首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Succinate:quinone reductase is a membrane-bound enzyme of the citric acid cycle and the respiratory chain. Carboxin is a potent inhibitor of the enzyme of certain organisms. The bacterium Paracoccus denitrificans was found to be sensitive to carboxin in vivo, and mutants that grow in the presence of 3′-methyl carboxin were isolated. Membranes of the mutants showed resistant succinate:quinone reductase activity. The mutation conferring carboxin resistance was identified in four mutants. They contained the same missense mutation in the sdhD gene, which encodes one of two membrane-intrinsic polypeptides of the succinate:quinone reductase complex. The mutation causes an Asp to Gly replacement at position 89 in the SdhD polypeptide. P. denitrificans strains that overproduced wild-type or mutant enzymes were constructed. Enzymic properties of the purified enzymes were analyzed. The apparent K m for quinone (DPB) and the sensitivity to thenoyltrifluoroacetone was normal for the carboxin-resistant enzyme, but the succinate:quinone reductase activity was lower than for the wild-type enzyme. Mutations conferring carboxin resistance indicate the region on the enzyme where the inhibitor binds. A previously reported His to Leu replacement close to the [3Fe-4S] cluster in the iron-sulfur protein of Ustilago maydis succinate:quinone reductase confers resistance to carboxin and thenoyltrifluoroacetone. The Asp to Gly replacement in the P. denitrificans SdhD polypeptide, identified in this study to confer resistance to carboxin but not to thenoyltrifluoroacetone, is in a predicted cytoplasmic loop connecting two transmembrane segments. It is likely that this loop is located in the neighborhood of the [3Fe-4S] cluster. Received: 18 November 1997 / Accepted: 13 February 1998  相似文献   

2.
We have propsed earlier a three gene loci model to explain the expression of the aldo-keto reductases in human tissues. According to this model, aldose reductase is a monomer of α subunits, aldehyde reductase I is a dimer of α, β subunits, and aldehyde reductase II is a monomer of δ subunits. Using immunoaffinity methods, we have isolated the subunits of aldehyde reductase I (α and β) and characterized them by immunocompetition studies. It is observed that the two subunits of aldehyde reductase I are weakly held together in the holoenzyme and can be dissociated under high ionic conditions. Aldose reductase (α subunits) was generated from human placenta and liver aldehyde reductase I by ammonium sulfate (80% saturation). The kinetic, structural and immunological properties of the generated aldose reductase are similar to the aldose reductase obtained from the human erythrocytes and bovine lens. The main characteristic of the generated enzyme is the requirement of Li2SO4(0.4 M) for the expression of maximum enzyme activity, and its Km for glucose is less than 50 mM, whereas the parent enzyme, aldehyde reductase I, is completely inhibited by 0.4 M Li2SO4 and its Km for glucose is more than 200 mM. The β subunits of aldehyde reductase I did not have enzyme activity but cross-reacted with anti-aldehyde reductase I antiserum. The β subunits hybridized with the α subunits of placenta aldehyde I, and aldose reductase purified from human brain and bovine lens. The hybridized enzyme had the characteristics properties of placenta aldehyde reductase I.  相似文献   

3.
Glutathione reductase has been purified to homogeneity by a method which is an improvement of an earlier procedure (Carlberg, I. and Mannervik, B. (1975) J. Biol. Chem. 250, 5475–5480). The new steps in the purification scheme include affinity chromatography on 2′,5′ ADP-Sepharose 4B. Antibodies to glutathione reductase from rat liver were raised in rabbits and used for analysis of the enzyme by quantitative ‘rocket’ immunoelectrophoresis. Glutathione reductase from human erythrocytes, porcine erythrocytes, and calf-liver gave precipitin lines showing partial identity with the rat liver enzyme in Ouchterlony double diffusion experiments. Enzyme from spinach, yeast (Saccharomyces cerevisiae), and the photosynthetic bacterium Rhodospirillum rubrum did not give precipitates with the antibodies to the enzyme from rat liver. Titration of glutathione reductase from the different sources with antibodies confirmed the cross-reactivity of the mammalian enzymes; the human enzyme giving the strongest heterologous reaction. No reaction was observed with the enzyme from spinach, yeast, and Rhodospirillum rubrum. NADPH, NADP+, and 2′,5′ ADP were found to inhibit the interaction between antibodies and glutathione reductase from rat liver and human erythrocytes. NADH, glutathione, or glutathione disulfide did not protect the enzyme from reacting with the antibodies. It is concluded that glutathione reductase has an antigenic binding site for the antibodies at the pyridine nucleotide-binding site of the enzyme molecule.  相似文献   

