首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A system for scoring dicentric chromosomes by image analysis comprised fully automatic location of mitotic cells, automatic retrieval, focus and digitization at high resolution, automatic rejection of nuclei and debris and detection and segmentation of chromosome clusters, automatic centromere location, and subsequent rapid interactive visual review of potential dicentric chromosomes to confirm positives and reject false positives. A calibration set of about 15,000 cells was used to establish the quadratic dose response for 60Co gamma-irradiation. The dose-response function parameters were established by a maximum likelihood technique, and confidence limits in the dose response and in the corresponding inverse curve, of estimated dose for observed dicentric frequency, were established by Monte Carlo techniques. The system was validated in a blind trial by analysing a test set comprising a total of about 8000 cells irradiated to 1 of 10 dose levels, and estimating the doses from the observed dicentric frequency. There was a close correspondence between the estimated and true doses. The overall sensitivity of the system in terms of the proportion of the total population of dicentrics present in the cells analysed that were detected by the system was measured to be about 40%. This implies that about 2.5 times more cells must be analysed by machine than by visual analysis. Taking this factor into account, the measured review time and false positive rates imply that analysis by the system of sufficient cells to provide the equivalent of a visual analysis of 500 cells would require about 1 h for operator review.  相似文献   

2.
This interlaboratory comparison validates the dicentric chromosome assay for assessing radiation dose in mass casualty accidents and identifies the advantages and limitations of an international biodosimetry network. The assay's validity and accuracy were determined among five laboratories following the International Organization for Standardization guidelines. Blood samples irradiated at the Armed Forces Radiobiology Research Institute were shipped to all laboratories, which constructed individual radiation calibration curves and assessed the dose to dose-blinded samples. Each laboratory constructed a dose-effect calibration curve for the yield of dicentrics for (60)Co gamma rays in the 0 to 5-Gy range, using the maximum likelihood linear-quadratic model, Y = c + alphaD + betaD(2). For all laboratories, the estimated coefficients of the fitted curves were within the 99.7% confidence intervals (CIs), but the observed dicentric yields differed. When each laboratory assessed radiation doses to four dose-blinded blood samples by comparing the observed dicentric yield with the laboratory's own calibration curve, the estimates were accurate in all laboratories at all doses. For all laboratories, actual doses were within the 99.75% CI for the assessed dose. Across the dose range, the error in the estimated doses, compared to the physical doses, ranged from 15% underestimation to 15% overestimation.  相似文献   

3.
In the case of a large scale radiation accident high throughput methods of biological dosimetry for population triage are needed to identify individuals requiring clinical treatment. The dicentric assay performed in web-based scoring mode may be a very suitable technique. Within the MULTIBIODOSE EU FP7 project a network is being established of 8 laboratories with expertise in dose estimations based on the dicentric assay. Here, the manual dicentric assay was tested in a web-based scoring mode. More than 23,000 high resolution images of metaphase spreads (only first mitosis) were captured by four laboratories and established as image galleries on the internet (cloud). The galleries included images of a complete dose effect curve (0–5.0 Gy) and three types of irradiation scenarios simulating acute whole body, partial body and protracted exposure. The blood samples had been irradiated in vitro with gamma rays at the University of Ghent, Belgium. Two laboratories provided image galleries from Fluorescence plus Giemsa stained slides (3 h colcemid) and the image galleries from the other two laboratories contained images from Giemsa stained preparations (24 h colcemid). Each of the 8 participating laboratories analysed 3 dose points of the dose effect curve (scoring 100 cells for each point) and 3 unknown dose points (50 cells) for each of the 3 simulated irradiation scenarios. At first all analyses were performed in a QuickScan Mode without scoring individual chromosomes, followed by conventional scoring (only complete cells, 46 centromeres). The calibration curves obtained using these two scoring methods were very similar, with no significant difference in the linear-quadratic curve coefficients. Analysis of variance showed a significant effect of dose on the yield of dicentrics, but no significant effect of the laboratories, different methods of slide preparation or different incubation times used for colcemid. The results obtained to date within the MULTIBIODOSE project by a network of 8 collaborating laboratories throughout Europe are very promising. The dicentric assay in the web based scoring mode as a high throughput scoring strategy is a useful application for biodosimetry in the case of a large scale radiation accident.  相似文献   

