首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Our previous research has demonstrated that lens induction in Xenopus laevis requires inductive interactions prior to contact with the optic vesicle, which classically had been thought to be the major lens inductor. The importance of these early interactions has been verified by demonstrating that lens ectoderm is specified by the time it comes into contact with the optic vesicle. It has been argued that the tissues which underlie the presumptive lens ectoderm during gastrulation and neurulation, dorsolateral endoderm and mesoderm, are the primary early inductors. We show here, however, that these tissues alone cannot elicit lens formation in Xenopus ectoderm. Evidence is presented that presumptive anterior neural plate tissue (which includes the early eye rudiment) is an essential early lens inductor in Xenopus. The presence of dorsolateral mesoderm appears to enhance this response. These findings support a model in which an essential inductive signal passes through the plane of ectoderm during gastrula and early neurula stages from presumptive anterior neural tissue to the presumptive lens ectoderm. Since there is evidence for such interactions within a tissue layer in mesodermal and neural induction as well, this may be a general feature of the initial stages of determination of many tissues.  相似文献   

3.
4.
J Overton 《Tissue & cell》1979,11(1):89-98
Cell responses to different natural substrates have been followed by scanning microscopy in order to evaluate the role of these substrates in morphogenesis. Matrix has been isolated then repopulated with suspensions of embryonic cells from chick skin, spinal ganglia, duodenal epithelium and heart. In some cases outgrowth from amphibian embryonic tissue was used. Basal lamina of the Xenopus tail may be exposed by freezing and thawing the tissue, or by EDTA treatment. The underlying lamella of orthogonally oriented collagen fibers may be exposed by use of trypsin or hyaluronidase. Trypsin causes more clumping of collagen fibers and a coarser texture of the matrix. On trypsin isolated basement lamella, nerve cell processes grow out on the surface and show no strong tendency to penetrate the lamella while skin mesenchymal cells commonly burrow among the collagen plies. Epithelial cells remain on the surface. On the basal lamina mesenchymal cells ruffle in early stages of culture, then flatten. Epithelial cells flatten rapidly on the lamina. These differences in cell response are in some cases closely related to cell behavior in vivo and suggest that cells show a selective response to the chemical composition of the substrate as well as to its physical conformation.  相似文献   

5.
6.
Some amphibian brain-melanotrope cell systems are used to study how neuronal and (neuro)endocrine mechanisms convert environmental signals into physiological responses. Pituitary melanotropes release alpha-melanophore-stimulating hormone (alpha-MSH), which controls skin color in response to background light stimuli. Xenopus laevis suprachiasmatic neurons receive optic input and inhibit melanotrope activity by releasing neuropeptide Y (NPY), dopamine (DA) and gamma-aminobutyric acid (GABA) when animals are placed on a light background. Under this condition, they strengthen their synaptic contacts with the melanotropes and enhance their secretory machinery by upregulating exocytosis-related proteins (e.g. SNAP-25). The inhibitory transmitters converge on the adenylyl cyclase system, regulating Ca(2+) channel activity. Other messengers like thyrotropin-releasing hormone (TRH) and corticotropin-releasing hormone (CRH, from the magnocellular nucleus), noradrenalin (from the locus coeruleus), serotonin (from the raphe nucleus) and acetylcholine (from the melanotropes themselves) stimulate melanotrope activity. Ca(2+) enters the cell and the resulting Ca(2+) oscillations trigger alpha-MSH secretion. These intracellular Ca(2+) dynamics can be described by a mathematical model. The oscillations travel as a wave through the cytoplasm and enter the nucleus where they may induce the expression of genes involved in biosynthesis and processing (7B2, PC2) of pro-opiomelanocortin (POMC) and release (SNAP-25, munc18) of its end-products. We propose that various environmental factors (e.g. light and temperature) act via distinct brain centers in order to release various neuronal messengers that act on the melanotrope to control distinct subcellular events (e.g. hormone biosynthesis, processing and release) by specifically shaping the pattern of melanotrope Ca(2+) oscillations.  相似文献   

