首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The single-stranded DNA-binding protein of Escherichia coli.   总被引:15,自引:2,他引:15       下载免费PDF全文
The single-stranded DNA-binding protein (SSB) of Escherichia coli is involved in all aspects of DNA metabolism: replication, repair, and recombination. In solution, the protein exists as a homotetramer of 18,843-kilodalton subunits. As it binds tightly and cooperatively to single-stranded DNA, it has become a prototypic model protein for studying protein-nucleic acid interactions. The sequences of the gene and protein are known, and the functional domains of subunit interaction, DNA binding, and protein-protein interactions have been probed by structure-function analyses of various mutations. The ssb gene has three promoters, one of which is inducible because it lies only two nucleotides from the LexA-binding site of the adjacent uvrA gene. Induction of the SOS response, however, does not lead to significant increases in SSB levels. The binding protein has several functions in DNA replication, including enhancement of helix destabilization by DNA helicases, prevention of reannealing of the single strands and protection from nuclease digestion, organization and stabilization of replication origins, primosome assembly, priming specificity, enhancement of replication fidelity, enhancement of polymerase processivity, and promotion of polymerase binding to the template. E. coli SSB is required for methyl-directed mismatch repair, induction of the SOS response, and recombinational repair. During recombination, SSB interacts with the RecBCD enzyme to find Chi sites, promotes binding of RecA protein, and promotes strand uptake.  相似文献   

2.
Fluorescence and optical detection of triplet state magnetic resonance spectroscopy have been employed to study the complexes formed by single-stranded polynucleotides with both E. coli single-stranded DNA-binding protein and an E. coli ssb gene product in which Trp-54 is replaced by phenylalanine using site specific oligonucleotide mutagenesis. Our results strongly suggest the involvement of Trp-54 in stabilizing the protein-nucleic acid complexes via stacking interactions of the aromatic residue with the nucleotide bases.  相似文献   

3.
Optically detected magnetic resonance (ODMR) spectroscopy has been applied to several single-stranded DNA-binding (SSB) proteins encoded by conjugative plasmids of enteric bacteria. Fluorimetric equilibrium binding isotherms confirm their preferential binding to single-stranded DNA and polynucleotides and reveal a limited protein solubility at low ionic strength. The plasmid SSB-like proteins show the highest affinity for polydeoxythymidylic acid; these complexes are the least sensitive to disruption by salt. ODMR data on these complexes suggest the existence of stacking interactions between tryptophan residue(s) and thymine bases, as evidenced by spectral red shifts of the tryptophan phosphorescence 0,0 band, reduction of the magnitude of D zero field splitting parameter, and a dramatic reversal of the polarity of the ODMR signals. Wavelength-selected ODMR results point to the existence of two distinct tryptophan sites in these complexes. The triplet state properties of the red-shifted site are drastically altered by its interaction with the thymine bases. The chromosomal Escherichia coli SSB protein-poly(dT) complex shows an additional tryptophan site with zero field splitting parameters similar to those of the free protein. This site can be attributed to Trp-135, which is missing in each of the other plasmid SSB proteins, suggesting that this particular residue is not involved in the interaction with polynucleotides.  相似文献   

4.
A vector for site-directed mutagenesis and overproduction of the Escherichia coli single-stranded-DNA-binding protein (E. coli SSB) was constructed. An E. coli strain carrying this vector produces up to 400 mg pure protein from 25 g wet cells. The vector was used to mutate specifically the Phe60 residue of E. coli SSB. Phe60 had been proposed to be located near the single-stranded-DNA-binding site. Substitution of the Phe60 residue by Val, Ser, Leu, His, Tyr and Trp gave proteins with no or only minor conformational changes, as detected by NMR spectroscopy. The affinity of the mutant E. coli SSB proteins for single-stranded DNA decreased in the order Trp greater than Phe (wild-type) greater than Tyr greater than Leu greater than His greater than Val greater than Ser, leading to the conclusion that position 60 is a site of hydrophobic interaction of the protein with DNA.  相似文献   