4.
In accidental exposure to ionizing radiation, it is essential to estimate the dose received by the victims. Currently dicentric scoring is the best biological indicator of exposure. The standard biological dosimetry procedure (500 metaphases scored manually) is suitable for a few dose estimations, but the time needed for analysis can be problematic in the case of a large-scale accident. Recently, a new methodology using automatic detection of dicentrics has greatly decreased the time needed for dose estimation and preserves the accuracy of the estimation. However, the capability to detect nonhomogeneous partial-body exposures is an important advantage of dicentric scoring-based biodosimetry, and this remains to be tested with automatic scoring. Thus we analyzed the results obtained with in vitro blood dilutions and in real cases of accidental exposure (partial- or whole-body exposure) using manual scoring and automatic detection of dicentrics. We confirmed that automatic detection allows threefold quicker dicentric scoring than the manual procedure with similar dose estimations and uncertainty intervals. The results concerning partial-body exposures were particularly promising, and homogeneously exposed samples were correctly distinguished from heterogeneously exposed samples containing 5% to 75% of blood irradiated with 2 Gy. In addition, the results obtained for real accident cases were similar whatever the methodology used. This study demonstrates that automatic detection of dicentrics is a credible alternative for recent and acute cases of whole- and partial-body accidental exposures to ionizing radiation.  相似文献   

5.
Biological dosimetry is an essential tool for estimating radiation dose. The dicentric chromosome assay (DCA) is currently the tool of choice. Because the assay is labor-intensive and time-consuming, strategies are needed to increase throughput for use in radiation mass casualty incidents. One such strategy is to truncate metaphase spread analysis for triage dose estimates by scoring 50 or fewer metaphases, compared to a routine analysis of 500 to 1000 metaphases, and to increase throughput using a large group of scorers in a biodosimetry network. Previously, the National Institutes for Allergies and Infectious Diseases (NIAID) and the Armed Forces Radiobiology Research Institute (AFRRI) sponsored a double-blinded interlaboratory comparison among five established international cytogenetic biodosimetry laboratories to determine the variability in calibration curves and in dose measurements in unknown, irradiated samples. In the present study, we further analyzed the published data from this previous study to investigate how the number of metaphase spreads influences dose prediction accuracy and how this information could be of value in the triage and management of people at risk for the acute radiation syndrome (ARS). Although, as expected, accuracy decreased with lower numbers of metaphase spreads analyzed, predicted doses by the laboratories were in good agreement and were judged to be adequate to guide diagnosis and treatment of ARS. These results demonstrate that for rapid triage, a network of cytogenetic biodosimetry laboratories can accurately assess doses even with a lower number of scored metaphases.  相似文献   

6.
The results of a cytogenetic study carried out in a group of nine radiologists are presented. Chromosome aberrations were detected by fluorescence plus Giemsa staining and fluorescence in situ hybridization. Dose estimates were obtained by extrapolating the yield of dicentrics and translocations to their respective dose-effect curves. In seven individuals, the 95% confidence limits of the doses estimated by dicentrics did not include 0 Gy. The 99 dicentrics observed in 17,626 cells gave a collective estimated dose of 115 mGy (95% confidence limits 73-171). For translocations, five individuals had estimated doses that were clearly higher than the total accumulated recorded dose. The 82 total apparently simple translocations observed in 9722 cells gave a collective estimated dose of 275 mGy (132-496). The mean genomic frequencies (x100 +/- SE) of complete and total apparently simple translocations observed in the group of radiologists (1.91 +/- 0.30 and 2.67 +/- 0.34, respectively) were significantly higher than those observed in a matched control group (0.53 +/- 0.10 and 0.87 +/- 0.13, P < 0.01 in both cases) and in another occupationally exposed matched group (0.79 +/- 0.12 and 1.14 +/-0.14, P < 0.03 and P < 0.01, respectively). The discrepancies observed between the physically recorded doses and the biologically estimated doses indicate that the radiologists did not always wear their dosimeters or that the dosimeters were not always in the radiation field.  相似文献   