7.
Studies on synthetic multifunctional pores with external and internal active sites for ligand gating and noncompetitive blockage are presented, with emphasis on the contribution of external ligands to the characteristics of pore. A comparison between different synthetic multifunctional pores reveals that the location of functional groups in rigid-rod beta-barrel pores is precisely reflected in the function: molecular recognition at the outer barrel surface results in pore opening, while molecular recognition at the inner barrel surface results in pore closing. Negligible nonspecific leakage, disappearance of pH gating, inhibition of intervesicular pore transfer, and maybe also the flickering of currents of single open pores characterize external ligands as adhesive cushions that liberate the pore from lateral pressure exerted by the surrounding membrane. Refined molecular models show good agreement with pore design and experimental facts with regard to function.  相似文献   

8.
9.
We aimed to determine whether rectal distension and/or infusion of bile acids stimulates propagating or nonpropagating activity in the unprepared proximal colon in 10 healthy volunteers using a nasocolonic manometric catheter (16 recording sites at 7.5-cm spacing). Sensory thresholds and proximal colonic motor responses were assessed following rectal distension by balloon inflation and rectal instillation of chenodeoxycholic acid. Maximum tolerated balloon volume and the volume that stimulated a desire to defecate were both significantly (P < 0.01) reduced after rectal chenodeoxycholic acid. The frequency of colonic propagating pressure wave sequences decreased significantly in response to initial balloon inflations (P < 0.05), but the frequency doubled after subsequent chenodeoxycholic acid infusion (P < 0.002). Nonpropagating activity decreased after balloon inflation, was not influenced by acid infusion, and demonstrated a further decrease in response to repeat balloon inflation. We concluded that rectal chenodeoxycholic acid in physiological concentrations is a potent stimulus for propagating pressure waves arising in the proximal colon and reduces rectal sensory thresholds. Rectal distension inhibits all colonic motor activity.  相似文献   

10.
Qu LH  Sun MX 《Protoplasma》2008,233(1-2):51-59
A convenient experimental system was established to test how cells derived from higher-plant internal tissues respond to mechanical stimulation. Short-term culture of tobacco ovules in vitro led to the generation of bar-shaped cells from the parenchyma tissue of the ovule funicle. These cells are still connected to the mother tissue and are almost undifferentiated. The cells are translucent, and one end protrudes from the funicle, making them easy to manipulate and observe. Mechanical stimulation tests performed on these cells indicated that the cells are less sensitive to mechanical stimulation than epidermal hair cells but still possess the ability to respond to stimulation. Interestingly, the cells showed a cytoplasmic compartmental response to the stimulation. The nucleus, some plastids, and mitochondria were organized into a responsive unit that moved in unison to the stimulated sites, whereas most of the other organelles were not notably influenced by the stimulation. This suggests that the cytoplasm is highly organized and functionally divided in response to environmental stimulation.  相似文献   

11.
We consider a network of leaky integrate and fire neurons, whose learning mechanism is based on the Spike-Timing-Dependent Plasticity. The spontaneous temporal dynamic of the system is studied, including its storage and replay properties, when a Poissonian noise is added to the post-synaptic potential of the units. The temporal patterns stored in the network are periodic spatiotemporal patterns of spikes. We observe that, even in absence of a cue stimulation, the spontaneous dynamics induced by the noise is a sort of intermittent replay of the patterns stored in the connectivity and a phase transition between a replay and non-replay regime exists at a critical value of the spiking threshold. We characterize this transition by measuring the order parameter and its fluctuations.  相似文献   