5.
6.
DNA in living cells is generally processed via the generation and the protection of single-stranded DNA involving the binding of ssDNA-binding proteins (SSBs). The studies of SSB-binding mode transition and cooperativity are therefore critical to many cellular processes like DNA repair and replication. However, only a few atomic force microscopy (AFM) investigations of ssDNA nucleoprotein filaments have been conducted so far. The point is that adsorption of ssDN A-SSB complexes on mica, necessary for AFM imaging, is not an easy task. Here, we addressed this issue by using spermidine as a binding agent. This trivalent cation induces a stronger adsorption on mica than divalent cations, which are commonly used by AFM users but are ineffective in the adsorption of ssDNA-SSB complexes. At low spermidine concentration (<0.3 mM), we obtained AFM images of ssDNA-SSB complexes (E. coli SSB, gp32 and yRPA) on mica at both low and high ionic strengths. In addition, partially or fully saturated nucleoprotein filaments were studied at various monovalent salt concentrations thus allowing the observation of SSB-binding mode transition. In association with conventional biochemical techniques, this work should make it possible to study the dynamics of DNA processes involving DNA-SSB complexes as intermediates by AFM.  相似文献   

7.
A series of Escherichia coli strains deficient in single-stranded DNA-binding protein (SSB) and DNA polymerase I was constructed in order to analyze the effects of these mutations on DNA repair resynthesis after UV-irradiation. Since SSB has been suggested to play a role in protecting single-stranded regions which may transiently exist during excision repair and since long single-stranded regions are believed to occur frequently as repair intermediates in strains deficient in DNA polymerase I, studies of repair resynthesis and strand rejoining were performed on strains containing both the ssb-1 and polA1 mutations. Repair resynthesis appears to be slightly decreased in the ssb-1 strain at 42 degrees C relative to the wild-type; however, this effect is not enhanced in a polA1 derivative of this strain. After UV-irradiation, the single-strand molecular weight of the DNA of an ssb-1 strain decreases and fails to recover to normal size. These results are discussed in the context of long patch repair as an inducible component of repair resynthesis and of the protection of intermediates in the excision repair process by SSB. A direct role for SSB in repair resynthesis involving modulation of the proteins involved in this mode of DNA synthesis (particularly stimulation of DNA polymerase II) is not supported by our findings.  相似文献   

8.
A series of Escherichia coli strains deficients in single-stranded DNA-binding protein (SSB) and DNA polymerase I was constructed in order to analyze the effects of these mutations on DNA repair resynthesis after UV-irradiation. Since SSB has been suggested to play a role in protecting single-stranded regions which may transiently exist during excision repair and since long single-stranded regions are believed to occur frequently as repair intermediates in strains deficient in DNA polymerase I, studies of repair resynthesis and strand rejoining were performed on strains containing both the ssb-1 and polA1 mutations. Repair resynthesis appears to be slightly decreased in the ssb-1 strain at 42°C relative to the wild-type; however, this effect is not enhanced in a polA1 derivative of this strain. After UV-irradiation, the single-strand molecular weight of the DNA of an ssb-1 strain decreases and fails to recover to normal size. These results are discussed in the context of long patch repair as an inducible component of repair resynthesis and of the protection of intermediates in the excision repair process by SSB. A direct role for SSB in repair resynthesis involving modulation of the proteins involved in this mode of DNA synthesis (particularly stimulation of DNA polymerase II) is not supported by our findings.  相似文献   

9.
The ssb-1 gene encoding a mutant Escherichia coli single-stranded DNA-binding protein has been cloned into plasmid pACYC184. The amount of overproduction of the cloned ssb-1 gene is dependent upon its orientation in the plasmid. In the less efficient orientation, 25-fold more mutant protein is produced than in strains carrying only one (chromosomal) copy of the gene: the other orientation results in more than 60-fold overproduction of this protein. Analysis of the effects of overproduction of the ssb-1 encoded protein has shown that most of the deficiencies associated with the ssb-1 mutation when present in single gene copy, including temperature-sensitive conditional lethality and deficiencies in amplified synthesis of RecA protein and ultraviolet light-promoted induction of prophage λ+, are reversed by increased production of ssb-1 mutant protein. These results provide evidence in vivo that SSB protein plays an active role in recA-dependent processes. Homogenotization of a nearby genetic locus (uvrA) was identified in the cloning of the ssb-1 mutant gene. This observation has implications in the analysis of uvrA? mutant strains and will provide a means of transferring ssb? mutations from plasmids to the chromosome. On a broader scale, the observation may provide the basis of a general strategy to transfer mutations between plasmids and chromosomes.  相似文献   