7.
The radiation accident in focus here occurred in a section of Goiânia (Brazil) where more than a hundred individuals were contaminated with 137Cesium on September 1987. In order to estimate the absorbed radiation doses, initial frequencies of dicentrics and rings were determined in 129 victims [A.T. Ramalho, PhD Thesis, Subsidios a tecnica de dosimetria citogenetica gerados a partir da analise de resultados obtidos com o acidente radiologico de Goiânia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 1992]. We have followed some of these victims cytogenetically over the years seeking for parameters that could be used as basis for retrospective radiation dosimetry. Our data on translocation frequencies obtained by fluorescence in situ hybridization (FISH) could be directly compared to the baseline frequencies of dicentrics available for those same victims. Our results provided valuable information on how precise these estimates are. The frequencies of translocations observed years after the radiation exposure were two to three times lower than the initial dicentrics frequencies, the differences being larger at higher doses (> 1 Gy). The accuracy of such dose estimates might be increased by scoring sufficient amount of cells. However, factors such as the persistence of translocation carrying lymphocytes, translocation levels not proportional to chromosome size, and inter-individual variation reduce the precision of these estimates.  相似文献   

8.
The probability of losses of different chromosome aberrations during the dicentric chromosome assay of metaphase cells with incomplete sets of chromosome centromeres was estimated using a mathematical model for low doses of ionizing radiation. A dicentric assay of human blood lymphocytes without determination of the total amount of chromosome centromeres in cells without chromosome aberrations (rapid dicentric assay) has been proposed. The rapid dicentric analysis allows to register chromosome aberrations in full compliance with the conventional classification. The experimental data have shown no statistically significant difference between the frequencies of dicentric chromosomes detected by rapid and classical dicentric chromosome assays of human lymphocytes exposed to 0.5 Gy of 60Co gamma-rays. The rate of the rapid dicentric assay was almost twice as high as that of the classical dicentric assay.  相似文献   

9.
Peripheral blood lymphocytes were irradiated in vitro with (213)Bi alpha particles at doses of 0, 10, 20, 50, 100, 200 and 500 mGy. Chromosome analysis was performed on 47-h cultures using single-color fluorescence in situ hybridization (FISH) to paint chromosomes 1, 3 and 5. The whole genome was analyzed for unstable aberrations to derive aberration frequencies and determine cell stability. The dose response for dicentrics was 33.60 +/- 0.47 x 10(-2) per Gy. A more detailed analysis revealed that the majority of aberrations scored as dicentrics were part of complex/multiple aberrations, with the proportion of cells containing complexes increasing with dose. Cells containing aberrations involving painted chromosomes (FISH aberrations) were further classified according to cell stability and complexity. The majority of cells with FISH aberrations were unstable. The proportion of aberrant FISH cells with complex/multiple aberrations ranged from 56% at 10 mGy to 89% at 500 mGy. A linear dose response for genomic frequencies of translocations in stable cells fitted the data from 0 to 200 mGy with a dose response of 7.90 +/- 0.98 x 10(-2) per Gy, thus indicating that they are likely to be observed in peripheral blood lymphocytes from individuals with past or chronic exposure to high-LET radiation. Comparisons with the dose response for low-LET radiation suggest an RBE of 13.6 for dicentrics in all cells and 3.2 for translocations in stable cells. Since stochastic effects of radiation are attributable to genetic changes in viable cells, translocations in stable cells may be a better measure when considering the comparative risks of different qualities of radiation.  相似文献   

10.
The quantitative analysis of the chromosome rearrangements detected in 2128 R-banded metaphases, obtained from gamma-irradiated human lymphocytes after 48 to 96 h in culture is reported. Depending on the culture time, and possibly on the dose of radiation (from 1 to 3 Gy), the most frequent type of rearrangement was either dicentrics or reciprocal translocations. In first generation mitoses, the frequency of cells without rearrangement ranged from 0.66 to 0.18, and the mean number of rearranged chromosomes per cell from 0.79 to 3.28. The dose-response curve follows a quadratic function for dicentric aberration yields, but not for other rearrangements.  相似文献   

11.
Dicentric chromosome assay (DCA) is routinely used for estimating the absorbed radiation dose in exposed humans. Optimal lymphocyte viability is crucial for reliable dose estimation and most cytogenetic laboratories prefer the receipt of blood samples within 24 to 36 hours after collection. Delays in the shipment/receipt of samples can occur sometimes under certain unforeseen circumstances: (1) Adverse weather conditions, (2) distant location of blood collection sites, and (3) shipping and handling of a large number of samples after radiological/nuclear mass casualty incident(s). To circumvent some of these limitations, we evaluated the suitability of ex vivo irradiated blood samples stored in the presence of phytohemagglutinin (PHA) for 7 days at ambient temperature (22-24°C) for radiation biodosimetry. Blood samples stored in the presence of PHA for up to 7 days showed a higher mitotic index than blood samples stored without PHA. To verify the use of stored blood samples for DCA, frequencies of X-rays induced dicentric chromosomes were analyzed in the blood samples that were cultured either 24 hours after exposure or 7 days later after storage. Our results indicate that storage of ex vivo irradiated blood samples in the presence of PHA at ambient temperature was found optimal for DCA and that the radiation doses estimated by dicentric chromosome frequencies were grossly similar between the fresh and stored blood samples. Our study suggests that reliable and accurate biodosimetry results can be obtained for triage using blood samples stored for up to a week at ambient temperature in the presence of PHA.  相似文献   

