首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fungal endophytes of tropical trees are expected to be exceptionally species rich as a consequence of high tree diversity in the tropics and the purported host restriction among the endophytes. Based on this premise, endophytes have been regarded as a focal group for estimating fungal numbers because their possible hyperdiverse nature would reflect significantly global fungal diversity. We present our consolidated ten-year work on 75 dicotyledonous tree hosts belonging to 33 families and growing in three different types of tropical forests of the NBR in the Western Ghats, southern India. We conclude that endophyte diversity in these forests is limited due to loose host affiliations among endophytes. Some endophytes have a wide host range and colonize taxonomically disparate hosts suggesting adaptations in them to counter a variety of defense chemicals in their hosts. Furthermore, such polyphagous endophytes dominate the endophyte assemblages of different tree hosts. Individual leaves may be densely colonized but only by a few endophyte species. It appears that the environment (the type of forest in this case) has a larger role in determining the endophyte assemblage of a plant host than the taxonomy of the host plant. Thus, different tropical plant communities have to be studied for their endophyte diversity to test the generalization that endophytes are hyperdiverse in the tropics, estimate their true species richness, and use them as a predictor group for more accurate assessment of global fungal diversity.  相似文献   

2.
Are tropical fungal endophytes hyperdiverse?   总被引:16,自引:0,他引:16  
Fungal endophytes are ubiquitous fungi that inhabit healthy plant tissues without causing disease. Endophytes have been found in every plant species examined to date and may be important, but often overlooked, components of fungal biodiversity. In two sites in a lowland, moist tropical forest of central Panama, we quantified endophyte colonization patterns, richness, host preference, and spatial variation in healthy leaves of two co-occurring, understory tree species [ Heisteria concinna (Olacaceae) and Ouratea lucens (Ochnaceae)]. From 83 leaves, all of which were colonized by endophytes, we isolated 418 endophyte morphospecies (estimated 347 genetically distinct taxa), most of which were represented by only a single isolate (59%). Among morphospecies encountered in more than one leaf (nonsingletons), we found evidence of host preference and spatial heterogeneity using both morphospecies frequencies and presence/absence records. Based on these data, we postulate that tropical endophytes themselves may be hyperdiverse and suggest that extrapolative estimates that exclude them will markedly underestimate fungal species diversity.  相似文献   

3.
Horizontally-transmitted foliar endophytic fungi can moderate plant tolerance to abiotic and biotic stress. Previous studies have found correlations between climate and endophyte beta diversity, but were unable to clearly separate drivers related to long-term climate, annual weather, and host plants. To address this, we characterized endophyte communities in the perennial C4 grass, Panicum hallii, across a precipitation gradient in central Texas over 3 years. A total of 65 unique leaf endophytes were isolated and identified based on ITS and LSU regions of rDNA. Mean annual rainfall and temperature were the primary drivers of endophyte richness and community composition, followed by annual weather conditions. In contrast, little explanatory value was provided by plant host traits, vegetation structure, or spatial factors. The importance of historical climate and annual weather in endophyte distributions suggests that species sort by environment and are likely to be affected by future climate change.  相似文献   

4.
? Here, we examined whether fungal endophytes modulated host plant responses to light availability. First, we conducted a literature review to evaluate whether natural frequencies of endophyte symbiosis in grasses from shaded habitats were higher than frequencies in grasses occupying more diverse light environments. Then, in a glasshouse experiment, we assessed how four levels of light and the presence of endophyte symbioses affected the growth of six grass species. ? In our literature survey, endophytes were more commonly present in grasses restricted to shaded habitats than in grasses from diverse light environments. ? In the glasshouse, endophyte symbioses did not mediate plant growth in response to light availability. However, in the host grass, Agrostis perennans, symbiotic plants produced 53% more inflorescences than nonsymbiotic plants at the highest level of shade. In addition, under high shade, symbiotic Poa autumnalis invested more in specific leaf area than symbiont-free plants. Finally, shade increased the density of the endophyte in leaf tissues across all six grass species. ? Our results highlight the potential for symbiosis to alter the plasticity of host physiological traits, demonstrate a novel benefit of endophyte symbiosis under shade stress for one host species, and show a positive association between shade-restricted grass species and fungal endophytes.  相似文献   

