首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The DevRS two component system of Mycobacterium tuberculosis is responsible for its dormancy in host and becomes operative under hypoxic condition. It is experimentally known that phosphorylated DevR controls the expression of several downstream genes in a complex manner. In the present work we propose a theoretical model to show role of binding sites in DevR mediated gene expression. Individual and collective role of binding sites in regulating DevR mediated gene expression has been shown via modeling. Objective of the present work is twofold. First, to describe qualitatively the temporal dynamics of wild type genes and their known mutants. Based on these results we propose that DevR controlled gene expression follows a specific pattern which is efficient in describing other DevR mediated gene expression. Second, to analyze behavior of the system from information theoretical point of view. Using the tools of information theory we have calculated molecular efficiency of the system and have shown that it is close to the maximum limit of isothermal efficiency.  相似文献   

2.
3.
4.
5.
The number of effective drugs for the prevention and control of tuberculosis is very limited. Therefore, high-throughput screening for Mycobacterium tuberculosis drug targets is critical. In addition, determining the essential gene cluster is important for both understanding a survival mechanism and finding novel molecular targets for anti-tuberculosis drugs. In this study, we applied the pathway enrichment method to perform high throughput screening of genes encoding key molecules for potential drug targets for M. tuberculosis. Our results indicated 122 genes that existed in more than three pathways, while four existed in 11 pathways. We predicted 55 genes that are potentially essential genes. Four of them, namely, Rv0363c, Rv0408, Rv0409 and Rv0794c, had the highest probability to be essential genes, and thus further experimental validation is warranted.  相似文献   

6.
The DevR (DosR) response regulator initiates the bacterial adaptive response to a variety of signals, including hypoxia in in vitro models of dormancy. Its receiver domain works as a phosphorylation-mediated switch to activate the DNA binding property of its output domain. Receiver domains are characterized by the presence of several highly conserved residues, and these sequence features correlate with structure and hence function. In response regulators, interaction of phosphorylated aspartic acid at the active site with the conserved threonine is believed to be crucial for phosphorylation-mediated conformational change. DevR contains all the conserved residues, but the structure of its receiver domain in the unphosphorylated protein is strikingly different, and key threonine (T82), tyrosine (Y101), and lysine (K104) residues are placed uncharacteristically far from the D54 phosphorylation site. In view of the atypical location of T82 in DevR, the present study aimed to examine the importance of this residue in the activation mechanism. Mycobacterium tuberculosis expressing a DevR T82A mutant protein is defective in autoregulation and supports hypoxic induction of the DevR regulon only very weakly. These defects are ascribed to slow and partial phosphorylation and the failure of T82A mutant protein to bind cooperatively with DNA. Our results indicate that the T82 residue is crucial in implementing conformational changes in DevR that are essential for cooperative binding and for subsequent gene activation. We propose that the function of the T82 residue in the activation mechanism of DevR is conserved in spite of the unusual architecture of its receiver domain.  相似文献   

7.
8.
The D-arabinan-containing polymers arabinogalactan (AG) and lipoarabinomannan (LAM) are essential components of the unique cell envelope of the pathogen Mycobacterium tuberculosis. Biosynthesis of AG and LAM involves a series of membrane-embedded arabinofuranosyl (Araf) transferases whose structures are largely uncharacterised, despite the fact that several of them are pharmacological targets of ethambutol, a frontline drug in tuberculosis therapy. Herein, we present the crystal structure of the C-terminal hydrophilic domain of the ethambutol-sensitive Araf transferase M. tuberculosis EmbC, which is essential for LAM synthesis. The structure of the C-terminal domain of EmbC (EmbC(CT)) encompasses two sub-domains of different folds, of which subdomain II shows distinct similarity to lectin-like carbohydrate-binding modules (CBM). Co-crystallisation with a cell wall-derived di-arabinoside acceptor analogue and structural comparison with ligand-bound CBMs suggest that EmbC(CT) contains two separate carbohydrate binding sites, associated with subdomains I and II, respectively. Single-residue substitution of conserved tryptophan residues (Trp868, Trp985) at these respective sites inhibited EmbC-catalysed extension of LAM. The same substitutions differentially abrogated binding of di- and penta-arabinofuranoside acceptor analogues to EmbC(CT), linking the loss of activity to compromised acceptor substrate binding, indicating the presence of two separate carbohydrate binding sites, and demonstrating that subdomain II indeed functions as a carbohydrate-binding module. This work provides the first step towards unravelling the structure and function of a GT-C-type glycosyltransferase that is essential in M. tuberculosis.  相似文献   

