首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Malignant melanoma has increased incidence worldwide and causes most skin cancer-related deaths. A few cell surface antigens that can be targets of antitumor immunotherapy have been characterized in melanoma. This is an expanding field because of the ineffectiveness of conventional cancer therapy for the metastatic form of melanoma. In the present work, antimelanoma monoclonal antibodies (mAbs) were raised against B16F10 cells (subclone Nex4, grown in murine serum), with novel specificities and antitumor effects in vitro and in vivo. MAb A4 (IgG2ak) recognizes a surface antigen on B16F10-Nex2 cells identified as protocadherin β13. It is cytotoxic in vitro and in vivo to B16F10-Nex2 cells as well as in vitro to human melanoma cell lines. MAb A4M (IgM) strongly reacted with nuclei of permeabilized murine tumor cells, recognizing histone 1. Although it is not cytotoxic in vitro, similarly with mAb A4, mAb A4M significantly reduced the number of lung nodules in mice challenged intravenously with B16F10-Nex2 cells. The VH CDR3 peptide from mAb A4 and VL CDR1 and CDR2 from mAb A4M showed significant cytotoxic activities in vitro, leading tumor cells to apoptosis. A cyclic peptide representing A4 CDR H3 competed with mAb A4 for binding to melanoma cells. MAb A4M CDRs L1 and L2 in addition to the antitumor effect also inhibited angiogenesis of human umbilical vein endothelial cells in vitro. As shown in the present work, mAbs A4 and A4M and selected CDR peptides are strong candidates to be developed as drugs for antitumor therapy for invasive melanoma.  相似文献   

2.
The extracellular polysaccharides (EPSs) isolated from Porphyridium cruentum were degraded by hermetical-microwave and H2O2 under ultrasonic waves. Six products were obtained with molecular weights of 6.53, 256, 606, 802.6, 903.3 and 1002 kDa. The antitumor and immunomodulatory activities of different-molecular-weight (MW) polysaccharides were evaluated by the S180-tumor-bearing mouse model in vivo and peritoneal macrophage activation in vitro. The degraded EPSs all showed clear immunomodulation to different extents. The MW of the EPSs had a notable effect on their activity. The 6.53-kDa fragment had the strongest immunoenhancing activity. Different doses of EPS all inhibited the growth of the implanted S180 tumor. The tumor inhibition index at high, middle and low doses was 53.3%, 47.5% and 40.5%, respectively. In addition, three different concentrations of EPS significantly increased lymphocyte proliferation, which indicated the unique mechanism of the antitumor effect of EPS.  相似文献   

3.
《Translational oncology》2020,13(1):102-112
Heme oxygenase-1 (HO-1) has antiinflammatory and antioxidant properties and is deemed as a tissue protector. However, effects of HO-1 in prostate cancer remain in controversy. We evaluated the role of HO-1 in prostate carcinoma in vitro and in vivo.Overexpression of HO-1 did not affect prostate cell proliferation in the normal condition but enhanced cell proliferation under serum starvation. HO-1 overexpression enhanced cell invasion of PC-3 cells through epithelial–mesenchymal transition (EMT) induction, which was supported by increased Slug, N-cadherin, and vimentin expressions. In the xenograft animal study, HO-1 overexpression enhanced PC-3 cell tumor growth in vivo. HO-1 attenuated reactive oxygen species induced by H2O2 or pyocyanin treatment in PC-3 and DU145 cells. HO-1 further reduced PC-3 and DU145 cell apoptosis induced by H2O2 or serum starvation. Our results suggested that HO-1 was able to increase prostate carcinoma cell invasion in vitro and tumor growth in vivo. The EMT induction and antioxidant and antiapoptotic effects of HO-1 in the prostate carcinoma cells may be responsible for these findings.  相似文献   