12.
Human peripheral blood lymphocytes from two donors were exposed to low doses (0.05 to 2.0 Gy) of gamma rays, X rays, or fast neutrons of different energies. Chromosome aberrations were analyzed in metaphase of first-division cells after a culture time of 45-46 hr. At this time, less than 5% of the cells were found in second division. Different dose-response relationships were fitted to the data by using a maximum likelihood method; best fits for radiation-induced dicentric aberrations were obtained with the linear-quadratic law for all radiations. The linear component of this equation predominated, however, for neutrons in the range of doses studied, and the frequency of dicentrics induced by d(16)+Be neutrons up to 1.0 Gy could also be described by a linear relationship. The relative biological efficiency (RBE) of X rays and d(16)+Be, d(33)+Be, and d(50)+Be neutrons compared to 60Co gamma rays in the low dose range was calculated from the dose-effect relationships for the dicentrics produced. The RBE increased with decreasing neutron dose and with decreasing neutron energy from d(50)+Be to d(16)-+Be neutrons. The limiting RBE at low doses (RBEo) was calculated to be about 1.5 for X rays and 14.0, 6.2, and 4.7 for the d(16)+Be, d(33)+Be, and d(50)+Be neutrons, respectively.  相似文献   

13.
Chromosome aberrations in human lymphocytes induced by fission neutrons   总被引:1,自引:0,他引:1  
The dose-response relationships of dicentrics and excess acentrics were analysed after exposure of human lymphocytes to a mixed fission neutron-gamma-ray beam. From the analysis of exclusively first division cells a linear-quadratic relation was obtained for dicentrics with the ratio of linear and quadratic components, zeta, equal to 2.76 Gy. Over the range of doses studied (0.04-1.97 Gy) intratrack events therefore predominated. This also applied to acentrics which were linearly related to dose. At the lowest level of observed effect and dose, r.b.e. values with respect to 60Co gamma-rays of up to about 11 were derived for dicentrics and acentrics. With increasing neutron dose the r.b.e. decreased.  相似文献   

14.
The incidence of chromosomal aberrations was analysed in peripheral blood lymphocytes of occupationally exposed people having cumulative doses of 500 mSv. The exposed individuals showed higher frequencies of dicentrics as well as acentrics than normal controls. Absorbed radiation dose was calculated by using in vitro dose response curve established for Cobalt-60 gamma rays. In the control constituting 17 healthy individuals, two dicentrics were detected among 3700 metaphases analysed. In the exposed group 27 dicentrics and one centric ring was detected among 8400 metaphases analysed. Due to small number of dicentrics scored in each individual, the dose estimate suffers from a large statistical uncertainty. The collective dose was found to be 1.89 Gy. This is in good agreement with the corrected physical doses, assuming a mean life of 10 years for the disappearance of lymphocytes. The physical doses accumulated during the last 10 years of occupation were also in good agreement with the biological dose estimate.  相似文献   

15.
16.
We determined the frequencies of dicentric chromosomes per cell in non-dividing confluent normal human fibroblasts (MRC-5) irradiated with a single 1 Gy dose or a fractionated 1 Gy dose (10X0.1 Gy, 5X0.2 Gy, and 2X0.5 Gy). The interval between fractions was between 1 min to 1440 min. After the completion of X-irradiation, the cells were incubated for 24 hours before re-plating at a low density. Then, demecolcine was administrated at 6 hours, and the first mitotic cells were collected for 42 hours. Our study demonstrated that frequencies of dicentric chromosomes in cells irradiated with a 1 Gy dose at different fractions were significantly reduced if the fraction interval was increased from 1 min to 5 min (p<0.05, χ2-test). Further increasing the fraction interval from 5 up to 1440 min did not significantly affect the frequency of dicentric chromosomes. Since misrejoining of two independent chromosome breaks introduced in close proximity gives rise to dicentric chromosome, our results indicated that such circumstances might be quite infrequent in cells exposed to fractionated X-irradiation with prolonged fraction intervals. Our findings should contribute to improve current estimation of cancer risk from chronic low-dose-rate exposure, or intermittent exposure of low-dose radiation by medical exposure.  相似文献   