9.
The J-domain co-chaperones work together with the heat shock protein 70 (HSP70) chaperone to regulate many cellular events, but the mechanism underlying the J-domain-mediated HSP70 function remains elusive. We studied the interaction between human-inducible HSP70 and Homo sapiens J-domain protein (HSJ1a), a J domain and UIM motif-containing co-chaperone. The J domain of HSJ1a shares a conserved structure with other J domains from both eukaryotic and prokaryotic species, and it mediates the interaction with and the ATPase cycle of HSP70. Our in vitro study corroborates that the N terminus of HSP70 including the ATPase domain and the substrate-binding β-subdomain is not sufficient to bind with the J domain of HSJ1a. The C-terminal helical α-subdomain of HSP70, which was considered to function as a lid of the substrate-binding domain, is crucial for binding with the J domain of HSJ1a and stimulating the ATPase activity of HSP70. These fluctuating helices are likely to contribute to a proper conformation of HSP70 for J-domain binding other than directly bind with the J domain. Our findings provide an alternative mechanism of allosteric activation for functional regulation of HSP70 by its J-domain co-chaperones.  相似文献   

10.
As only the type II topoisomerase is capable of introducing negative supercoiling, DNA gyrase is involved in crucial cellular processes. Although the other domains of DNA gyrase are better understood, the mechanism of DNA binding by the C-terminal domain of the DNA gyrase A subunit (GyrA-CTD) is less clear. Here, we investigated the DNA-binding sites in the GyrA-CTD of Mycobacterium tuberculosis gyrase through site-directed mutagenesis. The results show that Y577, R691 and R745 are among the key DNA-binding residues in M.tuberculosis GyrA-CTD, and that the third blade of the GyrA-CTD is the main DNA-binding region in M.tuberculosis DNA gyrase. The substitutions of Y577A, D669A, R691A, R745A and G729W led to the loss of supercoiling and relaxation activities, although they had a little effect on the drug-dependent DNA cleavage and decatenation activities, and had no effect on the ATPase activity. Taken together, these results showed that the GyrA-CTD is essential to DNA gyrase of M.tuberculosis, and promote the idea that the M.tuberculosis GyrA-CTD is a new potential target for drug design. It is the first time that the DNA-binding sites in GyrA-CTD have been identified.  相似文献   

11.
12.
Mycothiol (MSH) is the major low-molecular-mass thiol in mycobacteria and is associated with the protection of Mycobacterium tuberculosis from toxic oxidants and antibiotics. The biosynthesis of MSH is a multistep process, with the enzymatic reaction designated MshC being the ligase step in MSH production. A targeted disruption of the native mshC gene in M. tuberculosis Erdman produced no viable clones possessing either a disrupted mshC gene or reduced levels of MSH. However, when a second copy of the mshC gene was incorporated into the chromosome prior to the targeted disruption, multiple clones having the native gene disrupted and the second copy of mshC intact were obtained. These clones produced normal levels of MSH. These results demonstrate that the mshC gene and, more generally, the production of MSH are essential for the growth of M. tuberculosis Erdman under laboratory conditions.  相似文献   

13.
Proteins of the GW182 family are essential for miRNA-mediated gene silencing in animal cells; they interact with Argonaute proteins (AGOs) and are required for both the translational repression and mRNA degradation mediated by miRNAs. To gain insight into the role of the GW182–AGO1 interaction in silencing, we generated protein mutants that do not interact and tested them in complementation assays. We show that silencing of miRNA targets requires the N-terminal domain of GW182, which interacts with AGO1 through multiple glycine–tryptophan (GW)-repeats. Indeed, a GW182 mutant that does not interact with AGO1 cannot rescue silencing in cells depleted of endogenous GW182. Conversely, silencing is impaired by mutations in AGO1 that strongly reduce the interaction with GW182 but not with miRNAs. We further show that a GW182 mutant that does not localize to P-bodies but interacts with AGO1 rescues silencing in GW182-depleted cells, even though in these cells, AGO1 also fails to localize to P-bodies. Finally, we show that in addition to the N-terminal AGO1-binding domain, the middle and C-terminal regions of GW182 (referred to as the bipartite silencing domain) are essential for silencing. Together our results indicate that miRNA silencing in animal cells is mediated by AGO1 in complex with GW182, and that P-body localization is not required for silencing.  相似文献   

