首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:观察三维受控组装系统下,胚胎肝细胞在三维立体结构的体外生长状态,探讨胚胎肝细胞在肝组织工程中应用的可行性。方法:用清华大学机械工程系研制的"三维受控组装系统",将第15 d小鼠胚胎肝细胞作为肝组织工程的种子细胞,与以明胶为主的复合材料混合,构建成复杂三维立体结构,观察其体外生长发育状态。对体外培养1周及4周的三维类肝组织标本进行苏木精-伊红(HE)染色,免疫组织化学方法检测甲胎蛋白(AFP)及白蛋白(ALB)的表达,并对体外培养4周的三维类肝组织用PAS显色法检测肝糖原表达。结果:HE染色结果显示体外培养的胚胎肝细胞在三维支架材料中,可形成含有类血管和肝组织样结构;体外培养1周的类肝组织AFP表达呈阳性,体外培养4周的三维类肝组织ALB表达呈阳性,PAS显色亦呈阳性。结论:在三维受控组装系统的构建下,呈立体状生长的胚胎肝细胞,可逐渐形成肝组织样结构,并显示一定的肝脏功能。  相似文献   

2.
3.
The effect of pseudopregnancy (PSPG; days: 0 (estrus), 1, 6.5, 9 and 15) and pregnancy (PG; days: 6.5, 9 and 15) on adenylate cyclase (AC) activity was verified in rabbit myometrium. During PSPG, there was a time related decline in basal activity from 71 +/- 16.2 (D 0) to 13.1 +/- 1.6 (PSPG-D9) pmoles cAMP formed/mg prot-min. Stimulation of the enzyme by GTP, Isoproterenol (ISO), Prostaglandin E2 (PGE2) or Sodium Fluoride (NaF) followed a similar pattern. AC activity was compared in myometrial tissues of pregnant animals (PG) separated into embryonic (ES) and interembryonic (IES) sites. On days 6.5 and 9, AC activity measured in tissues from PG rabbits (ES and IES) was always higher than that found in tissues from PSPG animals on corresponding days. On day 6.5, AC activity was slightly higher (p less than 0.01) in ES than in IES. This was confirmed on day 9 where basal as well as GTP, ISO and PGE2 stimulated activities were higher in ES than in IES (p less than 0.001). Dose response to ISO, expressed as % of GTP, were similar on D0, 1, 6.5 and 15 of PSPG. However, on day 9, there was a striking diminution in response reflected by a lower stimulation at suboptimal dose (0.1 microM; p less than 0.05) from 115 +/- 2 on day 0 to 104 +/- 4 on day 9. These results suggest that protein content which is increased during pseudopregnancy could be responsible for the decline of AC activity. However, results obtained on day 9 and 15 suggest that other factors are involved. Dose responses to ISO during PG showed an alteration in response on days 6.5 and 9 at ES. It was reflected by a higher stimulation at suboptimal (0.1 microM) and optimal doses (100 microM). These results suggest that myometrial AC activity could be regulated by the presence of the embryo.  相似文献   

4.
5.
The role that genetics play in response to infection or disease is becoming increasingly clear as we learn more about immunogenetics and host-pathogen interactions. Here we report a genome-wide analysis of the effects of host genetic variation on cytokine responses to vaccinia virus stimulation in smallpox vaccine recipients. Our data show that vaccinia stimulation of immune individuals results in secretion of inflammatory and Th1 cytokines. We identified multiple SNPs significantly associated with variations in cytokine secretion. These SNPs are found in genes with known immune function, as well as in genes encoding for proteins involved in signal transduction, cytoskeleton, membrane channels and ion transport, as well as others with no previously identified connection to immune responses. The large number of significant SNP associations implies that cytokine secretion in response to vaccinia virus is a complex process controlled by multiple genes and gene families. Follow-up studies to replicate these findings and then pursue mechanistic studies will provide a greater understanding of how genetic variation influences vaccine responses.  相似文献   

6.
7.
8.
Recent studies have demonstrated that adenylyl cyclase isoforms can form both homo- and heterodimers and that this may be the basic functional unit of these enzymes (see Cooper, D.M.F. and Crossthwaite, A.J. (2006) Trends. Pharmacol. Sci. 8:426-431). Here, we show that adenylyl cyclases 2 and 5 can form a functional heterodimeric complex in HEK293 cells using a combination of BRET, confocal imaging, co-immunoprecipitation and assays of adenylyl cyclase activity. The AC2/5 complex is formed constitutively and is stable in the presence of receptor or forskolin stimulation. The complex formed by AC2/5 is also much more sensitive to the presence of Galpha(s) and forskolin than either of the parent AC isoforms themselves. Finally, we also show that this complex can be detected in native tissues as AC2 and AC5 were localized to the same structures in adult mouse ventricular myocytes and neonatal mouse cardiac fibroblasts and could be co-immunoprecipitated from lysates of mouse heart.  相似文献   