10.
UV-induced mutagenesis was investigated in the uvrB strain and its isogenic counterpart overproducing the single-stranded DNA-binding protein (SSB). It was demonstrated that overproduction of SSB significantly increases the frequency of mutation. Our results indicate that such an increase might be due to certain abnormalities in induction of the SOS response (untimely and prolonged activation of the RecA protein).  相似文献   

11.
The crystal and molecular structures of poly(2-thiouridylic) acid are remarkably similar to those of A-DNA. How this might be contrived with homopolymer duplexes containing either symmetric or asymmetric pyrimidine pyrimidine base-pairs is described using molecular models optimized by the linked-atom least-squares method. This study supplements an earlier manual model-building study of the second possibility by Mazumdar et al. (1974).  相似文献   

12.
The transferred DNA (T-DNA) portion of the Agrobacterium tumefaciens tumor-inducing (Ti) plasmid enters infected plant cells and integrates into plant nuclear DNA. Direct repeats define the T-DNA ends; transfer begins when the VirD2 endonuclease produces a site-specific nick in the right-hand border repeat and attaches to the 5' end of the nicked strand. Subsequent events liberate the lower strand of the T-DNA from the Ti plasmid, producing single-stranded DNA molecules (T strands) that are covalently linked to VirD2 at their 5' ends. A. tumefaciens appears to transfer T-DNA into plant cells as a T-strand-VirD2 complex. The bacterium also transports VirE2, a cooperative single-stranded DNA-binding protein, into plant cells during infection. Both VirD2 and VirE2 contain nuclear localization signals that may direct these proteins, and bound T strands, into plant nuclei. Here we report the locations of functional regions of VirE2 identified by eight insertions of XhoI linker oligonucleotides, and one deletion mutation, throughout virE2. We examined the effects of these mutations on virulence, single-stranded DNA (ssDNA) binding, and accumulation of VirE2 in A. tumefaciens. Two of the mutations in the C-terminal half of VirE2 eliminated ssDNA binding, whereas two insertions in the N-terminal half altered cooperativity. Four of the mutations, distributed throughout virE2, decreased the stability of VirE2 in A. tumefaciens. In addition, we isolated a mutation in the central region of VirE2 that decreased tumorigenicity but did not affect ssDNA binding or VirE2 accumulation. This mutation may affect export of VirE2 into plant cells or nuclear localization of VirE2, or it may affect an uncharacterized activity of VirE2.  相似文献   

13.
P K Bandyopadhyay  C W Wu 《Biochemistry》1978,17(19):4078-4085
Nanosecond and steady-state fluorescence spectoscopy were used to probe the environment of the tryptophan residues of Escherichia coli DNA-binding protein. A spectral shift and a change in quantum yield of the protein upon binding to DNA or oligonucleotides indicate that the tryptophan residues are near or at the DNA binding site. The observation of two excited-state lifetimes of the protein indicates that there is heterogeneity in the microenvironments of these tryptophan residues. The "short-lifetime" tryptophan residues are more sensitive to the interaction with DNA than the "long-lifetime" residues. The results of solute-perturbation studies with iodide or acrylamide indicate that there are tryptophan residues near the surface of the protein which are heterogeneous in their accessibility to these quenchers and that they become less accessible after DNA binding. Also, lysine residues of the protein have been shown to be essential to DNA binding by chemical-modification studies. Tyrosine, arginine, and cysteine residues appear not to be involved in this binding process. From studies of the decay of fluorescence anisotropy of the binding protein in the presence and absence of DNA, it has been concluded that (a) the tetrameric binding protein does not dissociate into subuniits upon binding to the oligonucleotide d(pT)16 and (b) the binding protein-fd DNA complex possesses "local flexibility" and, therefore, cannot be described as a continuous, rigid rod.  相似文献   