4.
Colorectal cancer is the second leading cause of cancer-related deaths in the U.S. Met, the receptor for hepatocyte growth factor (HGF), is over-expressed in colon tumors and is associated with poor prognosis. Recently, the green tea polyphenol (−)-epigallocatechin gallate (EGCG) was reported to suppress Met activation in breast cancer cells. However, the possible confounding effect of hydrogen peroxide (H2O2), produced when EGCG is added to cell culture media, was not assessed. In the present study, the human colon cancer cell lines HCT116 and HT29 were used to examine the relationships between Met activation, EGCG treatment, and H2O2 generation. At concentrations of 0.5, 1, and 5 μM, EGCG suppressed markedly the activation of Met in the presence of HGF. Concentrations of 10 μM EGCG and below generated low amounts of H2O2 (<1.5 μM), whereas higher H2O2 concentrations (>5 μM) were required to directly increase the phosphorylation of Met. Moreover, suppression of Met activation by EGCG occurred in the presence or absence of catalase, suggesting that such effects were not an ‘artifact’ of H2O2 generated from EGCG in cell culture media. We conclude that EGCG might be a beneficial therapeutic agent in the colon, inhibiting Met signaling and helping to attenuate tumor spread/metastasis, independent of H2O2-related mechanisms.  相似文献   

5.
The modulation of cisPlatin cytotoxicity by interleukin-1 (IL-1α) was studied in cultures of SCC-7 tumor cells with and without tumor macrophages to examine potential mechanisms for the synergistic antitumor activity of cisPlatin and IL-1α in SCC-7 solid tumors. Neither IL-1α nor tumor macrophages affected the survival of clonogenic tumor cells and IL-1α had no direct effect on tumor cell growthin vitro. Macrophages had no direct effect on cisPlatin sensitivity (IC90=6.0 μM), but, the addition of IL-1α (500–2000U/ml) to co-cultures of cisPlatin pretreated tumor cells and resident tumor macrophages increased cell killing (IC90=3.1 μM). Similar responses were seen in primary cultures treated with cisPlatin before IL-1α. The modulation of cisPlatin cytotoxicity by IL-1α exhibited a biphasic dose response that paralleled the IL-1α dose dependent release of H2O2by resident tumor macrophages. Further, IL-1α modification of cisPlatin cytotoxicity was prompt and inhibited by catalase. CisPlatin and exogenous H2O2 (50 μM) produced more than additive SCC-7 clonogenic cell kill and hydroxyl radicals played an important role in the response. Interleukin-1 modulation of cisPlatin cytotoxicity was schedule dependent. IL-1α treatment for 24 hrs, before cisPlatin, produced drug resistance (IC90=11.1 μM). Our study shows that IL-1α can stimulate tumor macrophages to release pro-oxidants that modify cellular chemosensitivity in a schedule and dose dependent fashion. Our findings may also provide a mechanistic explanation for the synergistic antitumor activity of cisPlatin and IL-1αin vivo.  相似文献   

6.
Positive genotoxicity results are often observed using mammalian cells in culture with agents that are not in vivo genotoxins. We here illustrate one possible explanation: interaction of test chemicals with the cell-culture media used. We find that the toxicity and clastogenicity of epigallocatechin gallate (EGCG) to Chinese Hamster ovary (CHO) cells is affected by the culture medium used and appears largely or entirely due to variable rates of formation of hydrogen peroxide (H2O2) by chemical reactions of EGCG with the culture media. Catalase decreased EGCG toxicity substantially. Of seven different types of commonly used media evaluated, F-10 and F-12 nutrient mixtures were the least prone to produce this artefact. Although it generated H2O2 in the culture media, ascorbate was not toxic to CHO cells because the H2O2 levels achieved were insufficient to kill these cells. Thus, the culture medium, the cell type and the presence or absence of catalase (e.g. its variable amounts in S9 fractions) must be taken into account in in vitro genotoxicity testing.  相似文献   

