首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Pseudokinases lack essential residues for kinase activity, yet are emerging as important regulators of signal transduction networks. The pseudokinase STRAD activates the LKB1 tumour suppressor by forming a heterotrimeric complex with LKB1 and the scaffolding protein MO25. Here, we describe the structure of STRADα in complex with MO25α. The structure reveals an intricate web of interactions between STRADα and MO25α involving the αC-helix of STRADα, reminiscent of the mechanism by which CDK2 interacts with cyclin A. Surprisingly, STRADα binds ATP and displays a closed conformation and an ordered activation loop, typical of active protein kinases. Inactivity is accounted for by nonconservative substitution of almost all essential catalytic residues. We demonstrate that binding of ATP enhances the affinity of STRADα for MO25α, and conversely, binding of MO25α promotes interaction of STRADα with ATP. Mutagenesis studies reveal that association of STRADα with either ATP or MO25α is essential for LKB1 activation. We conclude that ATP and MO25α cooperate to maintain STRADα in an “active” closed conformation required for LKB1 activation. It has recently been demonstrated that a mutation in human STRADα that truncates a C-terminal region of the pseudokinase domain leads to the polyhydramnios, megalencephaly, symptomatic epilepsy (PMSE) syndrome. We demonstrate this mutation destabilizes STRADα and prevents association with LKB1. In summary, our findings describe one of the first structures of a genuinely inactive pseudokinase. The ability of STRADα to activate LKB1 is dependent on a closed “active” conformation, aided by ATP and MO25α binding. Thus, the function of STRADα is mediated through an active kinase conformation rather than kinase activity. It is possible that other pseudokinases exert their function through nucleotide binding and active conformations.  相似文献   

3.
4.
Protein Phosphatase 1 (PP1) is a major serine/threonine-phosphatase whose activity is dependent on its binding to regulatory subunits known as PP1 interacting proteins (PIPs), responsible for targeting PP1 to a specific cellular location, specifying its substrate or regulating its action. Today, more than 200 PIPs have been described involving PP1 in panoply of cellular mechanisms. Moreover, several PIPs have been identified that are tissue and event specific. In addition, the diversity of PP1/PIP complexes can further be achieved by the existence of several PP1 isoforms that can bind preferentially to a certain PIP. Thus, PP1/PIP complexes are highly specific for a particular function in the cell, and as such, they are excellent pharmacological targets. Hence, an in-depth survey was taken to identify specific PP1α PIPs in human brain by a high-throughput Yeast Two-Hybrid approach. Sixty-six proteins were recognized to bind PP1α, 39 being novel PIPs. A large protein interaction databases search was also performed to integrate with the results of the PP1α Human Brain Yeast Two-Hybrid and a total of 246 interactions were retrieved.  相似文献   

5.
N. A. Durso  R. J. Cyr 《Protoplasma》1994,180(3-4):99-105
Summary While reported interactions of elongation factor-1 (EF-1) with various other molecules involved in protein biosynthesis are abundant, its interactions with major cytoskeletal proteins have not been as extensively examined. Major roles for EF-1 in cytoskeletal organization emerge from a review of such interactions within species as diverse as slime molds and mammals, sea urchins and higher plants. Based on these studies, the integration of EF-1's cytoskeletal roles with those of translation is considered, and prospective mechanisms for regulation of EF-1's cytoskeletal associations are discussed.Abbreviations EF elongation factor - RNP ribonucleoprotein particle - MT microtubule - MA mitotic apparatus - CaM calmodulin - MAP microtubule-associated protein  相似文献   

6.
Both autophagy and apoptosis are tightly regulated processes playing a central role in tissue homeostasis. Bax inhibitor 1 (BI-1) is a highly conserved protein with a dual role in apoptosis and endoplasmic reticulum (ER) stress signalling through the regulation of the ER stress sensor inositol requiring kinase 1 α (IRE1α). Here, we describe a novel function of BI-1 in the modulation of autophagy. BI-1-deficient cells presented a faster and stronger induction of autophagy, increasing LC3 flux and autophagosome formation. These effects were associated with enhanced cell survival under nutrient deprivation. Repression of autophagy by BI-1 was dependent on cJun-N terminal kinase (JNK) and IRE1α expression, possibly due to a displacement of TNF-receptor associated factor-2 (TRAF2) from IRE1α. Targeting BI-1 expression in flies altered autophagy fluxes and salivary gland degradation. BI-1 deficiency increased flies survival under fasting conditions. Increased expression of autophagy indicators was observed in the liver and kidney of bi-1-deficient mice. In summary, we identify a novel function of BI-1 in multicellular organisms, and suggest a critical role of BI-1 as a stress integrator that modulates autophagy levels and other interconnected homeostatic processes.  相似文献   