4.
We have studied changes in plasma membrane NAD(P)H:quinone oxidoreductases of HL-60 cells under serum withdrawal conditions, as a model to analyze cell responses to oxidative stress. Highly enriched plasma membrane fractions were obtained from cell homogenates. A major part of NADH-quinone oxidoreductase in the plasma membrane was insensitive to micromolar concentrations of dicumarol, a specific inhibitor of the NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase), and only a minor portion was characterized as DT-diaphorase. An enzyme with properties of a cytochrome b 5 reductase accounted for most dicumarol-resistant quinone reductase activity in HL-60 plasma membranes. The enzyme used mainly NADH as donor, it reduced coenzyme Q0 through a one-electron mechanism with generation of superoxide, and its inhibition profile by p-hydroxymercuribenzoate was similar to that of authentic cytochrome b 5 reductase. Both NQO1 and a novel dicumarol-insensitive quinone reductase that was not accounted by a cytochrome b 5 reductase were significantly increased in plasma membranes after serum deprivation, showing a peak at 32 h of treatment. The reductase was specific for NADH, did not generate superoxide during quinone reduction, and was significantly resistant to p-hydroxymercuribenzoate. The function of this novel quinone reductase remains to be elucidated whereas dicumarol inhibition of NQO1 strongly potentiated growth arrest and decreased viability of HL-60 cells in the absence of serum. Our results demonstrate that upregulation of two-electron quinone reductases at the plasma membrane is a mechanism evoked by cells for defense against oxidative stress caused by serum withdrawal.  相似文献   

5.
Absorbance changes of ferredoxin measured at 463 nm in isolated thylakoids were shown to arise from the activity of the enzyme ferredoxin-plastoquinone reductase (FQR) in cyclic electron transport. Under anaerobic conditions in the presence of DCMU and an appropriate concentration of reduced ferredoxin, a light-induced absorbance decrease due to further reduction of Fd was assigned to the oxidation of the other components in the cyclic pathway, primarily plastoquinone. When the light was turned off, Fd was reoxidised and this gave a direct quantitative measurement of the rate of cyclic electron transport due to the activity of FQR. This activity was sensitive to the classical inhibitor of cyclic electron transport, antimycin, and also to J820 and DBMIB. Antimycin had no effect on Fd reduction although this was inhibited by stigmatellin. This provides further evidence that there is a quinone reduction site outside the cytochrome bf complex. The effect of inhibitors of ferredoxin-NADP+ reductase and experiments involving the modification of ferredoxin suggest that there may be some role for the reductase as a component of FQR. Contrary to expectations, NADPH2 inhibited FQR activity; ATP and ADP had no effect.Abbreviations AQS 9,10-anthraquinone-2-sulphonate - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - dimaleimide N,N-p-phenylenedimaleimide - EDC N-(dimethylaminopropyl)-N-ethylcarbodiimide - Fd ferredoxin - FNR Fd-NADP+ oxidoreductase - FQR Fd-PQ reductase - GME glycine methyl ester - J820 tetrabromo-4-hydroxypyridine - PC plastocyanin - PMS N-methylphenazinium methyl sulphate - PS Photosystems I and II - PQ plastoquinone - Q quinone - Qr and Qo sites of quinone reduction and oxidation, respectively - sulpho-DSPD disulphodisalicylidenepropane-1,2-diamine  相似文献   

