首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
After the incubation of reovirus replicase reaction mixtures (containing labeled ribonucleoside triphosphates), partially double-stranded ribonucleic acid (pdsRNA) products were isolated by cellulose column chromatography followed by precipitation with 2 m NaCl. The pulse-labeled reaction product contained a significantly large amount of pdsRNA that became complete dsRNA as reaction time increased, indicating that pdsRNA was an intermediate of the replicase reaction. The newly synthesized RNA strand (3H-labeled) of the pdsRNA was resistant to ribonuclease digestion, suggesting that single-stranded RNA regions were part of a preexistent unlabeled RNA template. These observations, together with the electrophoretic behavior of the pdsRNA in polyacrylamide gel, are consistent with the hypothesis that dsRNA is synthesized by the elongation of a complementary RNA strand upon a preexistent template of single-stranded RNA (i.e., messenger RNA). The direction of the RNA strand elongation was determined by carrying out the replicase reaction in the presence of 3H-cytidine triphosphate (or 3H-uridine triphosphate) and adenine triphosphate-α-32P followed by a chase with excess unlabeled cytidine triphosphate (or uridine triphosphate). The dsRNA product was digested with T1 ribonuclease and the resulting 3′-terminal fragments were isolated by chromatography on a dihydroxyboryl derivative of cellulose. Examination of the ratio of 3H to 32P in these fragments indicated that RNA synthesis proceeded from the 5′ to 3′ terminus.  相似文献   

5.
6.
Membrane penetration by reovirus requires successive formation of two cell entry intermediates, infectious subvirion particles (ISVPs) and ISVP*s. In vitro incubation of reovirus virions with high concentration of chymotrypsin (CHT) results in partial digestion of the viral outer capsid to form ISVPs. When virions are instead digested with low concentrations of chymotrypsin, the outer capsid is completely proteolyzed to form cores. We investigated the basis for the inverse relationship between CHT activity and protease susceptibility of the reovirus outer capsid. We report that core formation following low-concentration CHT digestion proceeds via formation of particles that contain a protease-sensitive form of the μ1C protein, a characteristic of ISVP*s. In addition, we found that both biochemical features and viral genetic requirements for ISVP* formation and core formation following low-concentration CHT digestion are identical, suggesting that core formation proceeds via a particle resembling ISVP*s. Furthermore, we determined that intermediates generated following low-concentration CHT digestion are distinct from ISVPs and convert to ISVP*-like particles much more readily than ISVPs. These results suggest that the activity of host proteases used to generate ISVPs can influence the efficiency with which the next step in reovirus cell entry, namely, ISVP-to-ISVP* conversion, occurs.  相似文献   

7.
The complementary strands of reovirus double-stranded ribonucleic acid (ds RNA) are synthesized sequentially in vivo and in vitro. In both cases, preformed plus strands serve as templates for the synthesis of the complementary minus strands. The in vitro synthesis of dsRNA is catalyzed by a large particulate fraction from reovirus-infected cells. Treatment of this fraction with chymotrypsin or with detergents which solubilize cellular membranes does not alter its capacity to synthesize dsRNA. The enzyme or enzymes responsible for dsRNA synthesis remain sedimentable at 10,000 x g after these enzyme or detergent treatments, indicating their particulate nature. Pretreatment of this fraction with ribonuclease, however, abolishes its ability to catalyze dsRNA synthesis, emphasizing the single-stranded nature of the template and its location in a structure permeable to ribonuclease. In contrast, the newly formed dsRNA is resistant to ribonuclease digestion at low salt concentrations and hence is thought to reside within a ribonuclease-impermeable structure.  相似文献   

8.
T J French  P Roy 《Journal of virology》1990,64(4):1530-1536
The L3 and M7 genes of bluetongue virus (BTV), which encode the two major core proteins of the virus (VP3 and VP7, respectively), were inserted into a baculovirus dual-expression transfer vector and a recombinant baculovirus expressing both foreign genes isolated following in vivo recombination with wild-type Autographa californica nuclear polyhedrosis virus DNA. Spodoptera frugiperda insect cells infected with the recombinant synthesized large amounts of BTV corelike particles. These particles have been shown to be similar to authentic BTV cores in terms of size, appearance, stoichiometric arrangement of VP3 to VP7 (ratio, 2:15), and the predominance of VP7 on the surface of the particles. In infected insect cells, the corelike particles were observed in paracrystalline arrays. The formation of these structures indicates that neither the BTV double-stranded viral RNA species nor the associated minor core proteins are necessary for assembly of cores in insect cells. Furthermore, the three BTV nonstructural proteins NS1, NS2, and NS3, are not required to assist or direct the formation of empty corelike particles from VP3 and VP7.  相似文献   