7.
8.
Summary Pyruvate dehydrogenase E1 deficiency is an X-chromosome-linked disorder, often with fatal consequences. We have searched for genetically useful polymorphisms in or near this gene. No restriction fragment length polymorphisms were detected using a battery of 36 different restriction enzymes and probing with a fulllength cDNA fragment, or two single-copy genomic fragments located within intron 8, and 15 kb 3 of the coding region, respectively. The chemical cleavage method was then applied to the detection of base changes in or near the gene. One polymorphism was found in exon 8 of the coding region. However, no base changes were detected in intron 3 or in the part of intron 8 covered by fragment gB2. Three blocks of microsatellite DNA containing variable numbers of CA-repeats were isolated from the 5 end of the gene and characterized. Length polymorphisms in these microsatellite DNAs were analysed using the polymerase chain reaction. Although the three loci are tightly linked, the polymorphisms appear not to be in disequilibrium, making them useful markers in linkage studies of the pyruvate dehydrogenase E1 gene. Of 31 females analysed 12 (39%) were heterozygous for at least one length polymorphism of the three (CA)n alleles.  相似文献   

9.
It is well known that the hypoxia-inducible factor 1 α (HIF1α) is detectable as adaptive metabolic response to hypoxia. However, HIF1/HIF1α is detectable even under normoxic conditions, if the metabolism is altered, e.g., high proliferation index. Importantly, both hypoxic metabolism and the Warburg effect have in common a decrease of the intracellular pH value.

In our interpretation, HIF1α is not directly accumulated by hypoxia, but by a process which occurs always under hypoxic conditions, a decrease of the intracellular pH value because of metabolic imbalances. We assume that HIF1α is a sensitive controller of the intracellular pH value independently of the oxygen concentration. Moreover, HIF1α has its major role in activating genes to eliminate toxic metabolic waste products (e.g., NH3/NH4+) generated by the tumor-specific metabolism called glutaminolysis, which occur during hypoxia, or the Warburg effect. For that reason, HIF1α appears as a potential target for tumor therapy to disturb the pH balance and to inhibit the elimination of toxic metabolic waste products in the tumor cells.  相似文献   

10.
Human equilibrative nucleoside transporter 1 (hENT1) is an important determinant for nucleoside analog based chemotherapy success. Preliminary data suggest hENT1 regulation by PPARs. Using A2780 cells, we investigated the role of PPARs on hENT1 expression and activity. PPARα and PPARγ agonists, Wy14,643 and RGZ, increased hENT1 expression, but only PPARα activation or overexpression resulted in higher hENT1 transport activity. On the other hand, promoter analysis showed two putative PPRE in hENT1 promoter and luciferase-coupled promoter constructs were generated and analyzed. Our results suggest that PPARα-but not PPARγ-mediated expression regulation of hENT1 is PPRE-dependent. In conclusion, PPARα and PPARγ activation modulate hENT1 expression.  相似文献   

11.
The genes coding for the regulatory type I subunit (PRKAR1A) and the catalytic subunit (PRKACB) of cAMP-dependent protein kinase and the genes for interleukin 1 (IL1A) and interleukin 1 (IL1B) were localized in the pig by means of radioactive in situ hybridization. PRKAR1A was mapped to 12p1.4 and PRKARB to 6q3.1 q3.3. The genes for IL1A and IL1B were both assigned to Chromosome (Chr) 3, in the region q1.2 q1.3 and q1.1 q1.4, respectively. The cDNA nucleotide sequences of these porcine genes were compared with those of human, mouse, and cattle. The location of the genes was discussed in relation to the position of their homologous loci in these mammalian species.  相似文献   