6.
Dehydroascorbate reductase was detected in the leaves of several plants and has been partially purified from spinach leaves. The enzyme has a MW of ca 25 000, a pH optimum of 7.5, a Km for glutathione (GSH) of 4.43 ± 0.4 mM and a Km for dehydroascorbate of 0.34 ± 0.05 mM. High concentrations of dehydroascorbate inhibit the enzyme. Cysteine cannot replace GSH as a donor. The purified dehydroascorbate reductase is extremely unstable and also inhibited by compounds which react with thiol groups. Dehydroascorbate does not protect the enzyme against such inhibition. GSH reduces dehydroascorbate non-enzymically at alkaline pH values.  相似文献   

7.
The supply of sucrose to leaf segments from light-grown bean seedlings caused a substantial increase in substrate inducibility of in vivo and in vitro nitrate reductase activity but only a small increase in total protein. Cycloheximide and chloramphenicol inhibited the increase in enzyme activity by nitrate and sucrose. The in vivo decline in enzyme activity in nitrate-induced leaf segments in light and dark was protected by sucrose and nitrate. The supply of NADH also protected the decline in enzyme activity, but only in the light. In vitro stability of the extracted enzyme was, however, unaffected by sucrose. The size of the metabolic nitrate pool was also enhanced by sucrose. The experiments demonstrate that sucrose has a stimulatory effect on activity or in vivo stability ' of nitrate reductase in bean leaf segments, which is perhaps mediated through increased NADH level and/or mobilization of nitrate to the metabolic pool.  相似文献   

8.
Lapachol [2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone] has been shown to be a potent inhibitor of both vitamin K epoxide reductase and the dithiothreitol-dependent vitamin K quinone reductase of rat liver microsomes in vitro. These observations explain the anticoagulant activity of lapachol previously observed in both rats and humans. Lapachol inhibition of the vitamin K epoxide and quinone reductases resembled coumarin anticoagulant inhibition, and was observed in normal strain but not in warfarin-resistant strain rat liver microsomes. This similarity of action suggests that the lactone functionality of the coumarins is not critical for their activity. The initial-velocity steady-state inhibition patterns for lapachol inhibition of the solubilized vitamin K epoxide reductase were consistent with tight binding of lapachol to the oxidized form of the enzyme, and somewhat lower affinity for the reduced form. It is proposed that lapachol assumes a 4-enol tautomeric structure similar to that of the 4-hydroxy coumarins. These structures are analogs of the postulated hydroxyvitamin K enolate intermediate bound to the oxidized form of the enzyme in the chemical reaction mechanism of vitamin K epoxide reductase, thus explaining their high affinity.  相似文献   

9.
Early studies revealed that chicken embryos incubated with a rare analog of l-proline, 4-oxo-l-proline, showed increased levels of the metabolite 4-hydroxy-l-proline. In 1962, 4-oxo-l-proline reductase, an enzyme responsible for the reduction of 4-oxo-l-proline, was partially purified from rabbit kidneys and characterized biochemically. However, only recently was the molecular identity of this enzyme solved. Here, we report the purification from rat kidneys, identification, and biochemical characterization of 4-oxo-l-proline reductase. Following mass spectrometry analysis of the purified protein preparation, the previously annotated mammalian cytosolic type 2 (R)-β-hydroxybutyrate dehydrogenase (BDH2) emerged as the only candidate for the reductase. We subsequently expressed rat and human BDH2 in Escherichia coli, then purified it, and showed that it catalyzed the reversible reduction of 4-oxo-l-proline to cis-4-hydroxy-l-proline via chromatographic and tandem mass spectrometry analysis. Specificity studies with an array of compounds carried out on both enzymes showed that 4-oxo-l-proline was the best substrate, and the human enzyme acted with 12,500-fold higher catalytic efficiency on 4-oxo-l-proline than on (R)-β-hydroxybutyrate. In addition, human embryonic kidney 293T (HEK293T) cells efficiently metabolized 4-oxo-l-proline to cis-4-hydroxy-l-proline, whereas HEK293T BDH2 KO cells were incapable of producing cis-4-hydroxy-l-proline. Both WT and KO HEK293T cells also produced trans-4-hydroxy-l-proline in the presence of 4-oxo-l-proline, suggesting that the latter compound might interfere with the trans-4-hydroxy-l-proline breakdown in human cells. We conclude that BDH2 is a mammalian 4-oxo-l-proline reductase that converts 4-oxo-l-proline to cis-4-hydroxy-l-proline and not to trans-4-hydroxy-l-proline, as originally thought. We also hypothesize that this enzyme may be a potential source of cis-4-hydroxy-l-proline in mammalian tissues.  相似文献   