9.
H Le Blois  B Fayard  T Urakawa    P Roy 《Journal of virology》1991,65(9):4821-4831
A functional assay has been developed to determine the conservative nature of the interacting sites of various structural proteins of orbiviruses by using baculovirus expression vectors. For this investigation, proteins of two serologically related orbiviruses, bluetongue virus (BTV) and the less studied epizootic hemorrhagic disease virus (EHDV), were used to synthesize chimeric particles. The results demonstrate that the inner capsid protein VP3 of EHDV-1 can replace VP3 protein of BTV in formation of the single-shelled corelike particles and the double-shelled viruslike particles. Moreover, we have demonstrated that all three minor core proteins (VP1, VP4, and VP6) can be incorporated into the homologous and chimeric corelike and viruslike particles, indicating that the functional epitopes of the VP3 protein are conserved for the morphological events of the virus. This is the first evidence of assembly of seven structural proteins of the virus by a baculovirus expression system. Confirmation at the molecular level was obtained by determining the EHDV-1 L3 gene nucleic sequence and by comparing it with sequences available for BTV. The analysis revealed a high degree homology between the two proteins: 20% difference, 50% of which is conservative. The consequences for Orbivirus phylogeny and the possibility of gene reassortments are discussed.  相似文献   

10.
11.
A fraction which contained the membrane-bound cowpea mosaic virus RNA replicase was isolated from cowpea mosaic virus-infected cowpea leaves. The replicase activity appeared on day 1 after inoculation, then increased to reach a maximal on day 4. The increase in enzyme activity preceded the most-rapid virus multiplication. The membrane-bound replicase activity was almost completely insensitive to actinomycin D and DNase. The corresponding fraction from healthy leaves had no RNA-dependent RNA polymerase activity. The viral RNA synthesis in vitro proceeded linearly for 20 min and required all four ribonucleoside triphosphates and Mg(2+) ions. Mn(2+) was a poor substitute for Mg(2+). The reaction was optimal at pH 8.2. During the whole period of RNA synthesis the in vitro synthesized RNA was at least 70% resistant against RNase in 2 x SSC (0.15 M NaCl plus 0.015 M sodium citrate), but completely digestable by RNase in 0.1 x SSC. Analysis of the products by sucrose gradient centrifugation followed by treatment of separate fractions with RNase demonstrated that both single-and double-stranded RNA were present. Double-stranded RNA sedimented at about 20S, with a shoulder at 16S to 17S. A minor part of the double-stranded RNA sedimented below 10S. Single-stranded RNA sedimented with the same rate as the two viral RNAs, 26S and 34S.  相似文献   

12.
Treatment of primary cultures of chicken embryo fibroblasts with a recombinant chicken alpha/beta interferon (rcIFN) induces an antiviral state that causes a strong inhibition of vaccinia virus and vesicular stomatitis virus replication but has no effect on avian reovirus S1133 replication. The fact that avian reovirus polypeptides are synthesized normally in rcIFN-treated cells prompted us to investigate whether this virus expresses factors that interfere with the activation and/or the activity of the IFN-induced, double-stranded RNA (dsRNA)-dependent enzymes. Our results demonstrate that extracts of avian-reovirus-infected cells, but not those of uninfected cells, are able to relieve the translation-inhibitory activity of dsRNA in reticulocyte lysates, by blocking the activation of the dsRNA-dependent enzymes. In addition, our results show that protein sigmaA, an S1133 core polypeptide, binds to dsRNA in an irreversible manner and that clearing this protein from extracts of infected cells abolishes their protranslational capacity. Taken together, our results raise the interesting possibility that protein sigmaA antagonizes the IFN-induced cellular response against avian reovirus by blocking the intracellular activation of enzyme pathways dependent on dsRNA, as has been suggested for several other viral dsRNA-binding proteins.  相似文献   

