenon (not mutually exclusive): that the more hydrophobic membrane forms are precursors of the cytosolic enzyme and that they may be part of functional glycolytic pathway in the microsomes of developing liver.  相似文献   

20.
In vivo treatment of fasted male rats with 1,2-dibromoethane (DBE) (0.4 mmol/kg) or carbon tetrachloride (CCl4) (4 mmol/kg) was found to rapidly alter the activities of liver cytosolic and microsomal glutathione S-transferases. Microsomal activities towards chloro-2,4-dinitrobenzene (CDNB) were increased 2 h after either treatment. Cytosolic activities towards CDNB and 3,4-dichloronitrobenzene (DCNB), but not 1,2-epoxy-3-(p-nitrophenoxy)-propane (ENPP), were selectively and transiently decreased after either treatment. Time course studies in DBE animals indicated that the decrease in cytosolic activity was not evident until 2 h although liver glutathione (GSH) concentrations were diminished within 15 min. In contrast, in CCl4 animals the decrease in cytosolic activity was evident within 15 min and was not accompanied by diminished GSH concentrations. By 4 h, cytosolic activities had rebounded to control levels in both DBE and CCl4-treated animals. Kinetic studies of the enzyme in liver cytosol from animals 2 h after treatment with DBE or CCl4 indicated that both treatments decreased the apparent Vmax while neither treatment altered the apparent Km. This pattern of change allows exclusion of a simple competitive mechanism of enzyme inhibition, but cannot distinguish between reversible non-competitive inhibition and irreversible inhibition. It is possible that the observed decreases in the activities of the abundant cytosal enzyme are due to 'sacrificial' covalent linkages between the enzyme and reactive metabolites of DBE or CCl4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号