17.
Literature data of long-term cytogenetic follow-up of people exposed to radiation as a results of different radiation accidents are considered for the purpose of discussing of some problems of biological dosimetry. The results obtained for mammals are also presented. Of particular interest is a decrease in the level of dicentrics and symmetrical translocations in peripheral blood lymphocytes with the time after acute exposure depending on the dose of irradiation. The frequency of dicentrics decreases in accordance to the exponential law passing the fast and slow phases of elimination. In different radiation situations the values of the parameter which defines the half-life period of lymphocytes characterizing 50% reduction of cells with dicentrics markedly vary. However a general regularity is a decrease in the parameter value as the exposure dose increases. The level of stable translocations estimates by the EISH method remains relatively constant at doses below 1-2 Gy. At higher doses their level in peripheral blood lymphocytes declines with time due to which the retrospective dose appears to be underestimated. The reasons of such regularity, the role of various factors affecting the scoring of translocations, criteria of analysis of the given chromosome aberrations are discussed in the context of common agreements between leading European laboratories on the use of FISH for improving biological dosimetric estimates.  相似文献   

18.
Scoring of unstable chromosomes aberrations (dicentrics, rings and fragments) in circulating lymphocytes is the most extensively studied biologic system for estimating individual exposure to ionizing radiation. In this work, blood samples from 5 patients, with cervical uterine cancer, were analyzed by conventional cytogenetic in order to correlate the frequency of chromosome aberrations in lymphocytes with the dose absorbed by the patient, as a result of radiotherapy with 60Co gamma. The samples were collected in three phases of the treatment: before irradiation, 24 hr after receiving 0.08 Gy and 1.8 Gy, respectively. On the basis of the frequencies of unstable aberrations observed, a good agreement was obtained between doses estimated by calibration curve and the doses previously planned to radiotherapy. This report discusses the methodology employed as an important tool for dose assessment as a result of partial-body exposure to ionizing radiation.  相似文献   

19.
Stable and unstable chromosome aberrations in human lymphocytes exposed to 2 and 4Gy of X-rays in G(0) were analyzed in M1 and M2 cells harvested at 72h to investigate how the scoring protocol influences the yields of aberrations transmitted through one mitosis. Metaphase chromosomes 2, 3, and 5 were painted using fluorescence in situ hybridization (FISH) whole chromosome probes, together with a pan-centromeric probe and stained by the harlequin-FISH method, to allow the cell cycle status of each cell to be determined as it was scored. A strict scoring criterion was adopted so that each metaphase had to contain 46 centromeres and each dicentric/centric ring had to have an acentric present. In addition to scoring the painted material, unstable aberrations in the whole genome were also recorded. The yield of complete dicentrics decreased by more than a factor of 2 in going from M1 to M2. The decrease was greater at the lower dose. Two-way translocations appeared stable, but one-way translocations decreased. This suggests that if translocation yields are to be used for biological dosimetry purposes, then the two-way type should be used.  相似文献   

20.
The aim of the investigation was the study of cytogenetic effects in human blood lymphocytes of low doses of ionizing radiation in vitro. The analysis of unstable chromosome aberrations in human lymphocytes after irradiation by the accelerated ions 12C with the energy 500 MeV/nucleon and LET 10.7 keV/microm was carried out. Blood samples were irradiated on Nuclotron of the High Energy Laboratory of the Joint Institute for Nuclear Research. The doses of irradiation were in the range from 0.05 up to 1.0 Gy. Was shown that the frequency of unstable chromosome aberrations depends from the dose of ionizing radiation and can be described by linear function. At the doses 0.25-0.50 Gy the dose-independent curve was obtained for dicentrics and centric rings. The frequencies of dicentrics and centric rings as markers of the radiation action were slightly different for different donors that could be explained by different radiosensitivity. Using the calibration curve obtained earlier for gamma-rays coefficients of relative biological efficiency of accelerated 12C with the energy 500 MeV/nucleon were defined: they varied from 1.0 at the doses (0.5-1.0 Gy) up to 3.2 at the lower doses (0.05-0.25 Gy).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号