14.
Extracts from lexC113 cells could not support phage G4 DNA-dependent replication unless supplemented with single-stranded DNA-binding protein. Purified lexC113 binding protein supported synthesis in a reconstituted replication assay, using purified proteins at 30 but not at 42 degrees C, indicating that the product of the lexC113 gene is an altered single-stranded DNA-binding protein.  相似文献   

15.
To study the biochemical properties of single-stranded DNA-binding (SSB) protein from Deinococcus geothermalis (DgeSSB), we have cloned the ssb gene obtained by PCR and developed an overexpression system. The gene consists of an open reading frame of 900 nucleotides encoding a protein of 300 amino acids with a calculated molecular weight of 32.45 kDa. The amino acid sequence exhibits 43, 44 and 75% identity with Thermus aquaticus, Thermus thermophilus and Deinococcus radiodurans SSBs, respectively. We show that DgeSSB is similar to Thermus/Deinococcus SSB in its biochemical properties. DgeSSB includes two oligonucleotide/oligosaccharide-binding folds per monomer and functions as a homodimer. In fluorescence titrations with poly(dT), DgeSSB bound about 30 nt independent of the salt concentration, and the fluorescence was quenched by about 65%. In a complementation assay in Escherichia coli, DgeSSB took over the in vivo function of EcoSSB. DgeSSB is thermostable with half-lives of 50 min at 70°C and 5 min at 90°C. Hence, DgeSSB offers an attractive alternative for TaqSSB and TthSSB in their applications for molecular biology methods and for analytical purposes.  相似文献   

16.
A direct quantitative determination by EPR of the nucleic acid binding affinity relationship of the single-stranded DNA-binding protein (SSB) from Escherichia coli at close to physiological NaCl concentration is reported. Titrations of (DUAP, dT)n, an enzymatically spin-labeled (dT)n, with SSB in 20 mM Tris-HCl (pH 8.1), 1 mM sodium EDTA, 0.1 mM dithiothreitol, 10% (w/v) glycerol, 0.05% Triton with either low (5 mM), intermediate (125 mM) or high 200 mM) NaCl content, reveal the formation of a high nucleic acid density complex with a binding stoichiometry (s) of 60 to 75 nucleotides per SSB tetramer. Reverse titrations, achieved by adding (DUAP, dT)n to SSB-containing solutions, form a low nucleic acid density complex with an s = 25 to 35 in the buffer with low NaCl content (5 mM NaCl). The complex with an s = 25 to 35 is converted to the high nucleic acid density complex by increasing the NaCl content to 200 mM. It is, therefore, metastable and forms only under reverse titration conditions in low NaCl. The relative apparent affinity constant Kapp of SSB for various unlabeled single-stranded nucleic acids was determined by EPR competition experiments with spin-labeled nucleic acids as macromolecular probes in the presence of the high nucleic acid density complex. The Kapp of SSB exhibits the greatest affinity for (dT)n as was previously found for T4 gene 32 protein (Bobst, A.M., Langemeier, P.W., Warwick-Koochaki, P.E., Bobst, E.V. and Ireland, J.C. (1982) J. Biol. Chem. 257, 6184) and gene 5 protein (Bobst, A.M., Ireland, J.C. and Bobst, E.V. (1984) J. Biol. Chem. 259, 2130) by EPR competition assays. In contrast, however, SSB does not display several orders of magnitude greater affinity for (dT)n than for other single stranded DNAs as is the case with both gene 5 and T4 gene 32 protein. The relative Kapp values for SSB in the above buffer with 125 mM NaCl are: Kapp(dT)n = 4KappfdDNA = 40Kapp(dA)n = 200Kapp(A)n.  相似文献   