7.
Organotellurides are newly described redox-catalyst molecules with original pro-oxidative properties. We have investigated the in vitro and in vivo antitumoral effects of the organotelluride catalyst LAB027 in a mouse model of colon cancer and determined its profile of toxicity in vivo. LAB027 induced an overproduction of H2O2 by both human HT29 and murine CT26 colon cancer cell lines in vitro. This oxidative stress was associated with a decrease in proliferation and survival rates of the two cell lines. LAB027 triggered a caspase-independent, ROS-mediated cell death by necrosis associated with mitochondrial damages and autophagy. LAB027 also synergized with the cytotoxic drug oxaliplatin to augment its cytostatic and cytotoxic effects on colon cancer cell lines but not on normal fibroblasts. The opposite effects of LAB027 on tumor and on non-transformed cells were linked to differences in the modulation of reduced glutathione metabolism between the two types of cells. In mice grafted with CT26 tumor cells, LAB027 alone decreased tumor growth compared with untreated mice, and synergized with oxaliplatin to further decrease tumor development compared with mice treated with oxaliplatin alone. LAB027 an organotelluride catalyst compound synergized with oxaliplatin to prevent both in vitro and in vivo colon cancer cell proliferation while decreasing the in vivo toxicity of oxaliplatin. No in vivo adverse effect of LAB027 was observed in this model.  相似文献   

8.
Hepatocyte growth factor (HGF) and c-Met have recently attracted a great deal of attention as prognostic indicators of patient outcome, and they are important in the control of tumor growth and invasion. Epigallocatechin-3-gallate (EGCG) has been shown to modulate multiple signal pathways in a manner that controls the unwanted proliferation and invasion of cells, thereby imparting cancer chemopreventive and therapeutic effects. In this study, we investigated the effects of EGCG in inhibiting HGF-induced tumor growth and invasion of oral cancer in vitro and in vivo. We examined the effects of EGCG on HGF-induced cell proliferation, migration, invasion, induction of apoptosis and modulation of HGF/c-Met signaling pathway in the KB oral cancer cell line. We investigated the antitumor effect and inhibition of c-Met expression by EGCG in a syngeneic mouse model (C3H/HeJ mice, SCC VII/SF cell line). HGF promoted cell proliferation, migration, invasion and induction of MMP (matrix metalloproteinase)-2 and MMP-9 in KB cells. EGCG significantly inhibited HGF-induced phosphorylation of Met and cell growth, invasion and expression of MMP-2 and MMP-9. EGCG blocked HGF-induced phosphorylation of c-Met and that of the downstream kinases AKT and ERK, and inhibition of p-AKT and p-ERK by EGCG was associated with marked increases in the phosphorylation of p38, JNK, cleaved caspase-3 and poly-ADP-ribose polymerase. In C3H/HeJ syngeneic mice, as an in vivo model, tumor growth was suppressed and apoptosis was increased by EGCG. Our results suggest that EGCG may be a potential therapeutic agent to inhibit HGF-induced tumor growth and invasion in oral cancer.  相似文献   

9.
There is increasing interest in the effect of energy metabolism on oxidative stress, but much ambiguity over the relationship between the rate of oxygen consumption and the generation of reactive oxygen species (ROS). Production of ROS (such as hydrogen peroxide, H2O2) in the mitochondria is primarily inferred indirectly from measurements in vitro, which may not reflect actual ROS production in living animals. Here, we measured in vivo H2O2 content using the recently developed MitoB probe that becomes concentrated in the mitochondria of living organisms, where it is converted by H2O2 into an alternative form termed MitoP; the ratio of MitoP/MitoB indicates the level of mitochondrial H2O2 in vivo. Using the brown trout Salmo trutta, we tested whether this measurement of in vivo H2O2 content over a 24 h-period was related to interindividual variation in standard metabolic rate (SMR). We showed that the H2O2 content varied up to 26-fold among fish of the same age and under identical environmental conditions and nutritional states. Interindividual variation in H2O2 content was unrelated to mitochondrial density but was significantly associated with SMR: fish with a higher mass-independent SMR had a lower level of H2O2. The mechanism underlying this observed relationship between SMR and in vivo H2O2 content requires further investigation, but may implicate mitochondrial uncoupling which can simultaneously increase SMR but reduce ROS production. To our knowledge, this is the first study in living organisms to show that individuals with higher oxygen consumption rates can actually have lower levels of H2O2.  相似文献   