14.
Adenylate cyclase toxin (CyaA) of Bordetella pertussis belongs to the RTX family of toxins. These toxins are characterized by a series of glycine- and aspartate-rich nonapeptide repeats located at the C-terminal half of the toxin molecules. For activity, RTX toxins require Ca2+, which is bound through the repeat region. Here, we identified a stretch of 15 amino acids (block A) that is located C-terminally to the repeat region and is essential for the toxic activity of CyaA. Block A is required for the insertion of CyaA into the plasma membranes of host cells. Mixing of a short polypeptide composed of block A and eight Ca2+ binding repeats with a mutant of CyaA lacking block A restores toxic activity fully. This in vitro interpolypeptide complementation is achieved only when block A is present together with the Ca2+ binding repeats on the same polypeptide. Neither a short polypeptide composed of block A only nor a polypeptide consisting of eight Ca2+ binding repeats, or a mixture of these two polypeptides, complement toxic activity. It is suggested that functional complementation occurs because of binding between the Ca2+ binding repeats of the short C-terminal polypeptide and the Ca2+ binding repeats of the CyaA mutant lacking block A.  相似文献   

15.
While small Maf proteins have been suggested to be essential for the Nrf2-mediated activation of antioxidant response element (ARE)-dependent genes, the extent of their requirement remains to be fully documented. To address this issue, we generated mafG::mafF double-mutant mice possessing MafK as the single available small Maf. Induction of the NAD(P)H:quinone oxidoreductase 1 (NQO1) gene was significantly impaired in double-mutant mice treated with butylated hydroxyanisole, while other ARE-dependent genes were less affected. Similarly, in a keap1-null background, where many of the ARE-dependent genes are constitutively activated in an Nrf2-dependent manner, only a subset of ARE-dependent genes, including NQO1, were sensitive to a simultaneous deficiency in MafG and MafF. Examination of single and double small maf mutant cells revealed that MafK also contributes to the induction of ARE-dependent genes. To obtain decisive evidence, we established mafG::mafK::mafF triple-mutant fibroblasts that completely lack small Mafs and turned out to be highly susceptible to oxidative stress. We found that induction in response to diethyl maleate was abolished in a wider range of ARE-dependent genes in the triple-mutant cells. These data explicitly demonstrate that small Mafs play critical roles in the inducible expression of a significant portion of ARE-dependent genes.  相似文献   

16.
Several pathogenic bacteria secrete plasminogen activator proteins. Streptokinase (SKe) produced by Streptococcus equisimilis and staphylokinase secreted from Staphylococcus aureus are human plasminogen activators and streptokinase (SKu), produced by Streptococcus uberis, is a bovine plasminogen activator. Thus, the fusion proteins among these activators can explain the function of each domain of SKe. Replacement of the SKalpha domain with staphylokinase donated the staphylokinase-like activation activity to SKe, and the SKbetagamma domain played a role of nonproteolytic activation of plasminogen. Recombinant SKu also activated human plasminogen by staphylokinase-like activation mode. Because SKu has homology with SKe, the bovine plasminogen activation activities of SKe fragments were checked. SKebetagamma among them had activation activity with bovine plasminogen. This means that the C-terminal domain (gamma-domain) of streptokinase determines plasminogen species necessary for activation and converses the ability of substrate recognition to human species.  相似文献   

17.
Many members of the TRP superfamily oligomerize in the ER before trafficking to the plasma membrane. For membrane localization of the non-selective cation channel TRPV4 specific domains in the N-terminus are required, but the role of the C-terminus in the oligomerization and trafficking process has been not determined until now. Therefore, the localization of recombinant TRPV4 in two cell models was analyzed: HaCaT keratinocytes that express TRPV4 endogenously were compared to CHO cells that are devoid of endogenous TRPV4. When deletions were introduced in the C-terminal domain three states of TRPV4 localization were defined: a truncated TRPV4 protein of 855 amino acids was exported to the plasma membrane like the full-length channel (871 aa) and was also functional. Mutants with a length of 828 to 844 amino acids remained in the ER of CHO cells, but in HaCaT cells plasma membrane localization was partially rescued by oligomerization with endogenous TRPV4. This was confirmed by coexpression of recombinant full-length TRPV4 together with these deletion mutants, which resulted in an almost complete plasma membrane localization of both proteins and significant FRET in the plasma membrane and the ER. All deletions upstream of amino acid 828 resulted in total ER retention that could not rescued by coexpression with the full-length protein. However, these deletion mutants did not impair export of full-length TRPV4, implying that no oligomerization took place. These data indicate that the C-terminus of TRPV4 is required for oligomerization, which takes place in the ER and precedes plasma membrane trafficking.  相似文献   