5.
 近百年的禾草内生真菌研究历经了由浅入深的过程,从最初的家畜中毒事件认识到是一种共生内生真菌存在的缘故,到如今利用分子生物学技术揭示其共生机制,人类发现这类植物内生真菌并非想象中的对生态系统无足轻重。Epichloë及其无性型Neotyphodium与禾本科植物是系统发生的互利共生关系,尤其是Neotyphodium可提高宿主抵抗环境胁迫的能力和抵御动物的取食,增强植物的竞争力。禾草内生真菌有3种生活史:有性生活史、无性生活史和兼性生活史,后者表明真菌在不同的宿主及环境下既能营有性生殖也可营无性繁殖,是一种更灵活而有效的生活史对策。对内生真菌分子系统学、生活史以及与宿主禾草协同进化的研究发现,Neotyphodium起源于禾草致病真菌Epichloë的某些种,或是Epichloë与Neotyphodium的种间杂交后代。植物和内生真菌各异的生活史策略,真菌的种间杂交,两者的协同进化亦或种群间基因流的差异,都促成了共生体多样化的基因组合(Genetic combination ),也是其共生关系多样化的根源。内生真菌对宿主的有益作用只在特定基因型真菌、宿主和一定环境条件下才起作用,自然生态系统的共生关系要比农业系统复杂得多,是一个从互利共生至寄生关系的连续系统。未来对于更多共生体的遗传背景和基因与环境相互作用的阐明将有助于对禾草内生真菌共生关系本质更加深入的认识。  相似文献   

6.
《Fungal Biology Reviews》2020,34(3):115-125
Plants harbor a wide diversity of microorganisms in their tissues. Some of them have a long co-evolutionary history with their hosts, likely playing a pivotal role in regulating the plant interaction with other microbes such as pathogens. Some cool-season grasses are symbiotic with Epichloë fungal endophytes that grow symptomless and systemically in aboveground tissues. Among the many benefits that have been ascribed to endophytes, their role in mediating plant interactions with pathogens has been scarcely developed. Here, we explored the effects of Epichloë fungal endophytes on the interaction of host grasses with fungal pathogens. We made a meta-analysis that covered a total of 18 host grass species, 11 fungal endophyte species, and 22 fungal pathogen species. We observed endophyte-mediated negative effects on pathogens in vitro and in planta. Endophyte negative effects on pathogens were apparent not only in laboratory but also in greenhouse and field experiments. Epichloë fungal endophytes had negative effects on pathogen growth and spores' germination. On living plants, endophytes reduced both severity and incidence of the disease as well as colonization and subsequent infection of seeds. Symbiosis with endophytes showed an inhibitory effect on debilitator and killer pathogens, but not on castrators, and this effect did not differ among biotrophic or necrotrophic lifestyles. We found that this protection can be direct through the production of fungistatic compounds, the competition for a common resource, or the induction of plant defenses, and indirect associated with endophyte-generated changes in the abiotic or the biotic environment. Several mechanisms operate simultaneously and contribute differentially to the reduction of disease within grass populations.  相似文献   

7.
Plant-symbiotic fungi influence the structure and function of all terrestrial ecosystems, but factors shaping their distributions in time and space are rarely well understood. Grasses (Poaceae), which first arose and diversified in tropical forests, harbor diverse but little-studied endophytes in the lowland forests of Panama. We used sequence data for 402 isolates from two sampling years, 11 host species, and 55 microsites at Barro Colorado Island, Panama to investigate the influence of host and habitat (soil type, forest age) in shaping endophyte diversity and composition. In contrast to previous studies, we found no evidence for host- or habitat specificity. Instead, endophytes demonstrated strong spatial structure consistent with dispersal limitation, with community similarity decaying markedly over a scale of hundreds of meters. Spatial structure that is independent of host species and habitat reveals remarkable heterogeneity of endophyte–host associations at small geographic scales and adds an important spatial component to extrapolative estimates of fungal diversity.  相似文献   