12.
13.
To better understand the pathophysiological significance of high plasma norepinephrine (NE) concentration in regulating heart rate (HR), we examined the interactions between high plasma NE and dynamic vagal control of HR. In anesthetized rabbits with sinoaortic denervation and vagotomy, using a binary white noise sequence (0-10 Hz) for 10 min, we stimulated the right vagus and estimated the transfer function from vagal stimulation to HR response. The transfer function approximated a first-order low-pass filter with pure delay. Infusion of NE (100 microg. kg(-1) x h(-1) iv) attenuated the dynamic gain from 6.2 +/- 0.8 to 3.9 +/- 1.2 beats x min(-1) x Hz(-1) (n = 7, P < 0.05) without affecting the corner frequency or pure delay. Simultaneous intravenous administration of phentolamine (1 mg x kg(-1) x h(-1)) and NE (100 microg x kg(-1) x h(-1)) abolished the inhibitory effect of NE on the dynamic gain (6.3 +/- 0.8 vs. 6.4 +/- 1.3 beats x min(-1) x Hz(-1), not significant, n = 7). The inhibitory effect of NE at infusion rates of 10, 50, and 100 microg x kg(-1) x h(-1) on dynamic vagal control of HR was dose-dependent (n = 5). In conclusion, high plasma NE attenuated the dynamic HR response to vagal stimulation, probably via activation of alpha-adrenergic receptors on the preganglionic and/or postganglionic cardiac vagal nerve terminals.  相似文献   

14.
Irregular firing of action potentials (AP's) is a characteristic feature of neurons in the brain. The variability has been attributed to noise from various sources. This study illustrates an alternative mechanism, namely, deterministic irregularity within a model of ionic conductances. Specifically, a model based on modern measurements of the Na+ and K+ current components from the squid giant axon fires irregularly in response to a continuous train of near-threshold current pulses. The interspike interval histogram from these simulations is multi-modal, a result which in other systems has been attributed to stochastic resonance. Moreover, the simulations exhibited short burst of spikes followed by relatively long quiescent periods, a result suggestive of patterned input to the model even though the input consisted of a train of regularly spaced current pulses. The variability of firing is attributable to variations in AP parameters, in particular AP amplitude. The action potential for squid giant axons is not all-or-none. Rather, it is fundamentally a continuous function of stimulus amplitude. That is, the membrane lacks a threshold. Variation in AP amplitude, and to a lesser extent, AP duration, can produce variations in the time to a subsequent AP, which represents a paradigm shift for understanding irregular neuronal firing. The emphasis is not as much on events prior to an AP as it is on the AP's themselves.  相似文献   

15.
The peptide growth factor Activin A has been shown to induce complete axial structures in explanted blastula animal caps. However, it is not understood how much this response to activin depends upon early signals that prepattern the ectoderm. We have therefore asked what tissues can be induced in blastula animal caps by activin in the absence of early dorsal signals. Using whole-mount in situ hybridization, we compare the expression of three neural markers, N-CAM, En-2 and Krox-20 in activin-treated ectoderm from control and ventralized embryos. In response to activin, both normal and ventralized animal caps frequently form neural tissue (and express N-CAM) and express the hindbrain marker Krox-20. However, the more anterior marker, En-2, is expressed in only a small fraction of normal animal caps and rarely in ventralized animal caps; the frequency of expression does not increase with higher doses of activin. In all cases En-2 and Krox-20 are expressed in coherent patches or stripes in the induced caps. Although mesoderm is induced in both control and ventralized animal caps, notochord is found in response to activin at moderate frequency in control caps, but rarely in ventralized animal caps. These results support the idea that in the absence of other signals, activin treatment elicits hindbrain but not notochord or anterior neural tissue; and thus, the anterior and dorsal extent of tissues formed in response to activin depends on a prior prepatterning or previous inductions.  相似文献   