13.
The effect of interferon (IFN) treatment and virus infection on the phosphorylation both in vitro and in vivo of the alpha subunit of protein synthesis initiation factor eIF-2 (eIF-2 alpha) was examined in mouse fibroblast L929 cells. The [gamma-32P]ATP-mediated in vitro phosphorylation of eIF-2 alpha catalyzed by cell-free extracts prepared from IFN-treated, uninfected cells was dependent upon exogenously added double-stranded RNA (dsRNA). However, the dsRNA requirement for eIF-2 alpha phosphorylation in vitro was eliminated by prior infection of cells with reovirus Dearing strain virions but not with defective top component particles. The enhanced phosphorylation in vitro of eIF-2 alpha and ribosome-associated protein P1 depended in a similar manner upon the multiplicity of virus infection. The extent of phosphorylation in vivo of eIF-2 alpha prepared from L929 cells was also examined by utilizing two-dimensional isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting techniques. About 5-10% of the eIF-2 alpha was typically phosphorylated in vivo in untreated, mock-infected cells, whereas 25-30% was phosphorylated in IFN-treated, reovirus-infected cells. An intermediate extent of eIF-2 alpha phosphorylation, routinely between 15 and 20%, was observed with either IFN treatment or reovirus infection alone. The integrity of eIF-4A and eIF-4B was also examined by two-dimensional electrophoresis and immunoblotting, and no significant alterations in molecular size or charge heterogeneity were detected when these factors were prepared from IFN-treated, reovirus-infected cells as compared to untreated, uninfected cells.  相似文献   

14.
Lysosomotropic drugs such as NH4Cl have been useful for studying the role of low pH in early events in virus infection. NH4Cl blocks the production of infectious progeny virus in mammalian reovirus-infected cells. The inhibitory effect of NH4Cl is mediated by an inhibition of intracellular digestion of reovirus outer capsid proteins. In vitro digestion of viral outer capsid proteins produces infectious partially uncoated particles, called intermediate subviral particles, which are no longer inhibited by the presence of NH4Cl. These results indicate that proteolytic processing of reovirus outer capsid proteins takes place in a low pH compartment of the cell and is an essential step in the viral infectious cycle.  相似文献   

15.

Background

Understanding how an organism replicates and assembles a multi-segmented genome with fidelity previously measured at 100% presents a model system for exploring questions involving genome assortment and RNA/protein interactions in general. The virus family Reoviridae, containing nine genera and more than 200 members, are unique in that they possess a segmented double-stranded (ds) RNA genome. Using reovirus as a model member of this family, we have developed the only functional reverse genetics system for a member of this family with ten or more genome segments. Using this system, we have previously identified the flanking 5' sequences required by an engineered s2 ssRNA for efficient incorporation into the genome of reovirus. The minimum 5' sequence retains 96 nucleotides and contains a predicted sequence/structure element. Within these 96 nucleotides, we have identified three nucleotides A-U-U at positions 79–81 that are essential for the incorporation of in vitro generated ssRNAs into new reovirus progeny viral particles. The work presented here builds on these findings and presents the results of an analysis of the required 3' flanking sequences of the s2 ssRNA.

Results

The minimum 3' sequence we localized retains 98 nucleotides of the wild type s2 ssRNA. These sequences do not interact with the 5' sequences and modifications of the 5' sequences does not result in a change in the sequences required at the 3' end of the engineered s2 ssRNA. Within the 3' sequence we discovered three regions that when mutated prevent the ssRNA from being replicated to dsRNA and subsequently incorporated into progeny virions. Using a series of substitutions we were able to obtain additional information about the sequences in these regions. We demonstrate that the individual nucleotides from, 98 to 84, 68 to 59, and 28 to 1, are required in addition to the total length of 98 nucleotides to direct an engineered reovirus ssRNA to be replicated to dsRNA and incorporated into a progeny virion. Extensive analysis using a number of RNA structure-predication software programs revealed three possible structures predicted to occur in all 10 reovirus ssRNAs but not predicted to contain conserved individual nucleotides that we could probe further by using individual nucleotide substitutions. The presence of a conserved structure would permit all ten ssRNAs to be identified and selected as a set, while unique nucleotides within the structure would direct the set to contain 10 unique members.

Conclusion

This study completes the characterization and mapping of the 5' and 3' sequences required for an engineered reovirus s2 ssRNA to be incorporated into an infectious progeny virus and establishes a firm foundation for additional investigations into the assortment and encapsidation mechanism of all 10 ssRNAs into the dsRNA genome of reovirus. As researchers build on this work and apply this system to additional reovirus genes and additional dsRNA viruses, a complete model for genome assortment and replication for these viruses will emerge.  相似文献   