8.
Liverworts harbor diverse fungi, including endophytes, in their healthy tissues. To address whether patterns of endophyte diversity are correlated with host phylogeny or geography, we designed a broad geographic survey with controlled phylogenetic host sampling. We collected liverworts in North Carolina, Washington, Idaho, British Columbia, Germany, and New Zealand and identified endophytes using culture-based and molecular methods. Of the major lineages of filamentous ascomycetes recovered, 53-88% belonged to the Xylariales. Endophyte accumulation curves did not saturate, and singleton sequences were dominant in each region, suggesting that liverwort endophyte communities are diverse. There was no significant difference in species richness between regional endophyte communities; however, total richness estimators indicated that North Carolina and New Zealand have richer communities than do Germany and the Pacific Northwest. This pattern reflects lower per-host endophyte density and prevalence of a common, shared sequence group in Germany and the Pacific Northwest. Although species richness was relatively low in the Pacific Northwest, the greatest phylogenetic diversity of endophytes was recovered there. Tests for regional and host specificity revealed that endophyte floras of hosts within a geographic area are more similar to one another than to those of closely related hosts. Geographic distance, not host phylogeny, best explains differences among communities.  相似文献   

9.
王欣禹  周勇  任安芝  高玉葆 《生态学报》2014,34(23):6789-6796
以感染内生真菌的天然禾草羊草为实验材料,通过体外纯培养条件下的内生真菌、感染内生真菌的离体叶片和在体叶片对3种病原菌的抑菌实验,以探讨内生真菌对宿主植物羊草在抗病性方面的贡献。结果表明:体外纯培养条件下,分离自羊草的内生真菌Epichlobromicola对新月弯孢(Curvularia lunata)、根腐离蠕孢(Bipolaris sorokiniana)和枝孢霉(Cladosporium sp.)这3种病原菌都具有抑制作用,抑菌率分别达56.22%,46.93%和45.15%,且内生真菌培养滤液可以有效抑制这3种病原菌的孢子萌发,平均萌发率分别为30.4%,15.7%和16.4%;宿主植物叶片在离体条件下,内生真菌感染可以有效降低羊草叶片受C.lunata和C.sp.侵染后的病斑数或病斑长度,但对B.sorokiniana不起作用,甚至提高了叶片的病斑数及病斑长度,而离体叶片提取液对不同病原菌均有不同程度的抑制作用;在体条件下,内生真菌均可以通过降低叶片病斑数来增强羊草植株对这3种病原菌的抗性。由此看来,内生真菌E.bromicola对宿主植物羊草在抗病原菌侵染方面有一定的增益作用。  相似文献   

10.
高嘉卉  南志标 《生态学报》2007,27(6):2531-2546
综述了国内外近20a以来在禾草内生真菌生物碱方面的研究进展。目前,已发现至少4大类10余种生物碱与内生真菌有关。各类生物碱中典型代表物的分子结构已完全清楚,部分内生真菌在离体条件下可产生除黑麦草碱外的生物碱,但产碱量较其在植物体中所产生的低很多,可相差150余倍之多。随着生物技术的发展,美国、新西兰等国在波胺、麦角碱和loline的生物合成途径方面已有了初步的进展,对个别具有重要功能基因以及其所编码的酶已有了深入研究。各种生物碱的致毒机理尚未完全清楚,除饱和吡咯化合物为新陈代谢类毒素和神经性毒素外,其余3类生物碱均为神经性毒素。生物碱可增加禾草对40余种害虫的抗性,并可增加对某些线虫和病害的抗性。诸多因素均可影响寄主植株中生物碱的种类和浓度,包括寄主植株:种群和生态型,植物品种和基因型,植株的部位和生长期;环境:气候因素,土壤养分,季节和年度变化;内生真菌菌株和草地管理利用方式等。用于生物碱检测的主要方法为预分离检测法和直接检测法,其中高效液相色谱法以其分离能力强、选择性高、测定灵敏度高,操作简单,可在室温下进行,应用范围极广的优点而广泛应用。目前,国际关于禾草内生真菌生物碱研究的重点包括创造不含对家畜有毒素的有益禾草-内生真菌共生体,开展基因工程研究以及合理利用生物碱,使其成为新一代的“生物农药”。  相似文献   