16.
17.
H Yang  H Wong  J H Walsh  Y Taché 《Life sciences》1989,45(25):2413-2418
The role of gastrin in mediating the acid response to chemical vagal stimulation was evaluated by intravenous injection of the gastrin monoclonal antibody 28.2 (2.6 mg/rat). The antibody was injected 30 min prior to the administration of vagal stimulants in urethane-anesthetized rats equipped with a double lumen gastric cannula. The gastrin monoclonal antibody 28.2 prevented gastrin-17- but not carbachol-stimulated gastric acid secretion. The gastric acid response to vagal stimulation produced by thyrotrophin-releasing hormone (TRH) injected into the cisterna magna or the dorsal vagal complex and by the GABAB agonist, baclofen, infused intravenously was reduced by 33, 22 and 33% respectively in rats administered with gastrin monoclonal antibody 28.2. These immunoneutralization studies provide evidence that approximately 75% of the acid response to vagal stimulation is not mediated by gastrin in urethane-anesthetized rats.  相似文献   

18.
Full-grown Xenopus oocytes, Stage VI (1200-1300 microns), undergo meiotic maturation when exposed to progesterone. Smaller stage IV (800 microns) and stage V (1000 microns) oocytes remain in prophase arrest when exposed to this steroid. The larger stage VI oocytes undergo an intracellular alkalization from 7.2 to 7.6, a six- to eightfold increase in the phosphorylation of the 40 S ribosomal protein S-6, and a two- to threefold increase in total protein synthesis when exposed to progesterone. It was found that 800- to 1000-microns oocytes do not undergo these physiological changes when exposed to progesterone. This lack of response could explain the failure of small oocytes to undergo germinal vesicle breakdown (GVBD). However, when stage IV and V oocytes were artificially alkalized to a pHi of 7.6 by the weak bases, trimethylamine, procaine, or methylamine, S-6 phosphorylation was stimulated four- to sixfold and protein synthesis was stimulated two- to threefold, but they still did not undergo GVBD. Stage IV and V oocytes are able to amplify MPF injected into their cytoplasm and undergo GVBD. Thus, 800- to 1000-microns oocytes appear to contain a store of inactive MPF in their cytoplasm. It seems that an additional physiological parameter(s), that is unique to steroid-treated stage VI oocytes, is responsible for activating this MPF which induces GVBD.  相似文献   

19.
Orthostatic hypotension is a common condition for individuals with stroke or spinal cord injury. The inability to regulate the central nervous system will result in pooling of blood in the lower extremities leading to orthostatic intolerance. This study compared the use of functional electrical stimulation (FES) and passive leg movements to improve orthostatic tolerance during head-up tilt. Four trial conditions were assessed during head-up tilt: (1) rest, (2) isometric FES of the hamstring, gastrocnemius and quadriceps muscle group, (3) passive mobilization using the Erigo dynamic tilt table; and (4) dynamic FES (combined 2 and 3). Ten healthy male subjects experienced 70 degrees head-up tilt for 15 min under each trial condition. Heart rate, blood pressure and abdominal echograms of the inferior vena cava were recorded for each trial. Passive mobilization and dynamic FES resulted in an increase in intravascular blood volume, while isometric FES only resulted in elevating heart rate. No significant differences in blood pressure were observed under each condition. We conclude that FES combined with passive stepping movements may be an effective modality to increase circulating blood volume and thereby tolerance to postural hypotension in healthy subjects.  相似文献   

20.
The anteroposterior character of mesoderm induced by a peptide growth factor (XTC-MIF) was tested by transplantation into host Xenopus gastrulae. Both retinoic acid and a homeodomain protein were able to override the anteriorizing effect of the growth factor. Microinjection of a posteriorly expressed homeobox mRNA can respecify anteroposterior identity, transforming head mesoderm into tail-inducing mesoderm. Unexpectedly, overexpression of XIHbox 6 protein in the transplanted cells, without addition of growth factors, caused the formation of tail-like structures. The cells overexpressing XIHbox 6 were able to recruit cells from the host into the secondary axis. The results suggest that vertebrate homeodomain proteins are part of the biochemical pathway leading to the generation of the body axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号