10.
11.
The brown-rot basidiomycete Gloeophyllum trabeum uses a quinone redox cycle to generate extracellular Fenton reagent, a key component of the biodegradative system expressed by this highly destructive wood decay fungus. The hitherto uncharacterized quinone reductase that drives this cycle is a potential target for inhibitors of wood decay. We have identified the major quinone reductase expressed by G. trabeum under conditions that elicit high levels of quinone redox cycling. The enzyme comprises two identical 22-kDa subunits, each with one molecule of flavin mononucleotide. It is specific for NADH as the reductant and uses the quinones produced by G. trabeum (2,5-dimethoxy-1,4-benzoquinone and 4,5-dimethoxy-1,2-benzoquinone) as electron acceptors. The affinity of the reductase for these quinones is so high that precise kinetic parameters were not obtainable, but it is clear that kcat/Km for the quinones is greater than 108 M−1 s−1. The reductase is encoded by a gene with substantial similarity to NAD(P)H:quinone reductase genes from other fungi. The G. trabeum quinone reductase may function in quinone detoxification, a role often proposed for these enzymes, but we hypothesize that the fungus has recruited it to drive extracellular oxyradical production.  相似文献   

12.
Sepiapterin reductase from rat erythrocyte hemolysate was purified 2000-fold to apparent homogeneity with 30% yield. The specific activity of the purified enzyme was 18 units/mg protein, and its molecular weight was 55 000. The enzyme consists of two identical subunits, each of which has a molecular weight of 27 500. The enzyme showed a single peak by isoelectric focusing with a pI of 4.9 and partial specific volume of 0.73 cm3/g. The amino acid composition was determined. pH optimum of the enzyme was 5.5. The equilibrium constant of 2.2·109 of the enzyme showed that the equilibrium lies much in favor of dihydrobiopterin formation from sepiapterin in rat erythrocytes. From steady-state kinetic measurements, ordered bi-bi mechanism was proposed to the reaction of sepiapterin reductase in which NADPH binds to free enzyme and sepiapterin binds next. NADP+ is released after the release of dihydrobiopterin. The Km values for sepiapterin and NADPH were 15.4 μM and 1.7 μM, respectively, and the Vmax value was 21.7 μmol/min per mg.  相似文献   

13.
A nitrate reductase inactivating enzyme from the maize root   总被引:12,自引:12,他引:0       下载免费PDF全文
Wallace W 《Plant physiology》1973,52(3):197-201
The nitrate reductase in the mature root extract of 3-day maize (Zea mays) seedlings was relatively labile in vitro. Insoluble polyvinylpyrrolidone used in the extraction medium produced only a slight increase in the stability of the enzyme. Mixing the mature root extract with that of the root tip promoted the inactivation of nitrate reductase in the latter. The inactivating factor in the mature root was separated from nitrate reductase by (NH4)2SO4 precipitation. Nitrate reductase was found in the 40% (NH4)2SO4 precipitate, while the inactivating factor was largely precipitated by 40 to 55% (NH4)2SO4. The latter fraction of the mature root inactivated the nitrate reductase isolated from the root tip, mature root, and scutellum. The inactivating factor, which has a Q10 15 to 25 C of 2.2, was heat labile, and hence has been designated as a nitrate reductase inactivating enzyme. The reduced flavin mononucleotide nitrate reductase was also inactivated, while an NADH cytochrome c reductase in nitrate-grown seedlings was inactivated but at a slower rate. The inactivating enzyme had no influence on the activity of nitrite reductase, glutamate dehydrogenase, xanthine oxidase, and isocitrate lyase. The activity of the nitrate reductase inactivating enzyme was not influenced by nitrate and was also found in the mature root of minus nitrate-grown seedlings.  相似文献   