11.
Arnold AE  Herre EA 《Mycologia》2003,95(3):388-398
Fungal endophytes inhabit healthy tissues of all terrestrial plant taxa studied to date and are diverse and abundant in leaves of tropical woody angiosperms. Studies have demonstrated that plant location and leaf age influence density of endophyte infection in leaves of tropical forest trees. However, ecological factors underlying these observations have not been explored in detail. Here, we establish that foliar endophytes of a tropical tree (Theobroma cacao, Malvaceae) are transmitted horizontally and that endophyte-free seedlings can be produced for experimental manipulation by protecting aerial tissues from surface wetting. At Barro Colorado Island, Panama, we used transects of endophyte-free seedlings to determine the importance of several factors (canopy cover, abundance of aerial and epiphytic propagules, leaf age, leaf chemistry, leaf toughness and duration of exposure to viable air spora) in shaping colonization by endophytic fungi. Endophytes colonized leaves of T. cacao more rapidly beneath the forest canopy than in cleared sites, reflecting local abundance of aerial and epiphytic propagules. The duration of exposure, rather than absolute leaf age, influenced endophyte infection, whereas leaf toughness and chemistry had no observed effect. Endophytes isolated from mature T. cacao grew more rapidly on media containing leaf extracts of T. cacao than on media containing extracts from other co-occurring tree species, suggesting that interspecific differences in leaf chemistry influence endophyte assemblages. Together, these data allow us to identify factors underlying patterns of endophyte colonization within healthy leaves of this tropical tree.  相似文献   

12.
Seedborne systemic endophytic fungi of grasses are thought to be plant mutualists, because they have been shown to improve their host’s resistance against biotic and abiotic stresses. The interactions in plant–endophyte associations vary from mutualistic to parasitic with environmental conditions and the genotypes of interacting species. The possible pros and cons of endophytic fungi are expected to be most evident during the seedling establishment, where host fitness is most directly affected. If this holds true, endophytes may play a focal role in local adaptation of hosts to different environments. We examined if endophyte-infected and uninfected seeds and seedlings of two native grass species, Festuca rubra and F. ovina, differ in seed germination and seedling growth rates under greenhouse conditions. The germination of F. rubra seeds was also studied in the field. This is the first time that the effects of Epichloë endophyte on seedling establishment of fine fescues from natural populations have been experimentally evaluated. Mother plant (seed family) had a marked effect on many response variables in both grass species. Length and mean biomass of tillers of endophyte-infected (E+) F. ovina seedlings were lower, but root:shoot ratios were higher than in endophyte-free (E?) seedlings. In F. rubra, the effects of the endophyte were dependent on the habitat where the seeds were collected. The E+ seeds from river banks germinated faster than E+ seeds from meadows, and E+ seedlings from the river banks produced fewer but taller and heavier tillers than the other seedlings. Our data suggest that the effects of the endophyte infection on the seedling stage of fine fescues are dependent the species of grass, host genetic background and mother plant habitat. The germination strategy and growth form of E+ red fescue seedlings from river banks may be beneficial to surviving in the harsh conditions of that habitat.  相似文献   

13.
The tropics are known for their high diversity of plants, animals, and biotic interactions, but the role of the speciose endophytic fungi in these interactions has been mostly neglected. We report a unique interaction among plant sex, bees, and endophytes on the dioecious shrub, Baccharis dracunculifolia (Asteraceae). We assessed whether there was an association between resin collection by bees and fungal endophytes considering the host plant sex. We hypothesized that resin collection by the Africanized honey bee, Apis mellifera L. (Apidae) could favor the entry of endophytes in B. dracunculifolia. Specifically, we tested the hypotheses that (1) bees damage the leaf buds of female and male plant at different proportions; (2) damage on leaf buds increases the richness of endophytic fungi; (3) endophyte richness differs between female and male plants; and (4) in vitro growth of endophytes depends on the sex of the plant individual from which the resin was extracted. Endophyte richness and proportion of leaf bud damage did not vary between the plant sexes. However, species similarity of endophytes between female and male plants was 0.33. Undamaged leaf buds did not show culturable endophytes, with all fungi exclusively found in damaged leaf buds. Endophyte composition changed with the plant sex. The endophytes exclusively found in female plants did not develop in the presence of male resin extract. These findings highlight that resin collection by A. mellifera for propolis production favors the entry of endophytic fungi in B. dracunculifolia. Additionally, endophyte composition and growth are influenced by plant sex.  相似文献   