18.
The disaccharide trehalose is the major free sugar in the cytoplasm of mycobacteria; it is a constituent of cell wall glycolipids, and it plays a role in mycolic acid transport during cell wall biogenesis. The pleiotropic role of trehalose in the biology of Mycobacterium tuberculosis and its absence from mammalian cells suggests that its biosynthesis may provide a useful target for novel drugs. However, there are three potential pathways for trehalose biosynthesis in M. tuberculosis, and the aim of the present study was to introduce mutations into each of the pathways to determine whether or not they are functionally redundant. The results show that the OtsAB pathway, which generates trehalose from glucose and glucose-6-phosphate, is the dominant pathway required for M. tuberculosis growth in laboratory culture and for virulence in a mouse model. Of the two otsB homologues annotated in the genome sequence of M. tuberculosis, only OtsB2 (Rv3372) has a functional role in the pathway. OtsB2, trehalose-6-phosphate phosphatase, is strictly essential for growth and provides a tractable target for high throughput screening. Inactivation of the TreYZ pathway, which can generate trehalose from alpha-1,4-linked glucose polymers, had no effect on the growth of M. tuberculosis in vitro or in mice. Deletion of the treS gene altered the late stages of pathogenesis of M. tuberculosis in mice, significantly increasing the time to death in a chronic infection model. Because the TreS enzyme catalyzes the interconversion of trehalose and maltose, the mouse phenotype could reflect either a requirement for synthesis of additional trehalose or, conversely, a requirement for breakdown of stored trehalose to liberate free glucose.  相似文献   

19.
Many members of the TRP superfamily oligomerize in the ER before trafficking to the plasma membrane. For membrane localization of the non-selective cation channel TRPV4 specific domains in the N-terminus are required, but the role of the C-terminus in the oligomerization and trafficking process has been not determined until now. Therefore, the localization of recombinant TRPV4 in two cell models was analyzed: HaCaT keratinocytes that express TRPV4 endogenously were compared to CHO cells that are devoid of endogenous TRPV4. When deletions were introduced in the C-terminal domain three states of TRPV4 localization were defined: a truncated TRPV4 protein of 855 amino acids was exported to the plasma membrane like the full-length channel (871 aa) and was also functional. Mutants with a length of 828 to 844 amino acids remained in the ER of CHO cells, but in HaCaT cells plasma membrane localization was partially rescued by oligomerization with endogenous TRPV4. This was confirmed by coexpression of recombinant full-length TRPV4 together with these deletion mutants, which resulted in an almost complete plasma membrane localization of both proteins and significant FRET in the plasma membrane and the ER. All deletions upstream of amino acid 828 resulted in total ER retention that could not rescued by coexpression with the full-length protein. However, these deletion mutants did not impair export of full-length TRPV4, implying that no oligomerization took place. These data indicate that the C-terminus of TRPV4 is required for oligomerization, which takes place in the ER and precedes plasma membrane trafficking.  相似文献   

20.
Contributions of the C-terminal domain of Kv4.3 to the voltage-dependent gating of A-type K+ current (IA) were examined by (i) making mutations in this region, (ii) heterologous expression in HEK293 cells, and (iii) detailed voltage clamp analyses. Progressive deletions of the C terminus of rat Kv4.3M (to amino acid 429 from the N terminus) did not markedly change the inactivation time course of IA but shifted the voltage dependence of steady state inactivation in the negative direction to a maximum of -17 mV. Further deletions (to amino acid 420) shifted this parameter in the positive direction, suggesting a critical role for the domain 429-420 in the voltage-dependent regulation of IA. There are four positively charged amino acids in this domain: Lys423, Lys424, Arg426, and Arg429. The replacement of the two arginines with alanines (R2A) resulted in -23 and -13 mV shifts of inactivation and activation, respectively. Additional replacement of the two lysines with alanines did not result in further shifts. Single replacements of R426A or R429A induced -15 and -10 mV shifts of inactivation, respectively. R2A did not significantly change the inactivation rate but did markedly change the voltage dependence of recovery from inactivation. These two arginines are conserved in Kv4 subfamily, and alanine replacement of Arg429 and Arg432 in Kv4.2 gave essentially the same results. These effects of R2A were not modulated by co-expression of the K+ channel beta subunit, KChIPs. In conclusion, the two arginines in the cytosolic C-terminal domain of alpha-subunits of Kv4 subfamily strongly regulate the voltage dependence of channel activation, inactivation, and recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号