14.
Wolinella succinogenes can grow at the expense of sulphur reduction by formate. The enzymes involved in the catalysis of this catabolic reaction have been investigated. From the results the following conclusions are drawn: 1. The enzyme isolated as a sulphide dehydrogenase from the cytoplasmic membrane of W. succinogenes is the functional sulphur reductase that operates in the electron transport from formate to sulphur. 2. The enzyme (Mr 200,000) consists essentially of one type of subunit with the Mr 85,000 and contains equal amounts of free iron and sulphide (120 mol/g protein), but no heme. It represents the first functional sulphur reductase ever isolated. 3. The electron transport chain catalyzing sulphur reduction by formate consists merely of formate dehydrogenase and sulphur reductase. A lipophilic quinone which mediates the transfer of electrons between enzymes in other chains, is apparently not involved. This is the first known example of a phosphorylative electron transport chain that operates without a quinone. 4. The same formate dehydrogenase appears to operate in the electron transport both with sulphur and with fumarate as the terminal electron acceptor in W. succinogenes.Abbreviations DMN 2,3-Dimethyl-1,4-naphthoquinone - DTT dithiothreitol - MK menaquinone (vitamin K2) - PMSF phenylmethane sulfonylfluoride - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]-glycine - Tea triethanolamine - Hepes 4-(2-hydroxyethyl)-1-piperazineethane sulfonate Dedicated to Professor F. Schneider (Philipps-Universität Marburg) on the occasion of his 60th birthday  相似文献   

15.
The activity of hydroxymethylglutaryl CoA reductase (NADPH) (EC 1.1.1.34) was studied in the latex of regularly tapped mature trees of Hevea brasiliensis. The reductase activity was found mainly (95% of the total activity) in the pellet fraction (40 000 g) of the centrifuged latex. The enzyme in this fraction had a specific requirement for NADPH as the cofactor and, while not obligatory for activity, was activated by dithiothreitol at the optimum concentration of 2 mM. The pH optimum was found to be 6.6–6.9 in 0.1 M phosphate buffer. Mevalonate and CoA (at 2 mM each) did not affect enzyme activity, while hydroxymethylglutarate (2 mM) was slightly inhibitory. p-Chloromercuribenzoate (1 mM) completely inhibited this enzyme. The reductase activity in the 40 000 g pellet was not easily solubilized either using Triton X-100 or by sonication. The apparent Km for the washed, membrane-bound enzyme (103 000 g pellet) was 56 μ M (RS-HMG-CoA). Magnesium-ATP (4 mM) inactivated the reductase but this effect was greatly diminished or was absent upon washing the 40 000 g pellet.  相似文献   

16.
The effects of red and far-red light on the enhancement of in vitro nitrate reductase activity and on nitrate accumulation in etiolated excised maize leaves were examined. Illumination for 5 min with red light followed by a 4-h dark period caused a marked increase in nitrate reductase activity, whereas a 5-min illumination with far-red light had no effect on the enzyme activity. The effect of red light was completely reversed by a subsequent illumination with the same period of far-red light. Continuous far-red light also enhanced nitrate reductase activity. Both photoreversibility by red and far-red light and the operation of high intensity reaction under continuous far-red light indicated that the induction of nitrate reductase was mediated by phytochrome. Though nitrate accumulation was slightly enhanced by red and continuous far-red light treatments by 17% and 26% respectively, this is unlikely to account for the entire increase of nitrate reductase activity. The far-red light treatments given in water, to leaves preincubated in nitrate, enhanced nitrate reductase activity considerably over the dark control. The presence of a lag phase and inhibition of increase in enzyme activity under continuous far-red light-by tungstate and inhibitors of RNA synthesis and protein synthesis-rules out the possibility of activation of nitrate reductase and suggests de novo synthesis of the enzyme affected by phytochrome.  相似文献   

17.
The inhibitory effect of ATP on HMGCoA reductase activity from rat liver microsomes in the system described by Beg et al. was examined. The inhibition by magnesium ATP is confirmed but varies widely from zero to complete. A requirement for a cytosolic fraction to enhance the inhibition could not be established. ATP labeled uniformly with 14C in the adenine portion and 32P in the terminal phosphate was incubated with the enzyme in a situation where strong inhibition was observed. The enzyme protein was precipitated with trichloroacetic acid, or subjected to column fractionation. No evidence of labeling was found in the protein. Finally, the enzyme protein was specifically isolated by immunoprecipitation with a specific antibody to the HMGCoA reductase. In no instance could labeling of the enzyme protein be detected. These results show that the mechanism of the inhibition does not involve phosphorylation or adenylation of the enzyme protein.  相似文献   