12.
PGC-1α determines light damage susceptibility of the murine retina   总被引:1,自引:0,他引:1  
The peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1) proteins are key regulators of cellular bioenergetics and are accordingly expressed in tissues with a high energetic demand. For example, PGC-1α and PGC-1β control organ function of brown adipose tissue, heart, brain, liver and skeletal muscle. Surprisingly, despite their prominent role in the control of mitochondrial biogenesis and oxidative metabolism, expression and function of the PGC-1 coactivators in the retina, an organ with one of the highest energy demands per tissue weight, are completely unknown. Moreover, the molecular mechanisms that coordinate energy production with repair processes in the damaged retina remain enigmatic. In the present study, we thus investigated the expression and function of the PGC-1 coactivators in the healthy and the damaged retina. We show that PGC-1α and PGC-1β are found at high levels in different structures of the mouse retina, most prominently in the photoreceptors. Furthermore, PGC-1α knockout mice suffer from a striking deterioration in retinal morphology and function upon detrimental light exposure. Gene expression studies revealed dysregulation of all major pathways involved in retinal damage and apoptosis, repair and renewal in the PGC-1α knockouts. The light-induced increase in apoptosis in vivo in the absence of PGC-1α was substantiated in vitro, where overexpression of PGC-1α evoked strong anti-apoptotic effects. Finally, we found that retinal levels of PGC-1 expression are reduced in different mouse models for retinitis pigmentosa. We demonstrate that PGC-1α is a central coordinator of energy production and, importantly, all of the major processes involved in retinal damage and subsequent repair. Together with the observed dysregulation of PGC-1α and PGC-1β in retinitis pigmentosa mouse models, these findings thus imply that PGC-1α might be an attractive target for therapeutic approaches aimed at retinal degeneration diseases.  相似文献   

13.
14.
Cold adaptation elicits a paradoxical simultaneous induction of fatty acid synthesis and β-oxidation in brown adipose tissue. We show here that cold exposure coordinately induced liver X receptor α (LXRα), adipocyte determination and differentiation-dependent factor 1 (ADD1)/sterol regulatory element-binding protein-1c (SREBP1c) and peroxisome proliferator-activated receptor γ coactivator-1α (PGC1α) in brown and inguinal white adipose tissues, but not in epididymal white adipose tissue. Using in vitro models of white and brown adipocytes we demonstrate that β-adrenergic stimulation induced expression of LXRα, ADD1/SREBP1c and PGC1α in cells with a brown-like adipose phenotype. We demonstrate that ADD1/SREBP1c is a powerful inducer of PGC1α expression via a conserved E box in the proximal promoter and that β-adrenergic stimulation led to recruitment of ADD1/SREBP1c to this E box. The ability of ADD1/SREBP1c to activate the PGC1α promoter exhibited a striking cell type dependency, suggesting that additional cell type-restricted factors contribute to ADD1/SREBP1c-mediated activation. In conclusion, our data demonstrate a novel role of ADD1/SREBP1c as a regulator of PGC1α expression in brown adipose tissue.  相似文献   

15.
16.
17.
18.
19.
Human macrophage inflammatory protein-1 (hMIP-1) and human macrophage inflammatory protein-1 (hMIP-1) are chemokines involved in a diverse range of immunological effects. Both hMIP-1 and hMIP-1 are involved in the activation of monocytes and THP-1 cells probably through a common receptor(s). However, only hMIP-1 can bind to neutrophils with high affinity, presumably through CC-CKR1 (CKR1). Since the structure of these two proteins is highly conserved, non-conserved amino acids must define the disparate binding patterns that these two proteins exhibit. Measurements of binding, chemotaxis and calcium influx conducted with hMIP-1 and hMIP-1 chimeric proteins and mutants show that two amino acids (37K and 43L) are important in the binding and signaling of hMIP-1 through CKR1. Furthermore, we also show that mutations of the three charged amino acids at the C-terminus of hMIP-1 and hMIP-1 (amino acids 61, 65 and 67), do not adversely affect the binding to THP-1 cells.  相似文献   

20.
Adenosine deaminases acting on RNA 1 (ADAR1) are enzymes involved in editing adenosine to inosine in the dsRNAs of cells associated with cancer development. The p150 isoform of ADAR1 is the only isoform containing the Zα domain that binds to both Z-DNA and Z-RNA. The Zα domain is suggested to modulate the immune response and could be a suitable target for antiviral treatment and cancer immunotherapy. In this study, we aimed to identify potential inhibitors for ADAR1 protein that bind the Zα domain using molecular docking and simulation tools. Virtual docking and molecular dynamics simulation approaches were used to screen the potential activity of 2115 FDA-approved compounds on the Zα domain of ADAR1 and filtered for to obtain the top-scoring hits. The top three compounds with the best XP Gscore—namely alendronate (−7.045), etidronate (−6.923), and zoledronate (−6.77)—were subjected to 50 ns simulations to characterize complex stability and identify the fundamental interactions that contribute to inhibition of the ADAR1 Zα domain. The three compounds were shown to interact with Lys169, Lys170, Asn173, and Tyr177 of the Zα domain-like helical backbone of Z-RNA. The study provides a comprehensive and novel insights of repurposes drugs for the inhibition of ADAR1 function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号