10.
Blocking the enzyme Fatty Acid Synthase (FASN) leads to apoptosis of HER2-positive breast carcinoma cells. The hypothesis is that blocking FASN, in combination with anti-HER2 signaling agents, would be an effective antitumor strategy in preclinical HER2+ breast cancer models of trastuzumab and lapatinib resistance. We developed and molecularly characterized in vitro HER2+ models of resistance to trastuzumab (SKTR), lapatinib (SKLR) and both (SKLTR). The cellular interactions of combining anti-FASN polyphenolic compounds (EGCG and the synthetic G28UCM) with anti-HER2 signaling drugs (trastuzumab plus pertuzumab and temsirolimus) were analyzed. Tumor growth inhibition after treatment with EGCG, pertuzumab, temsirolimus or the combination was evaluated in two in vivo orthoxenopatients: one derived from a HER2+ patient and another from a patient who relapsed on trastuzumab and lapatinib-based therapy. SKTR, SKLR and SKLTR showed hyperactivation of EGFR and p-ERK1/2 and PI3KCA mutations. Dual-resistant cells (SKLTR) also showed hyperactivation of HER4 and recovered levels of p-AKT compared with mono-resistant cells. mTOR, p-mTOR and FASN expression remained stable in SKTR, SKLR and SKLTR. In vitro, anti-FASN compounds plus pertuzumab showed synergistic interactions in lapatinib- and dual- resistant cells and improved the results of pertuzumab plus trastuzumab co-treatment. FASN inhibitors combined with temsirolimus displayed the strongest synergistic interactions in resistant cells. In vivo, both orthoxenopatients showed strong response to the antitumor activity of the combination of EGCG with pertuzumab or temsirolimus, without signs of toxicity. We showed that the simultaneous blockade of FASN and HER2 pathways is effective in cells and in breast cancer models refractory to anti-HER2 therapies.  相似文献   

11.
Synthesis of procyanidin B2 and B3 gallate derivatives, 3-O-gallate, 3″-O-gallate, and 3,3″-di-O-gallate, were synthesized using equimolar condensation mediated by Yb(OTf)3. Synthesized compounds showed significant antitumor effects against human prostate PC-3 cell lines. Their activities were weaker than well-known EGCG and prodelphinidin B3.  相似文献   

12.
Phosphorothioate DNA as an antioxidant in bacteria   总被引:1,自引:0,他引:1  
Diverse bacteria contain DNA with sulfur incorporated stereo-specifically into their DNA backbone at specific sequences (phosphorothioation). We found that in vitro oxidation of phosphorothioate (PT) DNA by hydrogen peroxide (H2O2) or peracetic acid has two possible outcomes: DNA backbone cleavage or sulfur removal resulting in restoration of normal DNA backbone. The physiological relevance of this redox reaction was investigated by challenging PT DNA hosting Salmonella enterica cells using H2O2. DNA phosphorothioation was found to correlate with increasing resistance to the growth inhibition by H2O2. Resistance to H2O2 was abolished when each of the three dnd genes, required for phosphorothioation, was inactivated. In vivo, PT DNA is more resistant to the double-strand break damage caused by H2O2 than PT-free DNA. Furthermore, sulfur on the modified DNA was consumed and the DNA was converted to PT-free state when the bacteria were incubated with H2O2. These findings are consistent with a hypothesis that phosphorothioation modification endows DNA with reducing chemical property, which protects the hosting bacteria against peroxide, explaining why this modification is maintained by diverse bacteria.  相似文献   