14.
禾草内生真菌在宿主植物的茎叶等地上组织中普遍存在,不仅能够提高禾草对生物与非生物逆境的抗性,而且能够对周围环境中的不同微生物类群产生影响。主要总结了禾草Neotyphodium/Epichlo内生真菌对病原真菌、丛枝菌根真菌和土壤微生物的影响及其作用机理。发现禾草内生真菌普遍存在对病原真菌的抑制作用,而对丛枝菌根真菌存在不对称的竞争作用,且因种类而异。禾草内生真菌对土壤微生物群落的作用则会随着土壤类型和时间等外界因素发生变化。禾草内生真菌对不同类群微生物的影响机制主要包括:通过生态位竞争、抑菌物质分泌、诱导抗病性等对病原真菌造成影响;通过根系化学物质释放、营养元素调节、侵染条件差异等对丛枝菌根真菌造成影响;通过根际沉积物和凋落物等对土壤微生物群落造成影响。禾草内生真菌产生的生物碱能提高宿主植物对包括昆虫在内草食动物采食的抗性,影响病原菌的侵入、定殖和扩展;根组织分泌物中包含次生代谢产物能够抑制菌根真菌、土传病原真菌及其它土壤微生物的侵染与群落组成;也可能通过次生代谢物影响禾草的其它抗性。因此,禾草内生真菌在植物-微生物系统中的作用应该给予更多的关注和深入研究。  相似文献   

15.
Fungal symbionts have been found to be associated with every plant studied in the natural ecosystem, where they colonize and reside entirely or partially in the internal tissues of their host plant. Fungal endophytes can express/form a range of different lifestyle/relationships with different host including symbiotic, mutualistic, commensalistic and parasitic in response to host genotype and environmental factors. In mutualistic association fungal endophyte can enhance growth, increase reproductive success and confer biotic and abiotic stress tolerance to its host plant. Since abiotic stress such as, drought, high soil salinity, heat, cold, oxidative stress and heavy metal toxicity is the common adverse environmental conditions that affect and limit crop productivity worldwide. It may be a promising alternative strategy to exploit fungal endophytes to overcome the limitations to crop production brought by abiotic stress. There is an increasing interest in developing the potential biotechnological applications of fungal endophytes for improving plant stress tolerance and sustainable production of food crops. Here we have described the fungal symbioses, fungal symbionts and their role in abiotic stress tolerance. A putative mechanism of stress tolerance by symbionts has also been covered.Key words: abiotic stress, endophytes, fungal symbiont, mycorrhizal fungus, Piriformospora indica, stress tolerance, symbiosis  相似文献   

16.
Wang YH  Augspurger C 《Oecologia》2006,147(3):533-545
Certain overlying strata in forests may disproportionately reduce seedling density and species richness. For eight arborescent palm species, we quantified the relative restriction of seedling recruitment under individual palms versus non-palm sites and extended to the landscape scale by quantifying the total area covered by arborescent palms at Barro Colorado Island (BCI), Panama and La Selva Biological Station, Costa Rica. We also examined whether differences among palm species in restricting seedling recruitment were associated with differences in crown architecture, litter depth, and light availability. Woody seedlings had lower mean density/m2 and mean number of species/m2 under individual palms than at non-palm sites for all four palm species at BCI, but for none at La Selva. Estimated species richness for woody seedlings, derived via rarefaction, was lower under palm than non-palm microsites at both BCI and La Selva, but not for non-woody seedlings. Differences in seedling density corresponded to some key architectural characters that differed among the palm species. Light availability was lower under palm than non-palm microsites at both BCI and La Selva, but only estimated species richness of woody seedlings at BCI was strongly correlated with % canopy openness. The coverage of arborescent palms was much lower at BCI than La Selva. Therefore, at BCI, the relative restriction of woody seedling recruitment under individual palms does not accumulate greatly at the landscape scale. At La Selva, for woody seedlings, only estimated species richness was relatively limited under palms, and non-woody seedlings had relatively lower mean density/m2 and mean number of species/m2 under only one palm species. Therefore, the relative restriction of seedling recruitment by arborescent palms at La Selva is limited at both individual and landscape scales.  相似文献   