9.
Mutations in chs1/beige result in a deficiency in intracellular transport of vesicles that leads to a generalized immunodeficiency in mice and humans. The function of NK cells, CTL, and granulocytes is impaired by these mutations, indicating that polarized trafficking of vesicles is controlled by CHS1/beige proteins. However, a molecular explanation for this defect has not been identified. Here we describe a novel gene with orthologues in mice, humans, and flies that contains key features of both chs1/beige and A kinase anchor genes. We designate this novel gene lba for LPS-responsive, beige-like anchor gene. Expression of lba is induced after LPS stimulation of B cells and macrophages. In addition, lba is expressed in many other tissues in the body and has three distinct mRNA isoforms that are differentially expressed in various tissues. Strikingly, LBA-green-fluorescent protein (GFP) fusion proteins are localized to vesicles after LPS stimulation. Confocal microscopy indicates this protein is colocalized with the trans-Golgi complex and some lysosomes. Further analysis by immunoelectron microscopy demonstrates that LBA-GFP fusion protein can localize to endoplasmic reticulum, plasma membrane, and endocytosis vesicles in addition to the trans-Golgi complex and lysosomes. We hypothesize that LBA/CHS1/BG proteins function in polarized vesicle trafficking by guiding intracellular vesicles to activated receptor complexes and thus facilitate polarized secretion and/or membrane deposition of immune effector molecules.  相似文献   

10.
The scaffolding protein Yotiao is a member of a large family of protein A-kinase anchoring proteins with important roles in the organization of spatial and temporal signaling. In heart, Yotiao directly associates with the slow outward potassium ion current (I(Ks)) and recruits both PKA and PP1 to regulate I(Ks) phosphorylation and gating. Human mutations that disrupt I(Ks)-Yotiao interaction result in reduced PKA-dependent phosphorylation of the I(Ks) subunit KCNQ1 and inhibition of sympathetic stimulation of I(Ks), which can give rise to long-QT syndrome. We have previously identified a subset of adenylyl cyclase (AC) isoforms that interact with Yotiao, including AC1-3 and AC9, but surprisingly, this group did not include the major cardiac isoforms AC5 and AC6. We now show that either AC2 or AC9 can associate with KCNQ1 in a complex mediated by Yotiao. In transgenic mouse heart expressing KCNQ1-KCNE1, AC activity was specifically associated with the I(Ks)-Yotiao complex and could be disrupted by addition of the AC9 N terminus. A survey of all AC isoforms by RT-PCR indicated expression of AC4-6 and AC9 in adult mouse cardiac myocytes. Of these, the only Yotiao-interacting isoform was AC9. Furthermore, the endogenous I(Ks)-Yotiao complex from guinea pig also contained AC9. Finally, AC9 association with the KCNQ1-Yotiao complex sensitized PKA phosphorylation of KCNQ1 to β-adrenergic stimulation. Thus, in heart, Yotiao brings together PKA, PP1, PDE4D3, AC9, and the I(Ks) channel to achieve localized temporal regulation of β-adrenergic stimulation.  相似文献   

11.
Migrating cells need to overcome physical constraints from the local microenvironment to navigate their way through tissues. Cells that move collectively have the additional challenge of negotiating complex environments in vivo while maintaining cohesion of the group as a whole. The mechanisms by which collectives maintain a migratory morphology while resisting physical constraints from the surrounding tissue are poorly understood. Drosophila border cells represent a genetic model of collective migration within a cell-dense tissue. Border cells move as a cohesive group of 6−10 cells, traversing a network of large germ line–derived nurse cells within the ovary. Here we show that the border cell cluster is compact and round throughout their entire migration, a shape that is maintained despite the mechanical pressure imposed by the surrounding nurse cells. Nonmuscle myosin II (Myo-II) activity at the cluster periphery becomes elevated in response to increased constriction by nurse cells. Furthermore, the distinctive border cell collective morphology requires highly dynamic and localized enrichment of Myo-II. Thus, activated Myo-II promotes cortical tension at the outer edge of the migrating border cell cluster to resist compressive forces from nurse cells. We propose that dynamic actomyosin tension at the periphery of collectives facilitates their movement through restrictive tissues.  相似文献   

12.
13.
14.
A linear, first-order, constant-coefficient multicompartmental model is presented which describes the dynamics of [3H]retinol turnover in adult rats with normal plasma retinol concentrations but low liver stores (less than 100 micrograms of retinol equivalents). To fit plasma and tissue (liver, kidney, and rest of carcass) tracer and tracee data, eight physiological compartments were required in the model: two in plasma (proposed to correspond to the retinol transport complex, and retinyl esters in plasma lipoproteins) and two each in liver, kidneys, and other extrahepatic tissues. Extensive recycling of retinol among plasma, liver, and the rest of carcass was also required. The model predicted that 44% of whole body vitamin A (143 micrograms) was in extrahepatic tissues. The vitamin A utilization rate (system disposal rate) was 6.9 micrograms of retinol equivalents/day. The system residence time (mean sojourn time) for vitamin A was 21 days, and the fractional catabolic rate for the system was 5%/day. The mean transit time (turnover time) for vitamin A in its plasma retinol transport complex was 0.078 days (1.9 hr); the residence time was 0.98 day, versus 11 days in the liver, 9 days in carcass, and 0.54 days in kidneys. The model predicted that, of the plasma turnover, 48% recycled to the liver and 52% to extrahepatic tissues. The liver retinol secretion rate was 48 micrograms/day, more than half of which was from recycled plasma retinol. Since the plasma retinol turnover rate (87 micrograms/day) was 13 times the system disposal rate, the data suggest that this is a high response system in which changes in the dynamics of recycling of retinol allow for rapid adjustment in vitamin A distribution in response to changes in nutritional, metabolic, or physiological conditions; and in which plasma retinol levels are controlled homeokinetically by changes in hepatic and extrahepatic recycling of holo retinol-binding protein.  相似文献   