18.
The ferric reductase B (FerB) protein of Paracoccus denitrificans exhibits activity of an NAD(P)H: Fe(III) chelate, chromate and quinone oxidoreductase. Sequence analysis places FerB in a family of soluble flavin-containing quinone reductases. The enzyme reduces a range of quinone substrates, including derivatives of 1,4-benzoquinone and 1,2- and 1,4-naphthoquinone, via a ping-pong kinetic mechanism. Dicoumarol and Cibacron Blue 3GA are competitive inhibitors of NADH oxidation. In the case of benzoquinones, FerB apparently acts through a two-electron transfer process, whereas in the case of naphthoquinones, one-electron reduction takes place resulting in the formation of semiquinone radicals. A ferB mutant strain exhibited an increased resistance to 1,4-naphthoquinone, attributable to the absence of the FerB-mediated redox cycling. The ferB promoter displayed a high basal activity throughout the growth of P. denitrificans, which could not be further enhanced by addition of different types of naphthoquinones. This indicates that the ferB gene is expressed constitutively.  相似文献   

19.
DHRS4, a member of the short-chain dehydrogenase/reductase superfamily, reduces all-trans-retinal and xenobiotic carbonyl compounds. Human DHRS4 differs from other animal enzymes in kinetic constants for the substrates, particularly in its low reactivity to retinoids. We have found that pig, rabbit and dog DHRS4s reduce benzil and 3-ketosteroids into S-benzoin and 3α-hydroxysteroids, respectively, in contrast to the stereoselectivity of human DHRS4 which produces R-benzoin and 3β-hydroxysteroids. Among substrate-binding residues predicted from the crystal structure of pig DHRS4, F158 and L161 in the animal DHRS4 are serine and phenylalanine, respectively, in the human enzyme. Double mutation (F158S/L161F) of pig DHRS4 led to an effective switch of its substrate affinity and stereochemistry into those similar to human DHRS4. The roles of the two residues in determining the stereospecificity in 3-ketosteroid reduction were confirmed by reverse mutation (S158F/F161L) in the human enzyme. The stereochemical control was evaluated by comparison of the 3D models of pig wild-type and mutant DHRS4s with the modeled substrates. Additional mutation of T177N into the human S158F/F161L mutant resulted in almost complete kinetic conversion into a pig DHRS4-type form, suggesting a role of N177 in forming the substrate-binding cavity through an intersubunit interaction in pig and other animal DHRS4s, and explaining why the human enzyme shows low reactivity towards retinoids.  相似文献   

20.
Cytochrome-c reductase (EC 1.10.2.2.) from Solanum tuberosum L. comprises ten subunits with apparent molecular sizes of 55, 53, 51, 35, 33, 25, 14, 12, 11 and 10 kDa on 14% SDS-PAGE. The identity of the subunits was analysed by direct amino-acid sequencing via cyclic Edman degradation. A large-scale purification procedure for the enzyme complex based on affinity chromatography and gelfiltraton is described. All subunits were enzymatically fragmented and the generated peptides were separated by reverse-phase HPLC. Complete or partial sequence determination of 33 peptides comprising a total of nearly 500 amino acids showed, that cytochrome-c reductase from potato contains three respiratory proteins (cytochrome b, cytochrome c 1 and the Rieske iron-sulfur protein), four small proteins with molecular sizes below 15 kDa (so-called Q-binding, hinge, cytochrome-c 1-linked and core-linked proteins) and three proteins in the 50-kDa range which show similarity to members of the core/PEP/MPP protein family (core/processing enhancing protein/mitochondrial processing peptidase). In fact these subunits show highest sequence identity either to MPP or PEP, which is in line with earlier findings, that isolated cytochrome-c reductase from potato exhibits processing activity towards mitochondrial precursor proteins.Abbreviations MPP mitochondrial processing peptidase - PEP processing enhancing protein This research was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号