16.
Oral inoculation of suckling mice with reovirus serotype 1 (strain Lang) results in the conversion of intact virions to intermediate subviral particles (ISVPs) in the intestinal lumen. Digestion of virus in vitro with chymotrypsin or trypsin reveals two distinct forms of ISVPs, while the predominant species of ISVPs found in the small intestinal lumen appears to be identical to the chymotrypsin product. The in vivo conversion of virions to ISVPs was blocked by pretreatment of mice with protease inhibitors, resulting in inefficient replication of reovirus in intestinal tissue. The early inhibition of viral replication in suckling mice pretreated with protease inhibitors was not observed when suckling mice were inoculated with ISVPs generated by in vitro digestion with either chymotrypsin or trypsin. However, replication was decreased during secondary rounds of replication in mice receiving repeated doses of protease inhibitors, suggesting that luminal proteolytic digestion is important in rendering progeny virions infectious in the gut.  相似文献   

17.
The characteristics of a rotaviruslike (SBR) virus isolated from striped bass (Morone saxatilis) were examined following purification of viruses from infected cell cultures. Virions had a double-layered capsid of icosahedral symmetry and a diameter of 75 nm. Purified viruses contained five polypeptides ranging in molecular mass from 130 to 35 kDa. None of the structural proteins were glycosylated. Treatment with EDTA did not remove the outer capsid. By using enzymes and a chaotropic agent, it was shown that VP5 was the most external polypeptide. The genome of SBR virus was composed of 11 segments of double-stranded RNA (dsRNA). The electrophoretic pattern of the dsRNA of SBR virus was different from that of reovirus type 1 (Lang) and rotavirus (SA11) dsRNA. The SBR virus was compared with reovirus type 1 and SA11 virus by RNA-RNA blot hybridization. There was no cross-hybridization between any of the genome segments of the SBR, reovirus type 1, or SA11 viruses. Antigenic comparison of SBR virus and SA11 virus by cross-immunoprecipitation and cross-immunofluorescence tests did not show any relationship. These results suggest that SBR virus could represent a new genus within the family Reoviridae.  相似文献   

18.
Some characteristics of a reovirus recently isolated from golden ide Leuciscus idus melanotus and tentatively designated as golden ide reovirus (GIRV) were determined. Spherical non-enveloped particles with an outer capsid of about 70 nm and an inner capsid of about 50 nm were observed by electron microscopy. The density of the virus determined in CsCl gradients was 1.36 g ml-1. The genome contained 11 segments of dsRNA. GIRV differed from other aquareoviruses by a slight reduction of infectivity after treatment with chloroform and by the absence of forming syncytia in cell monolayers.  相似文献   

19.
A fraction containing membrane-bound tobacco mosaic virus RNA replicase was isolated form tobacco mosaic virus-infected tobacco callus cultures. The replicase activity reached a maximum 60 h after inoculation and then declined. The enzyme activity was insensitive to actinomycin D and DNase. The corresponding fraction from healthy callus contained essentially no activity. The viral RNA synthesis in vitro proceeded linearly for 30 min and required the four nucleotide triphosphates and Mg2+ ions. Mn2+ was a poor substitute for Mg2+. During RNA synthesis the product was at least 70% resistant to RNase in 2X SSC (0.15 M NaCl plus 0.015 M sodium citrate), but completely digested by RNase in 0.1X SSC. Analysis of the product by polns) that appeared to be replicative form and a partially RNase-resistant structure similar to replicative intermediate form. Washing the membrane-bound replicase with Mg2+-deficient buffer solubilized enzyme. The solubulized enzyme was further purified by DEAE-Sephadex column chromatography. The DEAE-purified enzyme was nearly completely dependent upon tobacco mosaic virus RNA for activity. Analysis of the product on a sucrose gradient revealed a double-stranded RNA with sedimentation of 16S and smaller heterogeneous RNase-sensitive products.  相似文献   

20.
The nature of the protein kinase (PK) which phosphorylates the core protein of hepatitis B virus in vitro was studied. The PK copurified with the core particles during rate zonal centrifugation and gel chromatography. It showed the same size heterogeneity as the core particles, which consisted of a main fraction of 28-nm particles and a subfraction of 22- to 26-nm particles. DNA-containing heavy core particles with a density of 1.33 to 1.35 g/ml and less endogenous PK than did the light cores. The phosphorylation reaction had a rapid initial phase (several minutes) and a slow but long-lasting second phase (many hours). The PK had a high affinity for ATP (KM = 0.5 mumol/liter). Only few of the several hundred P21.9 subunits in one core particle were phosphorylated in vitro. The only amino acid which was phosphorylated in vitro was serine. The resistance of the introduced phospho group against alkaline phosphatase showed that the PK acceptor, and probably the enzyme itself, was located inside the core particle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号