15.
16.
Glucocorticoid hormones (GCs) exert an antiproliferative effect on most cells. However, the molecular mechanism is still largely unclear. We investigated the antiproliferative mechanism by GCs in human embryonic kidney 293 cells with stably introduced glucocorticoid receptor (GR) mutants that discriminate between cross-talk with nuclear factor-(kappa)B (NF-(kappa)B) and activator protein-1 signaling, transactivation and transrepression, and antiproliferative vs. non-antiproliferative responses. Using the GR mutants, we here demonstrate a correlation between repression of NF-(kappa)B signaling and antiproliferative response. Gene expression profiling of endogenous genes in cells containing mutant GRs identified a limited number of genes that correlated with the antiproliferative response. This included a GC-mediated up-regulation of the NF-(kappa)B-inhibitory protein I(kappa)B(alpha), in line with repression of NF-(kappa)B signaling being important in the GC-mediated antiproliferative response. Interestingly, the GC-stimulated expression of I(kappa)B(alpha) was a direct effect despite the inability of the GR mutant to transactivate through a GC-responsive element. Selective expression of I(kappa)B(alpha) in human embryonic kidney 293 cells resulted in a decreased percentage of cells in the S/G2/M phase and impaired cell proliferation. These results demonstrate that GC-mediated inhibition of NF-(kappa)B is an important mechanism in the antiproliferative response to GCs.  相似文献   

17.
The ability of the glucocorticoid receptor (GR) to induce gene expression in embryonic chicken retinal tissue increases dramatically during development, although the quantity of the receptor molecules does not change greatly with age. This study examines the possible involvement of c-Jun in the developmental control of GR activity. Expression of c-Jun in retinal tissue was high at early embryonic ages and declined during development. Elevation of c-Jun expression in retina of mid-developmental ages by treatment with 12-O-tetradecanoyl-phorbol-13-acetate (TPA), or by introduction of a c-Jun expression vector, caused a pronounced decline in the inducibility of the endogenous glutamine synthetase gene and the transiently transfected CAT constructs p delta G46TCO and pGS2.1CAT, that are controlled by a minimal consensus glucocorticoid response element (GRE) promoter and the glutamine synthetase promoter, respectively. The effect of c-Jun was dose dependent and could be reversed by overexpression of GR. C-Jun-evoked repression of GR activity could be relieved by overexpression of Jun D. Overexpression of Jun D could also elevate the responsiveness of early embryonic retina to glucocorticoids and cause a 5-fold increase in p delta G46TCO induction. The effect of Jun D could be reversed by overexpression of c-Jun. Expression of c-Jun might therefore be important for repression of GR activity at early embryonic ages.  相似文献   

18.
19.

Background

Methods for the electrical inhibition of cardiac excitation have long been sought to control excitability and conduction, but to date remain largely impractical. High-amplitude alternating current (AC) stimulation has been known to extend cardiac action potentials (APs), and has been recently exploited to terminate reentrant arrhythmias by producing reversible conduction blocks. Yet, low-amplitude currents at similar frequencies have been shown to entrain cardiac tissues by generation of repetitive APs, leading in some cases to ventricular fibrillation and hemodynamic collapse in vivo. Therefore, an inhibition method that does not lead to entrainment – irrespective of the stimulation amplitude (bound to fluctuate in an in vivo setting) – is highly desirable.

Methodology/Principal Findings

We investigated the effects of broader amplitude and frequency ranges on the inhibitory effects of extracellular AC stimulation on HL-1 cardiomyocytes cultured on microelectrode arrays, using both sinusoidal and square waveforms. Our results indicate that, at sufficiently high frequencies, cardiac tissue exhibits a binary response to stimulus amplitude with either prolonged APs or no effect, thereby effectively avoiding the risks of entrainment by repetitive firing observed at lower frequencies. We further demonstrate the ability to precisely define reversible local conduction blocks in beating cultures without influencing the propagation activity in non-blocked areas. The conduction blocks were spatiotemporally controlled by electrode geometry and stimuli duration, respectively, and sustainable for long durations (300 s).

Conclusion/Significance

Inhibition of cardiac excitation induced by high-frequency AC stimulation exhibits a binary response to amplitude above a threshold frequency, enabling the generation of reversible conduction blocks without the risks of entrainment. This inhibition method could yield novel approaches for arrhythmia modeling in vitro, as well as safer and more efficacious tools for in vivo cardiac mapping and radio-frequency ablation guidance applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号