13.
Epigallocatechin-3-gallate (EGCG), the bioactive polyphenol in green tea, has been demonstrated to have various biological activities. Our study aims to investigate the antiproliferation and antimigration effects of EGCG against bladder cancer SW780 cells both in vitro and in vivo. Our results showed that treatment of EGCG resulted in significant inhibition of cell proliferation by induction of apoptosis, without obvious toxicity to normal bladder epithelium SV-HUC-1 cells. EGCG also inhibited SW780 cell migration and invasion at 25–100 μM. Western blot confirmed that EGCG induced apoptosis in SW780 cells by activation of caspases-8, -9 and -3, Bax, Bcl-2 and PARP. Besides, animal study demonstrated that EGCG [100 mg/kg, intraperitoneal (i.p.) injection daily for 3 weeks] decreased the tumor volume significantly in mice bearing SW780 tumors, as well as the tumor weight (decreased by 68.4%). In addition, EGCG down-regulated the expression of nuclear factor-kappa B (NF-κB) and matrix metalloproteinase (MMP)-9 in both protein and mRNA level in tumor and SW780 cells. When NF-κB was inhibited, EGCG showed no obvious effect in cell proliferation and migration. In conclusion, our study demonstrated that EGCG was effective in inhibition SW780 cell proliferation and migration, and presented first evidence that EGCG inhibited SW780 tumor growth by down-regulation of NF-κB and MMP-9.  相似文献   

14.

Background

A wide array of fluorescent proteins (FP) is present in anthozoans, although their biochemical characteristics and function in host tissue remain to be determined. Upregulation of FP''s frequently occurs in injured or compromised coral tissue, suggesting a potential role of coral FPs in host stress responses.

Methodology/Principal Findings

The presence of FPs was determined and quantified for a subsample of seven healthy Caribbean coral species using spectral emission analysis of tissue extracts. FP concentration was correlated with the in vivo antioxidant potential of the tissue extracts by quantifying the hydrogen peroxide (H2O2) scavenging rates. FPs of the seven species varied in both type and abundance and demonstrated a positive correlation between H2O2 scavenging rate and FP concentration. To validate this data, the H2O2 scavenging rates of four pure scleractinian FPs, cyan (CFP), green (GFP), red (RFP) and chromoprotein (CP), and their mutant counterparts (without chromophores), were investigated. In vitro, each FP scavenged H2O2 with the most efficient being CP followed by equivalent activity of CFP and RFP. Scavenging was significantly higher in all mutant counterparts.

Conclusions/Significance

Both naturally occurring and pure coral FPs have significant H2O2 scavenging activity. The higher scavenging rate of RFP and the CP in vitro is consistent with observed increases of these specific FPs in areas of compromised coral tissue. However, the greater scavenging ability of the mutant counterparts suggests additional roles of scleractinian FPs, potentially pertaining to their color. This study documents H2O2 scavenging of scleractinian FPs, a novel biochemical characteristic, both in vivo across multiple species and in vitro with purified proteins. These data support a role for FPs in coral stress and immune responses and highlights the multi-functionality of these conspicuous proteins.  相似文献   

15.

Background

A combination of levodopa (L-DOPA) and carbidopa is the most commonly-used treatment for symptom management in Parkinson''s disease. Studies have shown that concomitant use of a COMT inhibitor is highly beneficial in controlling the wearing-off phenomenon by improving L-DOPA bioavailability as well as brain entry. The present study sought to determine whether (-)-epigallocatechin-3-gallate (EGCG), a common tea polyphenol, can serve as a naturally-occurring COMT inhibitor that also possesses neuroprotective actions.

Methodology/Principal Findings

Using both in vitro and in vivo models, we investigated the modulating effects of EGCG on L-DOPA methylation as well as on chemically induced oxidative neuronal damage and degeneration. EGCG strongly inhibited human liver COMT-mediated O-methylation of L-DOPA in a concentration-dependent manner in vitro, with an average IC 50 of 0.36 µM. Oral administration of EGCG moderately lowered the accumulation of 3-O-methyldopa in the plasma and striatum of rats treated with L-DOPA + carbidopa. In addition, EGCG also reduced glutamate-induced oxidative cytotoxicity in cultured HT22 mouse hippocampal neuronal cells through inactivation of the nuclear factor κB-signaling pathway. Under in vivo conditions, administration of EGCG exerted a strong protective effect against kainic acid-induced oxidative neuronal death in the hippocampus of rats.

