首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MicroRNAs (miRNAs) have emerged as key gene regulators in diverse biological pathways. These small non-coding RNAs bind to target sequences in mRNAs, typically resulting in repressed gene expression. Several methods are now available for identifying miRNA target sites, but the mere presence of an miRNA-binding site is insufficient for predicting target regulation. Regulation of targets by miRNAs is subject to various levels of control, and recent developments have presented a new twist; targets can reciprocally control the level and function of miRNAs. This mutual regulation of miRNAs and target genes is challenging our understanding of the gene-regulatory role of miRNAs in vivo and has important implications for the use of these RNAs in therapeutic settings.  相似文献   

2.
3.
4.
Histopathology of the lung and total IgE in serum were compared in toxocariasis and allergic asthma murine models using BALB/c and C57BL/6 mice. Infection with Toxocara canis resulted in both strains of mice in marked histological changes and increased levels of total serum IgE. The ovalbumin (OVA) sensitization/challenge treatment for the induction of allergic asthma resulted in similar histological changes in BALB/c and, to a less extent, in C57BL/6 mice. Serum IgE levels of OVA-treated C57BL/6 mice were low. Histological changes observed included perivascular infiltration with eosinophils and mononuclear cells, peribronchiolitis, alveolitis and mucus production. Although these changes in addition to increased IgE production did occur in T. canis-infected C57BL/6 mice they were more pronounced in BALB/c mice. Thus, BALB/c mice appear to be the most appropriate strain of mice to perform studies on the possible connection between infection with T. canis and allergic asthma.  相似文献   

5.
Upon birth, the intestine converts from a sterile environment to a home for commensal microorganisms. How immune homeostasis is maintained during this transition is not well understood. Here, Chassin et?al. (2010) demonstrate that microRNA-146a regulates the responsiveness of intestinal epithelial cells during microbial colonization of the neonatal intestine.  相似文献   

6.
Comment on: Boeri M, et al. Proc Natl Acad Sci USA 2011; 108:3713-8.  相似文献   

7.
8.

Background

Severe asthma is a heterogeneous disease and the relationship between airway inflammation and airway remodelling is poorly understood. We sought to define sputum mediator profiles in severe asthmatics categorised by CT-determined airway geometry and sputum differential cell counts.

Methods

In a single centre cross-sectional observational study we recruited 59 subjects with severe asthma that underwent sputum induction and thoracic CT. Quantitative CT analysis of the apical segment of the right upper lobe (RB1) was performed. Forty-one mediators in sputum samples were measured of which 21 mediators that were assessable in >50% of samples were included in the analyses.

Results

Independent of airway geometry, sputum MMP9 and IL-1β were elevated in those groups with a high sputum neutrophil count while sputum ICAM was elevated in those subjects with a low sputum neutrophil count. In contrast, sputum CCL11, IL-1α and fibrinogen were different in groups stratified by both sputum neutrophil count and airway geometry. Sputum CCL11 concentration was elevated in subjects with a low sputum neutrophil count and high luminal and total RB1 area, whereas sputum IL1α was increased in subjects with a high sputum neutrophil count and low total RB1 area. Sputum fibrinogen was elevated in those subjects with RB1 luminal narrowing and in those subjects with neutrophilic inflammation without luminal narrowing.

Conclusions

We have demonstrated that sputum mediator profiling reveals a number of associations with airway geometry. Whether these findings reflect important biological phenotypes that might inform stratified medicine approaches requires further investigation.  相似文献   

9.
10.
The Aspergillus fumigatus mouse model of asthma mimics the characteristics of human fungal asthma, including local and systemic inflammation. Monocyte/macrophage lineage cells direct innate immune responses and guide adaptive responses. To identify gene expression changes in peripheral blood monocytes in the context of fungal allergy, mice were exposed to systemic and intranasal inoculations of fungal antigen (sensitized), and naïve and sensitized animals were challenged intratracheally with live A. fumigatus conidia. Microarray analysis of blood monocytes from allergic versus non‐allergic mice showed ≥ twofold modulation of 45 genes. Ingenuity pathway analysis revealed a network of these genes involved in antigen presentation, inflammation, and immune cell trafficking. These data show that allergen sensitization and challenge affects gene expression in peripheral monocytes.  相似文献   

11.
We have studied murine models of asthma using FcepsilonRIalpha-chain-deficient (FcepsilonRIalpha(-/-)) mice to investigate the role of IgE-dependent mast cell activation in these models. When mice were either 1) immunized once with OVA in alum i.p. and then challenged with OVA intranasally, or 2) repeatedly immunized with OVA in the absence of adjuvant and subsequently challenged with nebulized OVA, FcepsilonRalpha(-/-) mice had significantly fewer eosinophils and lower IL-4 levels in their bronchoalveolar lavage fluid compared with wild-type mice. When mice were given anti-IL-5 antibody before OVA challenge in protocol 1, eosinophilic infiltration into the airways was significantly suppressed in both genotypes, but only FcepsilonRIalpha(-/-) mice showed significantly reduced airway hyperresponsiveness (AHR). In addition, when mice immunized and challenged with OVA also received a late OVA provocation at a higher concentration and were then exposed to methacholine, only wild-type mice developed a substantial increase in AHR. Since FcepsilonRI is expressed mainly on mast cells in mouse airways, we conclude that IgE-dependent activation of this cell type plays an important role in the development of allergic airway inflammation and AHR in mice. The models used may be of value for testing inhibitors of IgE or mast cells for development of therapeutic agents for human asthma.  相似文献   

12.
13.
14.
15.
16.