17.
The individual sublevel kinetics of the lowest triplet state of tryptophan 54 (Trp 54) which is highly perturbed in the complex of Escherichia coli single-stranded DNA binding protein (Eco SSB) with poly(deoxythymidylic) acid (poly[dT]) have been studied by optically detected magnetic resonance (ODMR) spectroscopy. The triplet sublevel decay constants of Trp 54, kx, ky, kz, are 0.99, 0.072, and 0.045 s-1, respectively, in the poly(dT) complex of a point-mutated Eco SSB in which Trp 88 is substituted by phenylalanine. Tx is the only radiative triplet sublevel. Negative polarity of the Tx----Tz and Tx----Ty phosphorescence-detected ODMR signals results from the steady state population pattern, nx greater than ny, nz, and implies that the relations, px greater than or equal to 14py, and px greater than or equal to 22pz exist for the relative populating rates. Spin-orbit coupling between radiative singlet states and the Tx sublevel of the lowest triplet state of Trp 54 is enhanced selectively upon complexing of Eco SSB with poly(dT).  相似文献   

18.
S W Morrical  J Lee  M M Cox 《Biochemistry》1986,25(7):1482-1494
The single-stranded DNA binding protein of Escherichia coli (SSB) stimulates recA protein promoted DNA strand exchange reactions by promoting and stabilizing the interaction between recA protein and single-stranded DNA (ssDNA). Utilizing the intrinsic tryptophan fluorescence of SSB, an ATP-dependent interaction has been detected between SSB and recA-ssDNA complexes. This interaction is continuous for periods exceeding 1 h under conditions that are optimal for DNA strand exchange. Our data suggest that this interaction does not involve significant displacement of recA protein in the complex by SSB when ATP is present. The properties of this interaction are consistent with the properties of SSB-stabilized recA-ssDNA complexes determined by other methods. The data are incompatible with models in which SSB is displaced after functioning transiently in the formation of recA-ssDNA complexes. A continuous association of SSB with recA-ssDNA complexes may therefore be an important feature of the mechanism by which SSB stimulates recA protein promoted reactions.  相似文献   

19.
Displacement of single-stranded DNA (ssDNA)-binding protein (SSB) from ssDNA is necessary for filament formation of RecA on ssDNA to initiate homologous recombination. The interaction between RecO and SSB is considered to be important for SSB displacement; however, the interaction has not been characterized at the atomic level. In this study, to clarify the mechanism underlying SSB displacement from ssDNA upon RecO binding, we examined the interaction between Thermus thermophilus RecO and cognate SSB by NMR analysis. We found that SSB interacts with the C-terminal positively charged region of RecO. Based on this result, we constructed some RecO mutants. The R127A mutant had considerably decreased binding affinity for SSB and could not anneal SSB-coated ssDNAs. Further, the mutant in the RecOR complex prevented the recovery of ssDNA-dependent ATPase activity of RecA from inhibition by SSB. These results indicated that the region surrounding Arg-127 is the binding site of SSB. We also performed NMR analysis using the C-terminal peptide of SSB and found that the acidic region of SSB is involved in the interaction with RecO, as seen in other protein-SSB interactions. Taken together with the findings of previous studies, we propose a model for SSB displacement from ssDNA where the acidic C-terminal region of SSB weakens the ssDNA binding affinity of SSB when the dynamics of the C-terminal region are suppressed by interactions with other proteins, including RecO.  相似文献   

20.
DNA in living cells is generally processed via the generation and the protection of single-stranded DNA involving the binding of ssDNA-binding proteins (SSBs). The studies of SSB-binding mode transition and cooperativity are therefore critical to many cellular processes like DNA repair and replication. However, only a few atomic force microscopy (AFM) investigations of ssDNA nucleoprotein filaments have been conducted so far. The point is that adsorption of ssDN A–SSB complexes on mica, necessary for AFM imaging, is not an easy task. Here, we addressed this issue by using spermidine as a binding agent. This trivalent cation induces a stronger adsorption on mica than divalent cations, which are commonly used by AFM users but are ineffective in the adsorption of ssDNA–SSB complexes. At low spermidine concentration (<0.3mM), we obtained AFM images of ssDNA–SSB complexes (E. coli SSB, gp32 and yRPA) on mica at both low and high ionic strengths. In addition, partially or fully saturated nucleoprotein filaments were studied at various monovalent salt concentrations thus allowing the observation of SSB-binding mode transition. In association with conventional biochemical techniques, this work should make it possible to study the dynamics of DNA processes involving DNA–SSB complexes as intermediates by AFM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号