Conclusions/Significance

These observations suggest that oral administration of EGCG may have significant beneficial effects in Parkinson''s patients treated with L-DOPA and carbidopa by exerting a modest inhibition of L-DOPA methylation plus a strong neuroprotection against oxidative damage and degeneration.  相似文献   

16.
Hydrogen metabolism by filamentous cyanobacteria   总被引:6,自引:0,他引:6  
Apparent discrepancies in the literature concerning the amounts of H2 produced by strains of Anabaena cylindrica are explained. These are not due to differences in strains used by different workers nor to differences in growth conditions, but rather appear to be due to the fact that cultures show an increasing dependence with age on CO2 for sustained H2 production. Two distinct hydrogenase activities were measured and characterized, both in vivo and in vitro in A. cylindrica B629; these were H2 uptake activity and H2 evolution from reduced methyl viologen. Gentle cell disruption techniques were used to gain further evidence that the latter activity was soluble. H2 uptake was strongly inhibited by acetylene in vivo in the light or in the dark with phenazine methosulfate added, but only after a prolonged lag period. In extracts this lag did not occur. A detailed study of the nitrogenase and hydrogen uptake activities and their interrelationship both in the light and in the dark in A. cylindrica B629 showed that only in the dark in the presence of O2 did H2 uptake support C2H2 reduction significantly. Under several conditions in which nitrogenase activity was inhibited H2 uptake was unaffected. H2 metabolism was tested in three nonheterocystous filamentous cyanobacteria under different growth and incubation conditions. These were Plectonema boryanum, Schizothrix calcicola, and Oscillatoria brevis. Myxosarcina chroococcoides and Fischerella muscicola were also investigated. Cyanobacterial species vary markedly in their hydrogen metabolism and in the composition of the three H2 metabolizing enzymes.  相似文献   

17.

Background

Epigallocatechin-3-gallate (EGCG) has been documented for its beneficial effects protecting oxidative stress to cardiac cells. Previously, we have shown the EGCG-mediated cardiac protection by attenuating reactive oxygen species and cytosolic Ca2+ in cardiac cells during oxidative stress and myocardial ischemia. Here, we aimed to seek a deeper elucidation of the molecular anti-oxidative capabilities of EGCG in an H2O2-induced oxidative stress model of myocardial ischemia injury using H9c2 rat cardiomyoblasts.

Results

Proteomics analysis was used to determine the differential expression of proteins in H9c2 cells cultured in the conditions of control, 400 μM H2O2 exposure for 30 min with and/or without 10 to 20 μM EGCG pre-treatment. In this model, eight proteins associated with energy metabolism, mitochondrial electron transfer, redox regulation, signal transduction, and RNA binding were identified to take part in EGCG-ameliorating H2O2-induced injury in H9c2 cells. H2O2 exposure increased oxidative stress evidenced by increases in reactive oxygen species and cytosolic Ca2+ overload, increases in glycolytic protein, α-enolase, decreases in antioxidant protein, peroxiredoxin-4, as well as decreases in mitochondrial proteins, including aldehyde dehydrogenase-2, ornithine aminotransferase, and succinate dehydrogenase ubiquinone flavoprotein subunit. All of these effects were reversed by EGCG pre-treatment. In addition, EGCG attenuated the H2O2-induced increases of Type II inositol 3, 4-bisphosphate 4-phosphatase and relieved its subsequent inhibition of the downstream signalling for Akt and glycogen synthase kinase-3β (GSK-3β)/cyclin D1 in H9c2 cells. Pre-treatment with EGCG or GSK-3β inhibitor (SB 216763) significantly improved the H2O2-induced suppression on cell viability, phosphorylation of pAkt (S473) and pGSK-3β (S9), and level of cyclin D1 in cells.