Introduction  

The murine air pouch is a bursa-like space that resembles the human synovial membrane. Injection of monosodium urate (MSU) crystals into the pouch elicits an acute inflammatory response similar to human gout. We conducted the present study to identify mRNAs that were highly regulated by MSU crystals in the pouch membrane.  相似文献   

17.
Murine models of acute atopic asthma may be inadequate to study the effects of recurrent exposure to inhaled allergens, such as the epithelial changes seen in asthmatic patients. We developed a murine model in which chronic airway inflammation is maintained by repeated allergen [ovalbumin (OVA)] inhalation; using this model, we examined the response to mucosal administration of CpG DNA (oligonucleotides) and specific antigen immunotherapy. Mice repeatedly exposed to OVA developed significantly greater airway hyperresponsiveness and goblet cell hyperplasia, but not airway eosinophilia, compared with those exposed only twice. CpG-based immunotherapy significantly reversed both acute and chronic markers of inflammation as well as airway hyperresponsiveness. We further examined the effect of mucosal immunotherapy on the response to a second, unrelated antigen. Mice sensitized to both OVA and schistosome eggs, challenged with inhaled OVA, and then treated with OVA-directed immunotherapy demonstrated significant reduction of airway hyperresponsiveness and a moderate reduction in eosinophilia, after inhalation challenge with schistosome egg antigens. In this model, immunotherapy treatment reduced bronchoalveolar lavage (BAL) levels of Th2 cytokines (IL-4, IL-5, IL-13, and IL-10) without changing BAL IFN-gamma. Antigen recall responses of splenocytes from these mice demonstrated an antigen-specific (OVA) enhanced release of IL-10 from splenocytes of treated mice. These results suggest that CpG DNA may provide the basis for a novel form of immunotherapy of allergic asthma. Both antigen-specific and, to a lesser extent, antigen-nonspecific responses to mucosal administration of CpG DNA are seen.  相似文献   

18.
Venous whole-blood eosinophil counts were performed on 50 occasions in 42 patients with varying patterns of asthma. None of the patients studied had received systemic corticosteroids during the previous year. Patients with acute severe asthma, as defined by symptomatic airways obstruction with a tachycardia of at least 120 beats/min, showed eosinopenia (21 x 10(9)/l +/- SD 57 x 10(9)/l). Patients with chronic asthma, as defined by symptomatic airways obstruction with a heart rate of less than 100 beats/min, showed appreciable eosinophilia (1048 x 10(9)/l +/- SD 708 x 10(9)/l). Finally, asymptomatic patients had a variable total eosinophil count but with values lower than those of patients with chronic asthma (345 x 10(9)/l +/- SD 431 x 10(9)/l). Eosinophilia may contain chronic asthma, thereby mediating bronchial damage, whereas absence of eosinophils in acute asthma enables vasoactive mediators to enter the systemic circulation, possibly causing circulatory disturbances.  相似文献   

19.
20.
Asthma is a chronic inflammatory disease of the airways characterized by airway remodeling, which includes changes in the extracellular matrix (ECM). However the role of the ECM in mediating these changes is poorly understood. Hyaluronan (HA), a major component of the ECM, has been implicated in asthma as well as in many other biological processes. Our study investigates the processes involved in HA synthesis, deposition, localization and degradation during an acute and chronic murine model of ovalbumin (OVA)-induced allergic pulmonary inflammation. Mice were sensitized, challenged to OVA and sacrificed at various time points during an 8-week challenge protocol. Bronchoalveolar lavage (BAL) fluids, blood, and lung tissue were collected for study. RNA, HA, protein and histopathology were analyzed. Analyses of lung sections and BAL fluids revealed an early deposition and an increase in HA levels within 24 h of antigen exposure. HA levels peaked at day 8 in BAL, while inflammatory cell recovery peaked at day 6. Hyaluronan synthase (HAS)1 and HAS2 on RNA levels peaked within 2 h of antigen exposure, while hyaluronidase (HYAL)1 and HYAL2 on RNA levels decreased. Both inflammatory cell infiltrates and collagen deposition co-localized with HA deposition within the lungs. These data support a role for HA in the pathogenesis of inflammation and airway remodeling in a murine model of asthma. HA deposition appears largely due to up regulation of HAS1 and HAS2. In addition, HA appears to provide the scaffolding for inflammatory cell accumulation as well as for new collagen synthesis and deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号