17.
Fungal endophytes can influence survivability and disease severity of trees. Here we characterized the endophyte community in Pinus monticola (western white pine), an important species in the northwest USA, largely decimated by pathogenic fungi. We also assessed the ability to successfully inoculate seedlings with desirable endophytes, with the long-term goal of providing a protective microbiome and added defense from pathogens. P. monticola seedlings were inoculated in the field with potential pathogen antagonists and fungi isolated from healthy mature trees. Following inoculations direct amplification and next generation sequencing were used to characterize fungal endophyte communities, and explore interspecific competition, diversity, and co-occurrence patterns in needle tissues. Negative co-occurrence patterns between inoculated fungi and potential pathogens, as well as many other species, suggest early competitive interactions. Our study explores early endophyte community assemblage and shows that fungal inoculations may influence tree growth.  相似文献   

18.
This study investigated fungal endophytes in the needles of Norway spruce (Picea abies) cuttings in relation to host tree growth. We also determined the prevalence of endophytes in needles incubated for six months. The cuttings originated from clonal origins showing slow- and fast-growth in long-term field trials but the heritable differences in growth rate were not yet detected among the studied cutting. Endophytes were isolated from surface-sterilized needles with culture-free DNA techniques. No significant differences were observed between endophyte communities of slow- and fast-growing clonal origins. However, the endophyte community correlated with the current growth rate of cuttings suggesting that endophytes reflect short- rather than long-term performance of a host. The concentration of condensed tannins was similar in slow- and fast-growing clonal origins but it showed a negative relationship with endophyte species richness, implying that these secondary compounds may play an important role in spruce tolerance against fungal infections. More than a third of endophyte species were detected in both fresh and decomposing needles, indicating that many needle endophytes are facultative saprotrophs. Several potentially pathogenic fungal species were also found within the community of saprotrophic endophytes.  相似文献   

19.
Fungal endophytes in cool-season grasses may affect communities at multiple trophic levels. However, it is unclear whether community-scale endophyte effects arise due to the endophyte itself or as a result of unique, endophyte–host interactions. We used a long-term field experiment to test whether common-toxic (CT) and non-ergot alkaloid-producing (novel) endophytes in Schedonorus arundinaceus (tall fescue) forage cultivars consistently affect communities across tall fescue hosts. Tilled plots (2 × 2 m; Guelph, ON) were seeded with Georgia 5 and Jesup cultivars containing either the CT or AR542 (novel) endophyte and allowed to be re-colonized by plant species from the local propagule pool. Non-seeded control plots were included to assess effects of seeding the non-native grass. We assessed plant, invertebrate, soil moisture, and soil nutrient responses to the endophyte–cultivar treatments after four growing seasons. Seeding tall fescue affected plant species abundances, but not richness, and did not consistently alter soil moisture and nutrient pools. Endophyte identity in the tall fescue cultivars affected the communities, but effects were not consistent between cultivars. Within Georgia 5, the AR542 endophyte reduced tall fescue abundance and altered the invertebrate community relative to CT plots. Within Jesup, the AR542 endophyte reduced species evenness and decreased soil moisture during dry periods relative to CT plots. Endophyte effects were not consistent between cultivars, and it is probable that the community-scale effects of endophyte infection in tall fescue cultivars arise due to unique interactions between cultivar and endophyte.  相似文献   

20.
Stanley H. Faeth 《Oikos》2002,99(1):25-36
Endophytic fungi, especially asexual, systemic endophytes in grasses, are generally viewed as plant mutualists, mainly through the action of mycotoxins, such as alkaloids in infected grasses, which protect the host plant from herbivores. Most of the evidence for the defensive mutualism concept is derived from studies of agronomic grass cultivars, which may be atypical of many endophyte-host interactions. I argue that endophytes in native plants, even asexual, seed-borne ones, rarely act as defensive mutualists. In contrast to domesticated grasses where infection frequencies of highly toxic plants often approach 100%, natural grass populations are usually mosaics of uninfected and infected plants. The latter, however, usually vary enormously in alkaloid levels, from none to levels that may affect herbivores. This variation may result from diverse endophyte and host genotypic combinations that are maintained by changing selective pressures, such as competition, herbivory and abiotic factors. Other processes, such as spatial structuring of host populations and endophytes that act as reproductive parasites of their hosts, may maintain infection levels of seed-borne endophytes in natural populations, without the endophyte acting as a mutualist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号