Conclusions

Collectively, these findings suggest that EGCG blunts the H2O2-induced oxidative effect on the Akt activity through the modulation of PIP3 synthesis leading to the subsequent inactivation of GSK-3β mediated cardiac cell injury.  相似文献   

18.
LYG-202 is a newly synthesized flavonoid with a piperazine substitution. We investigated the antitumor effect of LYG-202 in vivo and in vitro. We show that, LYG-202 significantly decreases tumor growth in mice inoculated with S180 sarcoma cells, compared with the control group. Meanwhile, the viabilities of various kinds of tumor cells were inhibited by LYG-202 with IC50 values in the range of 4.80 to 27.70 μM. Then apoptosis induced by LYG-202 in HepG2 cells was characterized by DAPI staining and Annexin V/PI double staining and degradation of PARP was observed. Activation of the caspase cascade for both the extrinsic and intrinsic pathways was demonstrated, including caspase-8, -9, and -3. The results also showed that the expression of Bcl-2 protein decreased whereas that of Bax protein increased, leading to an increase of the Bax/Bcl-2 ratio. Our results demonstrated that LYG-202 exhibited strong antitumor effect in vivo and in vitro, involving with apoptosis induction.  相似文献   

19.
Lactaptin, a human milk-derived protein, induces apoptosis in cultured tumor cells. We designed a recombinant analog of lactaptin (RL2) and tested its antitumor activity. The sensitivity of hepatocarcinoma A-1 (HA-1), Lewis lung carcinoma, and Ehrlich carcinoma to RL2 were tested to determine the most reliable in vitro animal model. HA-1 cells, which had the highest sensitivity to RL2, were transplanted into A/Sn mice to investigate RL2 antitumor activity in vivo. Investigation of the molecular effects of RL2 shows that RL2 induces apoptotic transformation of HA-1 cells in vitro: phosphatidylserine translocation from inner side of the lipid bilayer to the outer one and dissipation of the mitochondrial membrane potential. Repetitive injections of RL2 (5–50 mg/kg) for 3–5 days effectively inhibited ascites and solid tumor transplant growth when administered intravenously or intraperitoneally, without obvious side effects. The solid tumor inhibitory effect of RL2 (5 i.v. injections, cumulative dose 125 mg/kg) was comparable with that of cyclophosphamide at a therapeutic dose (5 i.v. injections, cumulative dose 150 mg/kg). In combination therapy with cyclophosphamide, RL2 had an additive antitumor effect for ascites-producing tumors. Histomorphometric analysis indicated a three-fold reduction of spontaneous metastases in the liver of RL2-treated mice with solid tumor transplants in comparison with control animals. Repeated RL2 treatment substantially prolonged the lifespan of mice with intravenously injected tumor cells. Recombinant analog of lactaptin effectively induced apoptosis of tumor cells in vitro and suppressed the growth of sensitive tumors and metastases in vivo.  相似文献   

20.
Reaction of di-n-butyltin(IV) dichloride with 4-chlorobenzohydroxamic acid at 1:1 ratio yielded a new mixed-ligand diorganotin(IV) complex, di-n-butyl-(4-chlorobenzohydroxamato)tin(IV) chloride(DBDCT). It was fully characterized by IR, 1H, 13C, 119Sn NMR spectra and single crystal X-ray analysis. In DBDCT, the tin atom is five-coordinated in a trigonal bipyramidal geometry. DBDCT exhibited strong in vitro cytotoxic activity toward human immature granulocyte leukemia (HL-60), human salivary-gland carcinoma (SGC-7901), human henrietta carcinoma (Hela) and human urinary bladder (T24) cell lines which, in some cases, were equal to, or even higher than those of cis-dichlorodiammineplatinum(II) (cisplatin, DDP), the widely clinically used drug. The further in vivo antitumor tests of DBDCT towards the transplantation tumor models of sarcoma carcinoma (S180), hepatocellular carcinoma (H22) and Ehrlich’s ascites carcinoma (EAC) on mice were carried out via injection intraperitoneally with cisplatin as positive contrast drug. The results showed that DBDCT displayed in vivo antitumor activity against the hepatocellular carcinoma H22 and sarcoma carcinoma S180 which were close to those of cisplatin, meanwhile, the survival-extending rates at middle dose and high dose on mice Ehrlich’s ascites tumor EAC were higher than those of cisplatin, and there was a good dose-effect relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号